Sparse matrices: Basics

Size: px
Start display at page:

Download "Sparse matrices: Basics"

Transcription

1 Outline : Basics Bora Uçar RO:MA, LIP, ENS Lyon, France CR-08: Combinatorial scientific computing, September /28 CR09

2 Outline Outline 1 Course presentation 2 2/28 CR09

3 CR08: What is and what is not? CR08 is about sparse matrices and computations with them. Sparse matrix: It is a matrix with many zeros which are not stored. We will follow: Lecture notes, articles, books. S Presentations (survey/research) A = Sparse matrix computations: Mostly operate on the nonzero elements. are everywhere: Google s PageRank, network analysis (social, biological), simulation science (circuits, numerical,...) CR08 3/28 CR09

4 CR08: What is and what is not? CR08 is about graphs. Nonzeros of a matrix can been seen as the edges of a bipartite graph, a directed graph, an undirected graph, or a hypergraph. Computations on sparse matrices can be modeled using graphs. CR08 is about this correspondence in a broader sense /28 CR09

5 CR08: What is and what is not?...not a scientific computing/linear algebra course....not a full-fledged combinatorial optimization course....not a parallel computing course. We will see some exciting problems having to do with topics from these three domains. 5/28 CR09

6 CR08: A sample problem Let A be an n n symmetric positive definite matrix The LL T factorization ( can ) be described by the equation: d1 v1 T A = H 0 = v 1 H 1 ( ) ( ) ( d1 ) d v T 1 = d1 v d1 1 I n 1 0 H 1 0 I n 1 = L 1 A 1 L T 1, where H 1 = H 1 v 1v T 1 d 1 The basic step is applied on H 1, H 2... to obtain : ( ) A = (L 1 L 2 L n 1 ) I n L T n 1 L T 2 LT 1 = LL T /28 CR09

7 The basic step: H 1 = H 1 v 1v T 1 d 1 What is v 1 v T 1 in terms of structure? vt 1 v 1 v 1 v T 1 : a dense sub-matrix in H 1. v 1 is a column of A, hence the neighbors of the corresponding vertex. v 1 v 1 T The neighbors of the corresponding vertex form a clique. Basic step modeled using a graph: Pick the vertex, form a clique from its neighbors, and remove the vertex. 7/28 CR09

8 CR08: A sample problem G 0 G 1 G H 0 H 1 H G(L + L T ) L + L T G H 3 8/28 CR09 What can we say about the final matrix by just looking at the original graph?

9 CR08: Planning Course presentation Instructor: Lecture notes (references to articles, books); problems. Students: Participation to solving problems; Presentations (can be a survey, of type expository, or about a research problem). We will decide the form according to the number of participants. Classes to catch up: BU is away 10 1 November. We will decide the dates later for the course of that week. Office: Contact: Course web: GN1 Nord 332 (LIP) bora.ucar@ens-lyon.fr Lecture notes will be posted. 9/28 CR09

10 Course presentation When we started putting these models together they became very large as compared to linear programming capability at that time... It struck me that our matrices were mostly full of zeros, and if you have a set of simultaneous equations that are mostly zeros, if you pick your pivots right, you could just solve it by hand. Then I thought, well, maybe we could get the computer to do the same thing. This led to Sparse Matrices. As far as I know, I coined the word Sparse Matrix. Harry Markowitz: I got a Nobel Prize... Work in 1952 got Nobel in I published [in this area, refers to a 1957 paper on selecting pivots for Gaussian elimination] and then forgot about it...[in a] decade, it started to catch on and expanded very fast. I was completely oblivious to what was going on and to what extent. 10/28 CR09

11 : Coordinate format There are many ways to store a sparse matrix. We will look at three standard representations which store only the nonzero entries. We use τ to denote the number of nnzs Coordinate (Triplet) format Two integer arrays (irn, jcn) and a double array A, each of size τ: irn = [ ] jcn = [ ] A = [ ] The kth entry a ij is stored as irn[k] = i, jcn[k] = j, a[k] = a ij. The storage is 2τ integers and τ doubles (or single or complex). In general, τ = O(m + n). 11/28 CR09

12 : Coordinate format Question: Let A be an m n matrix. R and C be two diagonal matrices of size m m and n n. A can be scaled as  = RAC. Write a function/routine that does this operation for matrices stored in the coordinate format. 12/28 CR09

