Sparse Matrices. This means that for increasing problem size the matrices become sparse and sparser. O. Rheinbach, TU Bergakademie Freiberg

Size: px
Start display at page:

Download "Sparse Matrices. This means that for increasing problem size the matrices become sparse and sparser. O. Rheinbach, TU Bergakademie Freiberg"

Transcription

1 Sparse Matrices Many matrices in computing only contain a very small percentage of nonzeros. Such matrices are called sparse ( dünn besetzt ). Often, an upper bound on the number of nonzeros in a row can be given (e.g., n = 100), which is independent of the matrix size. This means that for increasing problem size the matrices become sparse and sparser

2 Solution of Systems of Equations Iterative methods like (Preconditioned) Conjugate Gradient Method (PCG), GMRES a.o. Use only matrix vector multiplikations Use little additional memory Direct sparse or banded solvers like LU-decomposition (Gaussian Elimination) First step is symbolic. Allocates additional memory for the fill-in during elimination Followed by a second step in which the elimination takes place 2

3 Preconditioned CG-Method (PCG) The PCG method is an iterative method to solve linear systems where A is symmetric positive definite. Works by minimizing the energy Ax = b 1 2 xt Ax x T b. Minimum is the solution of Ax = b and the necessary condition is 0 = ( 1 2 xt Ax x T b) = Ax b. Needs only multiplications with the matrix A and an (optional) preconditioner matrix or operator M 1. Simple preconditioners are, e.g., be Jacobi/Gauß-Seydel (not optimal) Optimal preconditioners will result in a constant number of iterations (for a given error tolerance). Optimal or almost-optimal preconditioners are much more sophisticated algorithms than Jacobi or Gauß-Seydel. 3

4 Preconditioned CG-Method (PCG) - Algorithm /* Preconditioned CG-Method for Ax=b */ i=0 r=b-a*x /* */ d=m^{-1}*r delta_new=<r,d> while delta_new > eps do q=a*d /* */ alpha=delta_new / <d,q> x=x + alpha*d r=r - alpha*q done s=m^{-1}*r /* */ delta_old=delta_new delta_new=<r,s> beta=delta_new / delta_old d=s + beta*d i=i+1 4

5 Naive Coordinate Format for Sparse Matrices Use three arrays or linked lists (column, row, value) Insertion/deletion if entries (+) Matrix operations (?) 5

6 Compressed Sparse Row Format (CSR) for Sparse Matrices Use three arrays val stores the nonzero entries of the matrix in row-wise order cols stores the column number of the entry rowstart stores the indices of the start of the rows in val and cols. the diagonal is (often) stored first to allow fast access to diagonal entries val cols rowstart

7 Compressed Row Format compact and efficient very general fast for the most important operations Sorting the rows allows a fast access to the entries by binary search - Insertion of entries is very inefficient (has to be accepted, if frequent insertion is necessary use a different format and then convert) 7

8 Compressed Sparse Column Format (SCS) for Sparse Matrices Is equivalent to compressed row storage of A T val rows colstart

9 Knuth scheme Combination of CCR and CCS. The fields nextr and nextc allow fast traversal of columns AND rows. The are linked lists to the next row or column. The last in a row/column links back to the first. Diagonal is not sorted to the front. To find the first entry in a row or column, both, rowstart and colstart are present val row col nextr nextc rowstart colstart

10 Hypersparse Matrices In typical sparse matrices the number of elements in a row and column is bounded. Hypersparse matrices are matrices where almost all rows and columns are zero. Examples are restriction operators, adjacence matrices of hypersparse graphs,... Compressed Row and Compressed Column are inefficient for hypersparse matrices. In CSR rowstart has as many entries as there are rows. In CSC colstart has as many entries as there are columns. Both can be much larger than the number of nonzeros in the matrix. To avoid this rowstart or colstart, respectively, can be compressed to save space, i.e., by a runlength encoding. Remark: This is also important when implementing an efficient sparse matrix-matrix multiplication. 10

11 Example for Sparse Operations Matrix-vector multiplikation in compressed row format Matrix-vector multiplikation in compressed column format 11

12 Matrix-Vector Multiplikation in Compressed Row Format /* Berechnet v=a*w, wobei A im CRF */ for i=0..n-1 v(i)=0; left=rowstart(i); right=rowstart(i+1)-1; for j=left..right v(i)=v(i)+val(j)*w(cols(j)) end end val cols rowstart