13 : Compressed row storage There are many ways to store a sparse matrix. We will look at three standard representations which store only the nonzero entries. Compressed row storage Two integer arrays (ia, jcn) and a double array A: The nonzeros of the ith row are stored at the ia[i] ia[i+1]-1 positions of jcn and A. ia = [ ] jcn = [ ] A = [ ] For example the 3rd row: starts at ia[3] = and finishes at ia[3+1]-1 = 5. The column indices are therefore jcn[,5] = 1 3 and values are A[,5] = /28 CR09

14 : Compressed row storage There are many ways to store a sparse matrix. We will look at three standard representations which store only the nonzero entries Compressed row format Two integer arrays (ia, jcn) and a double array A: ia = [ ] jcn = [ ] A = [ ] The nonzeros of the ith row are stored at the ia[i] ia[i+1]-1 positions of jcn and A. Let matrix be of size m n, and τ be the number of nonzeros, then the storage is m τ integer and τ double (or single or complex). 1/28 CR09

15 : Compressed row storage Question: Let A be an m n matrix stored in the compressed row storage format. Where is nnz(a)? Question: Let A be an m n matrix stored in the compressed row storage format. Write a function/routine that displays A. Question: Let A be an m n matrix. R and C be two diagonal matrices of size m m and n n. A can be scaled as  = RAC. Write a function/routine that does this operation for matrices stored in the compressed row storage format. 15/28 CR09

16 : Compressed column storage There are many ways to store a sparse matrix. We will look at three standard representations which store only the nonzero entries. Compressed column storage Two integer arrays (irn, ja) and a double array A: ja = [ ] irn = [ ] A = [ ] The nonzeros of the jth column are stored at the ja[j] ja[j+1]-1 positions of irn and A. For example the 2nd col: starts at ja[2] = 3 and finishes at ja[2+1]-1 =. The row indices are therefore irn[3,] = 2 5 and values are A[3,] = /28 CR09

17 : Compressed column storage There are many ways to store a sparse matrix. We will look at three standard representations which store only the nonzero entries Compressed column format The nonzeros of the jth column are stored at the ja[j] ja[j+1]-1 positions of irn and A. Two integer arrays (irn, ja) and a double array A: ja = [ ] irn = [ ] A = [ ] Let matrix be of size m n, and τ be the number of nonzeros, then the storage is n τ integer and τ double (or single or complex). 17/28 CR09

18 : Compressed column storage Question: Let A be an m n matrix stored in the compressed column storage format. Where is nnz(a)? Question: Let A be an m n matrix stored in the coordinate format. Write a function/routine that creates A in csc format. 18/28 CR09

19 Reminder: Dense matrix vector multiplication Need to compute y Ax for an m n dense matrix A and suitable dense vectors y and x. Row-major order for i = 1 to m do y[i] 0.0 for j = 1 to n do y[i] y[i] + A[i, j] x[j] Column-major order for i = 1 to m do y[i] 0.0 for j = 1 to n do for i = 1 to m do y[i] y[i] + A[i, j] x[j] 19/28 CR09

20 : Sparse matrix vector multiplies Need to compute y Ax for an m n sparse matrix A and suitable dense vectors y and x. Algorithm when A is stored in the coordinate format. 20/28 CR09

21 : Sparse matrix vector multiplies Need to compute y Ax for an m n sparse matrix A and suitable dense vectors y and x. A is stored in the coordinate format. Coordinate format with τ nonzeros (irn, jcn, A) for i = 1 to m do y[i] 0.0 for k = 1 to τ do y[irn[k]] y[irn[k]] + A[k] x[jcn[k]] 21/28 CR09

22 : Sparse matrix vector multiplies Need to compute y Ax for an m n sparse matrix A and suitable dense vectors y and x. Algorithm when A is stored in the CSR format. 22/28 CR09

23 : Sparse matrix vector multiplies Need to compute y Ax for an m n sparse matrix A and suitable dense vectors y and x. Algorithm when A is stored in the CSR format. Compressed row storage (ia, jcn, A) for i = 1 to m do val 0.0 for k = ia[i] to ia[i + 1] 1 do val val + A[k] x[jcn[k]] y[i] val 23/28 CR09

24 : Sparse matrix vector multiplies Need to compute y Ax for an m n sparse matrix A and suitable dense vectors y and x. Algorithm when A is stored in the CSC format. 2/28 CR09

25 : Sparse matrix vector multiplies Need to compute y Ax for an m n sparse matrix A and suitable dense vectors y and x. Algorithm when A is stored in the CSC format. Compressed column storage (ja, irn, A) for i = 1 to m do y[i] 0.0 for j = 1 to n do xval x[j] for k = ja[j] to ja[j + 1] 1 do y[irn[k]] y[irn[k]] + A[k] xval 25/28 CR09

26 : Sparse matrix vector multiplies Characterizes a wide range of applications with irregular computational dependency. reduction operation from inputs (here entries of x) to outputs (here entries of y) A fine grain computation: each nnz is read/operated on once. Guaranteeing efficiency will guarantee efficiency in applications with a coarser grain computation. 2/28 CR09

27 : Sparse matrix vector multiplies SpMxV s of the form y Ax are the computational kernel of many scientific computations Solvers for linear systems, linear programs, eigensystems, least squares problems, Repeated SpMxV with the same large sparse matrix A, The matrix A can be symmetric, unsymmetric, rectangular, Sometimes multiplies are of the form y ADA T z with a diagonal D (in interior point methods for linear programs). computation proceeds (why?) as w A T z, then x Dw, then y Ax Sometimes we have multiplies with A and A T independent; y Ax and w A T z (QMR, CGNE, and CGNR methods with square unsymmetric A; rectangular A in Lanczos method). 27/28 CR09

28 Further questions Given a real matrix A of size m n, with τ nonzeros. Question: Write a function to create its transpose (three times: stored in the COO, CSR, and CSC formats). Question: Write a function to determine if A is symmetric. Assume A is stored in the CSC format. 28/28 CR09

The block triangular form and bipartite matchings

The block triangular form and bipartite matchings Outline The block triangular form and bipartite matchings Jean-Yves L Excellent and Bora Uçar GRAAL, LIP, ENS Lyon, France CR-07: Sparse Matrix Computations, November 2010 http://graal.ens-lyon.fr/~bucar/cr07/

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2006-010 Revisiting hypergraph models for sparse matrix decomposition by Cevdet Aykanat, Bora Ucar Mathematics and Computer Science EMORY UNIVERSITY REVISITING HYPERGRAPH MODELS FOR

More information

Sparse Matrices Introduction to sparse matrices and direct methods

Sparse Matrices Introduction to sparse matrices and direct methods Sparse Matrices Introduction to sparse matrices and direct methods Iain Duff STFC Rutherford Appleton Laboratory and CERFACS Summer School The 6th de Brùn Workshop. Linear Algebra and Matrix Theory: connections,

More information

Technical Report. OSUBMI-TR_2008_n04. On two-dimensional sparse matrix partitioning: Models, Methods, and a Recipe

Technical Report. OSUBMI-TR_2008_n04. On two-dimensional sparse matrix partitioning: Models, Methods, and a Recipe The Ohio State University Department of Biomedical Informatics Graves Hall, W. th Avenue Columbus, OH http://bmi.osu.edu Technical Report OSUBMI-TR n On two-dimensional sparse matrix partitioning: Models,

More information

For example, the system. 22 may be represented by the augmented matrix

For example, the system. 22 may be represented by the augmented matrix Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural of matrix) may be

More information

c 2010 Society for Industrial and Applied Mathematics

c 2010 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol., No., pp. 66 68 c Society for Industrial and Applied Mathematics ON TWO-DIMENSIONAL SPARSE MATRIX PARTITIONING: MODELS, METHODS, AND A RECIPE ÜMİT V. ÇATALYÜREK, CEVDET AYKANAT,

More information

Chapter 4. Matrix and Vector Operations

Chapter 4. Matrix and Vector Operations 1 Scope of the Chapter Chapter 4 This chapter provides procedures for matrix and vector operations. This chapter (and Chapters 5 and 6) can handle general matrices, matrices with special structure and

More information

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices 6.1 Solving Systems of Linear Equations Using Matrices Objectives Write the augmented matrix for a linear system. Perform matrix row operations. Use matrices and Gaussian elimination to solve systems.