13 Matrix-Vector Multiplication im Compressed Column Format /* Berechnet v=a*w, wobei A im CCF */ for i=0..n-1 v(i)=0; top=colstart(i); bottom=colstart(i+1)-1; for j=top..bottom v(rows(j))=v(rows(j))+val(j)*w(i) end end val rows colstart

14 Banded LU-Decomposition, Symbolic Step, Find Skyline

15 Banded LU-decomposition, symbolic step Schritt: allocate memory, copy, sort val cols rowstart Data structure after symbolic step Banded LU Decomposition: Complexity n (bandwidth) 2 15

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet Contents 2 F10: Parallel Sparse Matrix Computations Figures mainly from Kumar et. al. Introduction to Parallel Computing, 1st ed Chap. 11 Bo Kågström et al (RG, EE, MR) 2011-05-10 Sparse matrices and storage

More information

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI 1 Akshay N. Panajwar, 2 Prof.M.A.Shah Department of Computer Science and Engineering, Walchand College of Engineering,

More information

Lecture 15: More Iterative Ideas

Lecture 15: More Iterative Ideas Lecture 15: More Iterative Ideas David Bindel 15 Mar 2010 Logistics HW 2 due! Some notes on HW 2. Where we are / where we re going More iterative ideas. Intro to HW 3. More HW 2 notes See solution code!

More information

Report of Linear Solver Implementation on GPU

Report of Linear Solver Implementation on GPU Report of Linear Solver Implementation on GPU XIANG LI Abstract As the development of technology and the linear equation solver is used in many aspects such as smart grid, aviation and chemical engineering,

More information

Matrix-free IPM with GPU acceleration

Matrix-free IPM with GPU acceleration Matrix-free IPM with GPU acceleration Julian Hall, Edmund Smith and Jacek Gondzio School of Mathematics University of Edinburgh jajhall@ed.ac.uk 29th June 2011 Linear programming theory Primal-dual pair

More information

2 Fundamentals of Serial Linear Algebra

2 Fundamentals of Serial Linear Algebra . Direct Solution of Linear Systems.. Gaussian Elimination.. LU Decomposition and FBS..3 Cholesky Decomposition..4 Multifrontal Methods. Iterative Solution of Linear Systems.. Jacobi Method Fundamentals

More information

OpenFOAM + GPGPU. İbrahim Özküçük

OpenFOAM + GPGPU. İbrahim Özküçük OpenFOAM + GPGPU İbrahim Özküçük Outline GPGPU vs CPU GPGPU plugins for OpenFOAM Overview of Discretization CUDA for FOAM Link (cufflink) Cusp & Thrust Libraries How Cufflink Works Performance data of

More information

Lecture 17: More Fun With Sparse Matrices

Lecture 17: More Fun With Sparse Matrices Lecture 17: More Fun With Sparse Matrices David Bindel 26 Oct 2011 Logistics Thanks for info on final project ideas. HW 2 due Monday! Life lessons from HW 2? Where an error occurs may not be where you

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices CSE 599 I Accelerated Computing - Programming GPUS Parallel Pattern: Sparse Matrices Objective Learn about various sparse matrix representations Consider how input data affects run-time performance of

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Figure 6.1: Truss topology optimization diagram.

Figure 6.1: Truss topology optimization diagram. 6 Implementation 6.1 Outline This chapter shows the implementation details to optimize the truss, obtained in the ground structure approach, according to the formulation presented in previous chapters.

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Sparse Linear Systems and Factorization Methods Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Sparse

More information

Julian Hall School of Mathematics University of Edinburgh. June 15th Parallel matrix inversion for the revised simplex method - a study

Julian Hall School of Mathematics University of Edinburgh. June 15th Parallel matrix inversion for the revised simplex method - a study Parallel matrix inversion for the revised simplex method - A study Julian Hall School of Mathematics University of Edinburgh June 5th 006 Parallel matrix inversion for the revised simplex method - a study

More information

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA NVIDIA Corporation Outline! Overview of CG benchmark! Overview of CUDA Libraries! CUSPARSE! CUBLAS! Porting Sequence! Algorithm Analysis! Data/Code