More information

Data Structures for sparse matrices

Data Structures for sparse matrices Data Structures for sparse matrices The use of a proper data structures is critical to achieving good performance. Generate a symmetric sparse matrix A in matlab and time the operations of accessing (only)

More information

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY

1.5D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY .D PARALLEL SPARSE MATRIX-VECTOR MULTIPLY ENVER KAYAASLAN, BORA UÇAR, AND CEVDET AYKANAT Abstract. There are three common parallel sparse matrix-vector multiply algorithms: D row-parallel, D column-parallel

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2013 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2013 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2018 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017 CS7540 Spectral Algorithms, Spring 2017 Lecture #2 Matrix Tree Theorem Presenter: Richard Peng Jan 12, 2017 DISCLAIMER: These notes are not necessarily an accurate representation of what I said during

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 21 Outline 1 Course

More information

CSCE 689 : Special Topics in Sparse Matrix Algorithms Department of Computer Science and Engineering Spring 2015 syllabus

CSCE 689 : Special Topics in Sparse Matrix Algorithms Department of Computer Science and Engineering Spring 2015 syllabus CSCE 689 : Special Topics in Sparse Matrix Algorithms Department of Computer Science and Engineering Spring 2015 syllabus Tim Davis last modified September 23, 2014 1 Catalog Description CSCE 689. Special

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Sparse Linear Systems and Factorization Methods Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Sparse

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Lecture 1: Introduction and Motivation Markus Kr otzsch Knowledge-Based Systems

Lecture 1: Introduction and Motivation Markus Kr otzsch Knowledge-Based Systems KNOWLEDGE GRAPHS Introduction and Organisation Lecture 1: Introduction and Motivation Markus Kro tzsch Knowledge-Based Systems TU Dresden, 16th Oct 2018 Markus Krötzsch, 16th Oct 2018 Course Tutors Knowledge

More information

Algebraic Graph Theory- Adjacency Matrix and Spectrum

Algebraic Graph Theory- Adjacency Matrix and Spectrum Algebraic Graph Theory- Adjacency Matrix and Spectrum Michael Levet December 24, 2013 Introduction This tutorial will introduce the adjacency matrix, as well as spectral graph theory. For those familiar

More information

KNOWLEDGE GRAPHS. Lecture 1: Introduction and Motivation. TU Dresden, 16th Oct Markus Krötzsch Knowledge-Based Systems

KNOWLEDGE GRAPHS. Lecture 1: Introduction and Motivation. TU Dresden, 16th Oct Markus Krötzsch Knowledge-Based Systems KNOWLEDGE GRAPHS Lecture 1: Introduction and Motivation Markus Krötzsch Knowledge-Based Systems TU Dresden, 16th Oct 2018 Introduction and Organisation Markus Krötzsch, 16th Oct 2018 Knowledge Graphs slide

More information

L17: Introduction to Irregular Algorithms and MPI, cont.! November 8, 2011!

L17: Introduction to Irregular Algorithms and MPI, cont.! November 8, 2011! L17: Introduction to Irregular Algorithms and MPI, cont.! November 8, 2011! Administrative Class cancelled, Tuesday, November 15 Guest Lecture, Thursday, November 17, Ganesh Gopalakrishnan CUDA Project

More information

Dense Matrix Algorithms

Dense Matrix Algorithms Dense Matrix Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text Introduction to Parallel Computing, Addison Wesley, 2003. Topic Overview Matrix-Vector Multiplication

More information

A Parallel Matrix Scaling Algorithm

A Parallel Matrix Scaling Algorithm A Parallel Matrix Scaling Algorithm Patrick R. Amestoy 1, Iain S. Duff 2,3, Daniel Ruiz 1, and Bora Uçar 3 1 ENSEEIHT-IRIT, 2 rue Camichel, 31071, Toulouse, France amestoy@enseeiht.fr, Daniel.Ruiz@enseeiht.fr

More information

ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems

ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu Announcements Homework

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

ENCAPSULATING MULTIPLE COMMUNICATION-COST METRICS IN PARTITIONING SPARSE RECTANGULAR MATRICES FOR PARALLEL MATRIX-VECTOR MULTIPLIES

ENCAPSULATING MULTIPLE COMMUNICATION-COST METRICS IN PARTITIONING SPARSE RECTANGULAR MATRICES FOR PARALLEL MATRIX-VECTOR MULTIPLIES SIAM J. SCI. COMPUT. Vol. 25, No. 6, pp. 1837 1859 c 2004 Society for Industrial and Applied Mathematics ENCAPSULATING MULTIPLE COMMUNICATION-COST METRICS IN PARTITIONING SPARSE RECTANGULAR MATRICES FOR

More information

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview Aim Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk What should a 2-hour PhD lecture on structure

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

Report of Linear Solver Implementation on GPU

Report of Linear Solver Implementation on GPU Report of Linear Solver Implementation on GPU XIANG LI Abstract As the development of technology and the linear equation solver is used in many aspects such as smart grid, aviation and chemical engineering,

More information

Communication balancing in Mondriaan sparse matrix partitioning

Communication balancing in Mondriaan sparse matrix partitioning Communication balancing in Mondriaan sparse matrix partitioning Rob Bisseling and Wouter Meesen Rob.Bisseling@math.uu.nl http://www.math.uu.nl/people/bisseling Department of Mathematics Utrecht University

More information

Minimizing Communication Cost in Fine-Grain Partitioning of Sparse Matrices

Minimizing Communication Cost in Fine-Grain Partitioning of Sparse Matrices Minimizing Communication Cost in Fine-Grain Partitioning of Sparse Matrices Bora Uçar and Cevdet Aykanat Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey {ubora,aykanat}@cs.bilkent.edu.tr

More information

Parallel Greedy Matching Algorithms

Parallel Greedy Matching Algorithms Parallel Greedy Matching Algorithms Fredrik Manne Department of Informatics University of Bergen, Norway Rob Bisseling, University of Utrecht Md. Mostofa Patwary, University of Bergen 1 Outline Background

More information

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI 1 Akshay N. Panajwar, 2 Prof.M.A.Shah Department of Computer Science and Engineering, Walchand College of Engineering,

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices CSE 599 I Accelerated Computing - Programming GPUS Parallel Pattern: Sparse Matrices Objective Learn about various sparse matrix representations Consider how input data affects run-time performance of

More information

Dynamic Sparse Matrix Allocation on GPUs. James King

Dynamic Sparse Matrix Allocation on GPUs. James King Dynamic Sparse Matrix Allocation on GPUs James King Graph Applications Dynamic updates to graphs Adding edges add entries to sparse matrix representation Motivation Graph operations (adding edges) (e.g.

More information

Combinatorial problems in a Parallel Hybrid Linear Solver

Combinatorial problems in a Parallel Hybrid Linear Solver Combinatorial problems in a Parallel Hybrid Linear Solver Ichitaro Yamazaki and Xiaoye Li Lawrence Berkeley National Laboratory François-Henry Rouet and Bora Uçar ENSEEIHT-IRIT and LIP, ENS-Lyon SIAM workshop

More information

On shared-memory parallelization of a sparse matrix scaling algorithm

On shared-memory parallelization of a sparse matrix scaling algorithm On shared-memory parallelization of a sparse matrix scaling algorithm Ümit V. Çatalyürek, Kamer Kaya The Ohio State University Dept. of Biomedical Informatics {umit,kamer}@bmi.osu.edu Bora Uçar CNRS and

More information

Optimizing the operations with sparse matrices on Intel architecture

Optimizing the operations with sparse matrices on Intel architecture Optimizing the operations with sparse matrices on Intel architecture Gladkikh V. S. victor.s.gladkikh@intel.com Intel Xeon, Intel Itanium are trademarks of Intel Corporation in the U.S. and other countries.

More information

Sparse Linear Systems

Sparse Linear Systems 1 Sparse Linear Systems Rob H. Bisseling Mathematical Institute, Utrecht University Course Introduction Scientific Computing February 22, 2018 2 Outline Iterative solution methods 3 A perfect bipartite

More information

Parallelizing LU Factorization

Parallelizing LU Factorization Parallelizing LU Factorization Scott Ricketts December 3, 2006 Abstract Systems of linear equations can be represented by matrix equations of the form A x = b LU Factorization is a method for solving systems

More information

Combinatorial problems in solving linear systems

Combinatorial problems in solving linear systems Combinatorial problems in solving linear systems Iain S. Duff 1,2, Bora Uçar 3 1 CERFACS, 42 Av. G. Coriolis, 31057, Toulouse, France iain.duff@stfc.ac.uk 2 Atlas Centre, RAL, Oxon, OX11 0QX, England 3

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

Mathematics. 2.1 Introduction: Graphs as Matrices Adjacency Matrix: Undirected Graphs, Directed Graphs, Weighted Graphs CHAPTER 2

Mathematics. 2.1 Introduction: Graphs as Matrices Adjacency Matrix: Undirected Graphs, Directed Graphs, Weighted Graphs CHAPTER 2 CHAPTER Mathematics 8 9 10 11 1 1 1 1 1 1 18 19 0 1.1 Introduction: Graphs as Matrices This chapter describes the mathematics in the GraphBLAS standard. The GraphBLAS define a narrow set of mathematical