More information

1D Model Problem. Conjugate Gradients. restart; with(linearalgebra): with(plots):

1D Model Problem. Conjugate Gradients. restart; with(linearalgebra): with(plots): restart; with(linearalgebra): with(plots): 1D Model Problem Construct the typical tridiagonal Matrix for the 1D Poisson equation with zero right hand side vector b: n:=7; A := Matrix( [ [ seq(-1, i=1..n-1)

More information

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview Aim Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk What should a 2-hour PhD lecture on structure

More information

Iterative Sparse Triangular Solves for Preconditioning

Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015, Vienna Aug 24-28, 2015 Iterative Sparse Triangular Solves for Preconditioning Hartwig Anzt, Edmond Chow and Jack Dongarra Incomplete Factorization Preconditioning Incomplete LU factorizations

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

Solving Sparse Linear Systems. Forward and backward substitution for solving lower or upper triangular systems

Solving Sparse Linear Systems. Forward and backward substitution for solving lower or upper triangular systems AMSC 6 /CMSC 76 Advanced Linear Numerical Analysis Fall 7 Direct Solution of Sparse Linear Systems and Eigenproblems Dianne P. O Leary c 7 Solving Sparse Linear Systems Assumed background: Gauss elimination

More information

Computational issues in linear programming

Computational issues in linear programming Computational issues in linear programming Julian Hall School of Mathematics University of Edinburgh 15th May 2007 Computational issues in linear programming Overview Introduction to linear programming

More information

Chapter 1 - The Spark Machine Learning Library

Chapter 1 - The Spark Machine Learning Library Chapter 1 - The Spark Machine Learning Library Objectives Key objectives of this chapter: The Spark Machine Learning Library (MLlib) MLlib dense and sparse vectors and matrices Types of distributed matrices

More information

Performance Strategies for Parallel Mathematical Libraries Based on Historical Knowledgebase

Performance Strategies for Parallel Mathematical Libraries Based on Historical Knowledgebase Performance Strategies for Parallel Mathematical Libraries Based on Historical Knowledgebase CScADS workshop 29 Eduardo Cesar, Anna Morajko, Ihab Salawdeh Universitat Autònoma de Barcelona Objective Mathematical

More information

Performance Evaluation of a New Parallel Preconditioner

Performance Evaluation of a New Parallel Preconditioner Performance Evaluation of a New Parallel Preconditioner Keith D. Gremban Gary L. Miller Marco Zagha School of Computer Science Carnegie Mellon University 5 Forbes Avenue Pittsburgh PA 15213 Abstract The

More information

Sparse Matrix Libraries in C++ for High Performance. Architectures. ferent sparse matrix data formats in order to best

Sparse Matrix Libraries in C++ for High Performance. Architectures. ferent sparse matrix data formats in order to best Sparse Matrix Libraries in C++ for High Performance Architectures Jack Dongarra xz, Andrew Lumsdaine, Xinhui Niu Roldan Pozo z, Karin Remington x x Oak Ridge National Laboratory z University oftennessee

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

nag sparse nsym sol (f11dec)

nag sparse nsym sol (f11dec) f11 Sparse Linear Algebra f11dec nag sparse nsym sol (f11dec) 1. Purpose nag sparse nsym sol (f11dec) solves a real sparse nonsymmetric system of linear equations, represented in coordinate storage format,

More information

THE DEVELOPMENT OF THE POTENTIAL AND ACADMIC PROGRAMMES OF WROCLAW UNIVERISTY OF TECH- NOLOGY ITERATIVE LINEAR SOLVERS

THE DEVELOPMENT OF THE POTENTIAL AND ACADMIC PROGRAMMES OF WROCLAW UNIVERISTY OF TECH- NOLOGY ITERATIVE LINEAR SOLVERS ITERATIVE LIEAR SOLVERS. Objectives The goals of the laboratory workshop are as follows: to learn basic properties of iterative methods for solving linear least squares problems, to study the properties

More information

Sparse Linear Systems

Sparse Linear Systems 1 Sparse Linear Systems Rob H. Bisseling Mathematical Institute, Utrecht University Course Introduction Scientific Computing February 22, 2018 2 Outline Iterative solution methods 3 A perfect bipartite

More information

Spare Matrix Formats, and The Standard Template Library

Spare Matrix Formats, and The Standard Template Library Annotated slides CS319: Scientific Computing (with C++) Spare Matrix Formats, and The Standard Template Library Week 10: 9am and 4pm, 20 March 2019 1 Sparse Matrices 2 3 Compressed Column Storage 4 (Not)

More information

Prof. Dr. Stefan Funken, Prof. Dr. Alexander Keller, Prof. Dr. Karsten Urban 11. Januar Scientific Computing Parallele Algorithmen

Prof. Dr. Stefan Funken, Prof. Dr. Alexander Keller, Prof. Dr. Karsten Urban 11. Januar Scientific Computing Parallele Algorithmen Prof. Dr. Stefan Funken, Prof. Dr. Alexander Keller, Prof. Dr. Karsten Urban 11. Januar 2007 Scientific Computing Parallele Algorithmen Page 2 Scientific Computing 11. Januar 2007 Funken / Keller / Urban

More information

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013 GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS Kyle Spagnoli Research Engineer @ EM Photonics 3/20/2013 INTRODUCTION» Sparse systems» Iterative solvers» High level benchmarks»

More information

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2 Uppsala University Department of Information technology Hands-on : Ill-conditioning Exercise (Ill-conditioned linear systems) Definition A system of linear equations is said to be ill-conditioned when

More information

Application of GPU-Based Computing to Large Scale Finite Element Analysis of Three-Dimensional Structures

Application of GPU-Based Computing to Large Scale Finite Element Analysis of Three-Dimensional Structures Paper 6 Civil-Comp Press, 2012 Proceedings of the Eighth International Conference on Engineering Computational Technology, B.H.V. Topping, (Editor), Civil-Comp Press, Stirlingshire, Scotland Application

More information

Preconditioning Linear Systems Arising from Graph Laplacians of Complex Networks

Preconditioning Linear Systems Arising from Graph Laplacians of Complex Networks Preconditioning Linear Systems Arising from Graph Laplacians of Complex Networks Kevin Deweese 1 Erik Boman 2 1 Department of Computer Science University of California, Santa Barbara 2 Scalable Algorithms

More information

NAG Library Function Document nag_sparse_nsym_sol (f11dec)

NAG Library Function Document nag_sparse_nsym_sol (f11dec) f11 Large Scale Linear Systems NAG Library Function Document nag_sparse_nsym_sol () 1 Purpose nag_sparse_nsym_sol () solves a real sparse nonsymmetric system of linear equations, represented in coordinate

More information

AA220/CS238 Parallel Methods in Numerical Analysis. Introduction to Sparse Direct Solver (Symmetric Positive Definite Systems)

AA220/CS238 Parallel Methods in Numerical Analysis. Introduction to Sparse Direct Solver (Symmetric Positive Definite Systems) AA0/CS8 Parallel ethods in Numerical Analysis Introduction to Sparse Direct Solver (Symmetric Positive Definite Systems) Kincho H. Law Professor of Civil and Environmental Engineering Stanford University

More information

PARALUTION - a Library for Iterative Sparse Methods on CPU and GPU

PARALUTION - a Library for Iterative Sparse Methods on CPU and GPU - a Library for Iterative Sparse Methods on CPU and GPU Dimitar Lukarski Division of Scientific Computing Department of Information Technology Uppsala Programming for Multicore Architectures Research Center

More information

Structure-preserving Smoothing for Seismic Amplitude Data by Anisotropic Diffusion using GPGPU

Structure-preserving Smoothing for Seismic Amplitude Data by Anisotropic Diffusion using GPGPU GPU Technology Conference 2016 April, 4-7 San Jose, CA, USA Structure-preserving Smoothing for Seismic Amplitude Data by Anisotropic Diffusion using GPGPU Joner Duarte jduartejr@tecgraf.puc-rio.br Outline

More information

Accelerating the Iterative Linear Solver for Reservoir Simulation

Accelerating the Iterative Linear Solver for Reservoir Simulation Accelerating the Iterative Linear Solver for Reservoir Simulation Wei Wu 1, Xiang Li 2, Lei He 1, Dongxiao Zhang 2 1 Electrical Engineering Department, UCLA 2 Department of Energy and Resources Engineering,