More information

AH Matrices.notebook November 28, 2016

AH Matrices.notebook November 28, 2016 Matrices Numbers are put into arrays to help with multiplication, division etc. A Matrix (matrices pl.) is a rectangular array of numbers arranged in rows and columns. Matrices If there are m rows and

More information

BLAS and LAPACK + Data Formats for Sparse Matrices. Part of the lecture Wissenschaftliches Rechnen. Hilmar Wobker

BLAS and LAPACK + Data Formats for Sparse Matrices. Part of the lecture Wissenschaftliches Rechnen. Hilmar Wobker BLAS and LAPACK + Data Formats for Sparse Matrices Part of the lecture Wissenschaftliches Rechnen Hilmar Wobker Institute of Applied Mathematics and Numerics, TU Dortmund email: hilmar.wobker@math.tu-dortmund.de

More information

Sparse Matrices and Graphs: There and Back Again

Sparse Matrices and Graphs: There and Back Again Sparse Matrices and Graphs: There and Back Again John R. Gilbert University of California, Santa Barbara Simons Institute Workshop on Parallel and Distributed Algorithms for Inference and Optimization

More information

Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations. Reference: Introduction to Parallel Computing Chapter 8.

Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations. Reference: Introduction to Parallel Computing Chapter 8. CZ4102 High Performance Computing Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations - Dr Tay Seng Chuan Reference: Introduction to Parallel Computing Chapter 8. 1 Topic Overview

More information

Lecture 9. Introduction to Numerical Techniques

Lecture 9. Introduction to Numerical Techniques Lecture 9. Introduction to Numerical Techniques Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 27, 2015 1 / 25 Logistics hw8 (last one) due today. do an easy problem

More information

Improving Performance of Sparse Matrix-Vector Multiplication

Improving Performance of Sparse Matrix-Vector Multiplication Improving Performance of Sparse Matrix-Vector Multiplication Ali Pınar Michael T. Heath Department of Computer Science and Center of Simulation of Advanced Rockets University of Illinois at Urbana-Champaign

More information

Lecture 5: Matrices. Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur

Lecture 5: Matrices. Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur Lecture 5: Matrices Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur 29 th July, 2008 Types of Matrices Matrix Addition and Multiplication

More information

Optimizing Parallel Sparse Matrix-Vector Multiplication by Corner Partitioning

Optimizing Parallel Sparse Matrix-Vector Multiplication by Corner Partitioning Optimizing Parallel Sparse Matrix-Vector Multiplication by Corner Partitioning Michael M. Wolf 1,2, Erik G. Boman 2, and Bruce A. Hendrickson 3 1 Dept. of Computer Science, University of Illinois at Urbana-Champaign,

More information

Section 3.1 Gaussian Elimination Method (GEM) Key terms

Section 3.1 Gaussian Elimination Method (GEM) Key terms Section 3.1 Gaussian Elimination Method (GEM) Key terms Rectangular systems Consistent system & Inconsistent systems Rank Types of solution sets RREF Upper triangular form & back substitution Nonsingular

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Numerical Algorithms

Numerical Algorithms Chapter 10 Slide 464 Numerical Algorithms Slide 465 Numerical Algorithms In textbook do: Matrix multiplication Solving a system of linear equations Slide 466 Matrices A Review An n m matrix Column a 0,0

More information

Graph Algorithms on A transpose A. Benjamin Chang John Gilbert, Advisor

Graph Algorithms on A transpose A. Benjamin Chang John Gilbert, Advisor Graph Algorithms on A transpose A. Benjamin Chang John Gilbert, Advisor June 2, 2016 Abstract There are strong correspondences between matrices and graphs. Of importance to this paper are adjacency matrices

More information

PetShop (BYU Students, SIGGRAPH 2006)

PetShop (BYU Students, SIGGRAPH 2006) Now Playing: PetShop (BYU Students, SIGGRAPH 2006) My Mathematical Mind Spoon From Gimme Fiction Released May 10, 2005 Geometric Objects in Computer Graphics Rick Skarbez, Instructor COMP 575 August 30,

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2010 Advanced Computer Graphics Project details and tools 1 Projects Details of each project are on the website under Projects Please review all the projects and come see me if you would