More information

ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems

ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu Announcements Homework

More information

Intel MKL Sparse Solvers. Software Solutions Group - Developer Products Division

Intel MKL Sparse Solvers. Software Solutions Group - Developer Products Division Intel MKL Sparse Solvers - Agenda Overview Direct Solvers Introduction PARDISO: main features PARDISO: advanced functionality DSS Performance data Iterative Solvers Performance Data Reference Copyright

More information

Iterative Methods for Solving Linear Problems

Iterative Methods for Solving Linear Problems Iterative Methods for Solving Linear Problems When problems become too large (too many data points, too many model parameters), SVD and related approaches become impractical. Iterative Methods for Solving

More information

Parallel Implementations of Gaussian Elimination

Parallel Implementations of Gaussian Elimination s of Western Michigan University vasilije.perovic@wmich.edu January 27, 2012 CS 6260: in Parallel Linear systems of equations General form of a linear system of equations is given by a 11 x 1 + + a 1n

More information

NAG Library Function Document nag_sparse_sym_sol (f11jec)

NAG Library Function Document nag_sparse_sym_sol (f11jec) f11 Large Scale Linear Systems f11jec NAG Library Function Document nag_sparse_sym_sol (f11jec) 1 Purpose nag_sparse_sym_sol (f11jec) solves a real sparse symmetric system of linear equations, represented

More information

How to use sparse lib in FEM package

How to use sparse lib in FEM package How to use sparse lib in FEM package October 18, 2005 Contents 1 Introduction 1 2 Three Basic Components in sparse lib 1 3 Parameters or Basic Information for sparse lib Library 2 3.1 Input Parameters.........................

More information

Chapter 4. Matrix and Vector Operations

Chapter 4. Matrix and Vector Operations 1 Scope of the Chapter Chapter 4 This chapter provides procedures for matrix and vector operations. This chapter (and Chapters 5 and 6) can handle general matrices, matrices with special structure and

More information

Implicit schemes for wave models

Implicit schemes for wave models Implicit schemes for wave models Mathieu Dutour Sikirić Rudjer Bo sković Institute, Croatia and Universität Rostock April 17, 2013 I. Wave models Stochastic wave modelling Oceanic models are using grids

More information

Empirical Complexity of Laplacian Linear Solvers: Discussion

Empirical Complexity of Laplacian Linear Solvers: Discussion Empirical Complexity of Laplacian Linear Solvers: Discussion Erik Boman, Sandia National Labs Kevin Deweese, UC Santa Barbara John R. Gilbert, UC Santa Barbara 1 Simons Institute Workshop on Fast Algorithms

More information

Gaussian Elimination 2 5 = 4

Gaussian Elimination 2 5 = 4 Linear Systems Lab Objective: The fundamental problem of linear algebra is solving the linear system Ax = b, given that a solution exists There are many approaches to solving this problem, each with different

More information

CS 542G: Solving Sparse Linear Systems

CS 542G: Solving Sparse Linear Systems CS 542G: Solving Sparse Linear Systems Robert Bridson November 26, 2008 1 Direct Methods We have already derived several methods for solving a linear system, say Ax = b, or the related leastsquares problem

More information

Data Structures for sparse matrices

Data Structures for sparse matrices Data Structures for sparse matrices The use of a proper data structures is critical to achieving good performance. Generate a symmetric sparse matrix A in matlab and time the operations of accessing (only)

More information

GPU Implementation of Elliptic Solvers in NWP. Numerical Weather- and Climate- Prediction

GPU Implementation of Elliptic Solvers in NWP. Numerical Weather- and Climate- Prediction 1/8 GPU Implementation of Elliptic Solvers in Numerical Weather- and Climate- Prediction Eike Hermann Müller, Robert Scheichl Department of Mathematical Sciences EHM, Xu Guo, Sinan Shi and RS: http://arxiv.org/abs/1302.7193

More information

Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach

Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach 1 Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach David Greiner, Gustavo Montero, Gabriel Winter Institute of Intelligent Systems and Numerical Applications in Engineering (IUSIANI)

More information

Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms

Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms Analysis and Optimization of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-core and Many-core Platforms H. Anzt, V. Heuveline Karlsruhe Institute of Technology, Germany

More information

Paralution & ViennaCL

Paralution & ViennaCL Paralution & ViennaCL Clemens Schiffer June 12, 2014 Clemens Schiffer (Uni Graz) Paralution & ViennaCL June 12, 2014 1 / 32 Introduction Clemens Schiffer (Uni Graz) Paralution & ViennaCL June 12, 2014

More information

Nonsymmetric Problems. Abstract. The eect of a threshold variant TPABLO of the permutation

Nonsymmetric Problems. Abstract. The eect of a threshold variant TPABLO of the permutation Threshold Ordering for Preconditioning Nonsymmetric Problems Michele Benzi 1, Hwajeong Choi 2, Daniel B. Szyld 2? 1 CERFACS, 42 Ave. G. Coriolis, 31057 Toulouse Cedex, France (benzi@cerfacs.fr) 2 Department

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing HW #9 10., 10.3, 10.7 Due April 17 { } Review Completing Graph Algorithms Maximal Independent Set Johnson s shortest path algorithm using adjacency lists Q= V; for all v in Q l[v] = infinity; l[s] = 0;

More information

Least Squares and SLAM Pose-SLAM

Least Squares and SLAM Pose-SLAM Least Squares and SLAM Pose-SLAM Giorgio Grisetti Part of the material of this course is taken from the Robotics 2 lectures given by G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

More information

Block Distributed Schur Complement Preconditioners for CFD Computations on Many-Core Systems

Block Distributed Schur Complement Preconditioners for CFD Computations on Many-Core Systems Block Distributed Schur Complement Preconditioners for CFD Computations on Many-Core Systems Dr.-Ing. Achim Basermann, Melven Zöllner** German Aerospace Center (DLR) Simulation- and Software Technology

More information

fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner

fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner Thomas Huckle Matous Sedlacek 2011 09 10 Technische Universität München Research Unit Computer Science V Scientific Computing in Computer

More information

GPU-based Parallel Reservoir Simulators

GPU-based Parallel Reservoir Simulators GPU-based Parallel Reservoir Simulators Zhangxin Chen 1, Hui Liu 1, Song Yu 1, Ben Hsieh 1 and Lei Shao 1 Key words: GPU computing, reservoir simulation, linear solver, parallel 1 Introduction Nowadays

More information

PACKAGE SPECIFICATION HSL To solve a symmetric, sparse and positive definite set of linear equations Ax = b i.e. j=1

PACKAGE SPECIFICATION HSL To solve a symmetric, sparse and positive definite set of linear equations Ax = b i.e. j=1 MA61 PACKAGE SPECIFICATION HSL 2013 1 SUMMARY To solve a symmetric, sparse and positive definite set of linear equations Ax = b i.e. n a ij x j = b i j=1 i=1,2,...,n The solution is found by a preconditioned

More information

Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU. Robert Strzodka NVAMG Project Lead

Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU. Robert Strzodka NVAMG Project Lead Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU Robert Strzodka NVAMG Project Lead A Parallel Success Story in Five Steps 2 Step 1: Understand Application ANSYS Fluent Computational Fluid Dynamics

More information

THE STEP BY STEP INTERACTIVE GUIDE

THE STEP BY STEP INTERACTIVE GUIDE COMSATS Institute of Information Technology, Islamabad PAKISTAN A MATLAB BASED INTERACTIVE GRAPHICAL USER INTERFACE FOR ADVANCE IMAGE RECONSTRUCTION ALGORITHMS IN MRI Medical Image Processing Research

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

A Bit-Compatible Parallelization for ILU(k) Preconditioning

A Bit-Compatible Parallelization for ILU(k) Preconditioning A Bit-Compatible Parallelization for ILU(k) Preconditioning Xin Dong and Gene Cooperman College of Computer Science, Northeastern University Boston, MA 25, USA {xindong,gene}@ccs.neu.edu Abstract. ILU(k)

More information

Accelerating a Simulation of Type I X ray Bursts from Accreting Neutron Stars Mark Mackey Professor Alexander Heger

Accelerating a Simulation of Type I X ray Bursts from Accreting Neutron Stars Mark Mackey Professor Alexander Heger Accelerating a Simulation of Type I X ray Bursts from Accreting Neutron Stars Mark Mackey Professor Alexander Heger The goal of my project was to develop an optimized linear system solver to shorten the

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Some special matrices Matlab code How many operations and memory