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

CS Data Structures and Algorithm Analysis

CS Data Structures and Algorithm Analysis CS 483 - Data Structures and Algorithm Analysis Lecture VI: Chapter 5, part 2; Chapter 6, part 1 R. Paul Wiegand George Mason University, Department of Computer Science March 8, 2006 Outline 1 Topological

More information

On the scalability of hypergraph models for sparse matrix partitioning

On the scalability of hypergraph models for sparse matrix partitioning On the scalability of hypergraph models for sparse matrix partitioning Bora Uçar Centre National de la Recherche Scientifique Laboratoire de l Informatique du Parallélisme, (UMR CNRS-ENS Lyon-INRIA-UCBL),

More information

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Graphs Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Warmup Discuss with your neighbors: Come up with as many kinds of relational data as you can (data that can be represented with a graph).

More information

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2 Universidad de Chile The numerical simulation of complex PDE problems Facultad de Ciencias Físicas y Matemáticas P. Frey, M. De Buhan Year 2008 MA691 & CC60X A numerical simulation project The finite element

More information

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam CS 441 Discrete Mathematics for CS Lecture 26 Graphs Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Final exam Saturday, April 26, 2014 at 10:00-11:50am The same classroom as lectures The exam

More information

Advances in Parallel Partitioning, Load Balancing and Matrix Ordering for Scientific Computing

Advances in Parallel Partitioning, Load Balancing and Matrix Ordering for Scientific Computing Advances in Parallel Partitioning, Load Balancing and Matrix Ordering for Scientific Computing Erik G. Boman 1, Umit V. Catalyurek 2, Cédric Chevalier 1, Karen D. Devine 1, Ilya Safro 3, Michael M. Wolf

More information

Spare Matrix Formats, and The Standard Template Library

Spare Matrix Formats, and The Standard Template Library Annotated slides CS319: Scientific Computing (with C++) Spare Matrix Formats, and The Standard Template Library Week 10: 9am and 4pm, 20 March 2019 1 Sparse Matrices 2 3 Compressed Column Storage 4 (Not)

More information

On Fiedler s characterization of tridiagonal matrices over arbitrary fields

On Fiedler s characterization of tridiagonal matrices over arbitrary fields Linear Algebra and its Applications 401 (2005) 467 481 www.elsevier.com/locate/laa On Fiedler s characterization of tridiagonal matrices over arbitrary fields Américo Bento a, António Leal Duarte b,,1

More information

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA NVIDIA Corporation Outline! Overview of CG benchmark! Overview of CUDA Libraries! CUSPARSE! CUBLAS! Porting Sequence! Algorithm Analysis! Data/Code

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Tim Davis (Texas A&M University) with Sanjay Ranka, Mohamed Gadou (University of Florida) Nuri Yeralan (Microsoft) NVIDIA

More information

2D transformations: An introduction to the maths behind computer graphics

2D transformations: An introduction to the maths behind computer graphics 2D transformations: An introduction to the maths behind computer graphics Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University,

More information

Sparse Matrices. This means that for increasing problem size the matrices become sparse and sparser. O. Rheinbach, TU Bergakademie Freiberg

Sparse Matrices. This means that for increasing problem size the matrices become sparse and sparser. O. Rheinbach, TU Bergakademie Freiberg Sparse Matrices Many matrices in computing only contain a very small percentage of nonzeros. Such matrices are called sparse ( dünn besetzt ). Often, an upper bound on the number of nonzeros in a row can

More information

Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has.

Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has. ASSIGNMENT 0 Introduction to Linear Algebra (Basics of vectors and matrices) Due 3:30 PM, Tuesday, October 10 th. Assignments should be submitted via e-mail to: matlabfun.ucsd@gmail.com You can also submit

More information

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. Chapter 8 out of 7 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal 8 Matrices Definitions and Basic Operations Matrix algebra is also known

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Roofline Model (Will be using this in HW2)

Roofline Model (Will be using this in HW2) Parallel Architecture Announcements HW0 is due Friday night, thank you for those who have already submitted HW1 is due Wednesday night Today Computing operational intensity Dwarves and Motifs Stencil computation

More information

Sparse Matrix-Vector Multiplication FPGA Implementation

Sparse Matrix-Vector Multiplication FPGA Implementation UNIVERSITY OF CALIFORNIA, LOS ANGELES Sparse Matrix-Vector Multiplication FPGA Implementation (SID: 704-272-121) 02/27/2015 Table of Contents 1 Introduction... 3 2 Sparse Matrix-Vector Multiplication...