More information

Sparse matrices: Basics

Sparse matrices: Basics Outline : Basics Bora Uçar RO:MA, LIP, ENS Lyon, France CR-08: Combinatorial scientific computing, September 201 http://perso.ens-lyon.fr/bora.ucar/cr08/ 1/28 CR09 Outline Outline 1 Course presentation

More information

IBM Research. IBM Research Report

IBM Research. IBM Research Report RC 24398 (W0711-017) November 5, 2007 (Last update: June 28, 2018) Computer Science/Mathematics IBM Research Report WSMP: Watson Sparse Matrix Package Part III iterative solution of sparse systems Version

More information

Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz SLAM Constraints connect the poses of the robot while it is moving

More information

On the Parallel Solution of Sparse Triangular Linear Systems. M. Naumov* San Jose, CA May 16, 2012 *NVIDIA

On the Parallel Solution of Sparse Triangular Linear Systems. M. Naumov* San Jose, CA May 16, 2012 *NVIDIA On the Parallel Solution of Sparse Triangular Linear Systems M. Naumov* San Jose, CA May 16, 2012 *NVIDIA Why Is This Interesting? There exist different classes of parallel problems Embarrassingly parallel

More information

Multi-GPU simulations in OpenFOAM with SpeedIT technology.

Multi-GPU simulations in OpenFOAM with SpeedIT technology. Multi-GPU simulations in OpenFOAM with SpeedIT technology. Attempt I: SpeedIT GPU-based library of iterative solvers for Sparse Linear Algebra and CFD. Current version: 2.2. Version 1.0 in 2008. CMRS format

More information

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices 6.1 Solving Systems of Linear Equations Using Matrices Objectives Write the augmented matrix for a linear system. Perform matrix row operations. Use matrices and Gaussian elimination to solve systems.

More information

High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms

High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Scientific Computing

More information

Introduction to PETSc KSP, PC. CS595, Fall 2010

Introduction to PETSc KSP, PC. CS595, Fall 2010 Introduction to PETSc KSP, PC CS595, Fall 2010 1 Linear Solution Main Routine PETSc Solve Ax = b Linear Solvers (KSP) PC Application Initialization Evaluation of A and b Post- Processing User code PETSc

More information

Accelerating the Conjugate Gradient Algorithm with GPUs in CFD Simulations

Accelerating the Conjugate Gradient Algorithm with GPUs in CFD Simulations Accelerating the Conjugate Gradient Algorithm with GPUs in CFD Simulations Hartwig Anzt 1, Marc Baboulin 2, Jack Dongarra 1, Yvan Fournier 3, Frank Hulsemann 3, Amal Khabou 2, and Yushan Wang 2 1 University

More information

Overview of Intel MKL Sparse BLAS. Software and Services Group Intel Corporation

Overview of Intel MKL Sparse BLAS. Software and Services Group Intel Corporation Overview of Intel MKL Sparse BLAS Software and Services Group Intel Corporation Agenda Why and when sparse routines should be used instead of dense ones? Intel MKL Sparse BLAS functionality Sparse Matrix

More information

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager Intel Math Kernel Library (Intel MKL) BLAS Victor Kostin Intel MKL Dense Solvers team manager Intel MKL BLAS/Sparse BLAS Original ( dense ) BLAS available from www.netlib.org Additionally Intel MKL provides

More information

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015

AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 AmgX 2.0: Scaling toward CORAL Joe Eaton, November 19, 2015 Agenda Introduction to AmgX Current Capabilities Scaling V2.0 Roadmap for the future 2 AmgX Fast, scalable linear solvers, emphasis on iterative

More information

Parallel solution for finite element linear systems of. equations on workstation cluster *

Parallel solution for finite element linear systems of. equations on workstation cluster * Aug. 2009, Volume 6, No.8 (Serial No.57) Journal of Communication and Computer, ISSN 1548-7709, USA Parallel solution for finite element linear systems of equations on workstation cluster * FU Chao-jiang

More information

Task-Oriented Parallel ILU(k) Preconditioning on Computer Cluster and Multi-core Machine

Task-Oriented Parallel ILU(k) Preconditioning on Computer Cluster and Multi-core Machine Task-Oriented Parallel ILU(k) Preconditioning on Computer Cluster and Multi-core Machine 1 arxiv:0803.0048v2 [cs.dc] 3 Oct 2010 Xin Dong College of Computer Science Northeastern University Boston, MA 02115

More information

Sparse matrices, graphs, and tree elimination

Sparse matrices, graphs, and tree elimination Logistics Week 6: Friday, Oct 2 1. I will be out of town next Tuesday, October 6, and so will not have office hours on that day. I will be around on Monday, except during the SCAN seminar (1:25-2:15);

More information

fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner

fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner Thomas Huckle Matous Sedlacek 2011 08 01 Technische Universität München Research Unit Computer Science V Scientific Computing in Computer

More information

NAG Fortran Library Routine Document F11DSF.1

NAG Fortran Library Routine Document F11DSF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

NEW ADVANCES IN GPU LINEAR ALGEBRA

NEW ADVANCES IN GPU LINEAR ALGEBRA GTC 2012: NEW ADVANCES IN GPU LINEAR ALGEBRA Kyle Spagnoli EM Photonics 5/16/2012 QUICK ABOUT US» HPC/GPU Consulting Firm» Specializations in:» Electromagnetics» Image Processing» Fluid Dynamics» Linear

More information

Tools and Libraries for Parallel Sparse Matrix Computations. Edmond Chow and Yousef Saad. University of Minnesota. Minneapolis, MN

Tools and Libraries for Parallel Sparse Matrix Computations. Edmond Chow and Yousef Saad. University of Minnesota. Minneapolis, MN Tools and Libraries for Parallel Sparse Matrix Computations Edmond Chow and Yousef Saad Department of Computer Science, and Minnesota Supercomputer Institute University of Minnesota Minneapolis, MN 55455

More information

Iterative Solver Benchmark Jack Dongarra, Victor Eijkhout, Henk van der Vorst 2001/01/14 1 Introduction The traditional performance measurement for co

Iterative Solver Benchmark Jack Dongarra, Victor Eijkhout, Henk van der Vorst 2001/01/14 1 Introduction The traditional performance measurement for co Iterative Solver Benchmark Jack Dongarra, Victor Eijkhout, Henk van der Vorst 2001/01/14 1 Introduction The traditional performance measurement for computers on scientic application has been the Linpack

More information

Research Article A PETSc-Based Parallel Implementation of Finite Element Method for Elasticity Problems

Research Article A PETSc-Based Parallel Implementation of Finite Element Method for Elasticity Problems Mathematical Problems in Engineering Volume 2015, Article ID 147286, 7 pages http://dx.doi.org/10.1155/2015/147286 Research Article A PETSc-Based Parallel Implementation of Finite Element Method for Elasticity

More information

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology Exploiting GPU Caches in Sparse Matrix Vector Multiplication Yusuke Nagasaka Tokyo Institute of Technology Sparse Matrix Generated by FEM, being as the graph data Often require solving sparse linear equation

More information

Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics

Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics Outline Introduction Sherman-Morrison formula Woodbury formula Indexed storage of sparse matrices Types

More information

Parallel Threshold-based ILU Factorization

Parallel Threshold-based ILU Factorization A short version of this paper appears in Supercomputing 997 Parallel Threshold-based ILU Factorization George Karypis and Vipin Kumar University of Minnesota, Department of Computer Science / Army HPC

More information

AN IMPROVED ITERATIVE METHOD FOR SOLVING GENERAL SYSTEM OF EQUATIONS VIA GENETIC ALGORITHMS

AN IMPROVED ITERATIVE METHOD FOR SOLVING GENERAL SYSTEM OF EQUATIONS VIA GENETIC ALGORITHMS AN IMPROVED ITERATIVE METHOD FOR SOLVING GENERAL SYSTEM OF EQUATIONS VIA GENETIC ALGORITHMS Seyed Abolfazl Shahzadehfazeli 1, Zainab Haji Abootorabi,3 1 Parallel Processing Laboratory, Yazd University,

More information

paper, we focussed on the GMRES(m) which is improved GMRES(Generalized Minimal RESidual method), and developed its library on distributed memory machi

paper, we focussed on the GMRES(m) which is improved GMRES(Generalized Minimal RESidual method), and developed its library on distributed memory machi Performance of Automatically Tuned Parallel GMRES(m) Method on Distributed Memory Machines Hisayasu KURODA 1?, Takahiro KATAGIRI 12, and Yasumasa KANADA 3 1 Department of Information Science, Graduate

More information