More information

CSC-140 Assignment 5

CSC-140 Assignment 5 CSC-140 Assignment 5 Please do not Google a solution to these problems, cause that won t teach you anything about programming - the only way to get good at it, and understand it, is to do it! 1 Introduction

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

MATLAB COURSE FALL 2004 SESSION 1 GETTING STARTED. Christian Daude 1

MATLAB COURSE FALL 2004 SESSION 1 GETTING STARTED. Christian Daude 1 MATLAB COURSE FALL 2004 SESSION 1 GETTING STARTED Christian Daude 1 Introduction MATLAB is a software package designed to handle a broad range of mathematical needs one may encounter when doing scientific

More information

CS Elementary Graph Algorithms & Transform-and-Conquer

CS Elementary Graph Algorithms & Transform-and-Conquer CS483-10 Elementary Graph Algorithms & Transform-and-Conquer Outline Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments Depth-first Search cont Topological

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Mathematics of Networks Manar Mohaisen Department of EEC Engineering Adjacency matrix Network types Edge list Adjacency list Graph representation 2 Adjacency matrix Adjacency matrix

More information

Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors

Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors Kaixi Hou, Wu-chun Feng {kaixihou, wfeng}@vt.edu Shuai Che Shuai.Che@amd.com Sparse

More information

Sparse Matrices. sparse many elements are zero dense few elements are zero

Sparse Matrices. sparse many elements are zero dense few elements are zero Sparse Matrices sparse many elements are zero dense few elements are zero Special Matrices A square matrix has the same number of rows and columns. Some special forms of square matrices are Diagonal: M(i,j)

More information

Exploiting Matrix Reuse and Data Locality in Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Architectures

Exploiting Matrix Reuse and Data Locality in Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Architectures Eploiting Matri Reuse and Data Locality in Sparse Matri-Vector and Matri-ranspose-Vector Multiplication on Many-Core Architectures Ozan Karsavuran 1 Kadir Akbudak 2 Cevdet Aykanat 1 (speaker) sites.google.com/site/kadircs

More information

Technical Report. OSUBMI-TR-2009-n02/ BU-CE Hypergraph Partitioning-Based Fill-Reducing Ordering

Technical Report. OSUBMI-TR-2009-n02/ BU-CE Hypergraph Partitioning-Based Fill-Reducing Ordering Technical Report OSUBMI-TR-2009-n02/ BU-CE-0904 Hypergraph Partitioning-Based Fill-Reducing Ordering Ümit V. Çatalyürek, Cevdet Aykanat and Enver Kayaaslan April 2009 The Ohio State University Department

More information

GraphBLAS Mathematics - Provisional Release 1.0 -

GraphBLAS Mathematics - Provisional Release 1.0 - GraphBLAS Mathematics - Provisional Release 1.0 - Jeremy Kepner Generated on April 26, 2017 Contents 1 Introduction: Graphs as Matrices........................... 1 1.1 Adjacency Matrix: Undirected Graphs,

More information

CERFACS 42 av. Gaspard Coriolis, Toulouse, Cedex 1, France. Available at Date: August 7, 2009.

CERFACS 42 av. Gaspard Coriolis, Toulouse, Cedex 1, France. Available at  Date: August 7, 2009. COMBINATORIAL PROBLEMS IN SOLVING LINEAR SYSTEMS IAIN S. DUFF and BORA UÇAR Technical Report: No: TR/PA/09/60 CERFACS 42 av. Gaspard Coriolis, 31057 Toulouse, Cedex 1, France. Available at http://www.cerfacs.fr/algor/reports/

More information

A Configurable Architecture for Sparse LU Decomposition on Matrices with Arbitrary Patterns

A Configurable Architecture for Sparse LU Decomposition on Matrices with Arbitrary Patterns A Configurable Architecture for Sparse LU Decomposition on Matrices with Arbitrary Patterns Xinying Wang, Phillip H. Jones and Joseph Zambreno Department of Electrical and Computer Engineering Iowa State

More information

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanfordedu) February 6, 2018 Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 In the

More information

Fast Recommendation on Bibliographic Networks with Sparse-Matrix Ordering and Partitioning

Fast Recommendation on Bibliographic Networks with Sparse-Matrix Ordering and Partitioning Social Network Analysis and Mining manuscript No. (will be inserted by the editor) Fast Recommendation on Bibliographic Networks with Sparse-Matrix Ordering and Partitioning Onur Küçüktunç Kamer Kaya Erik

More information

Objectives of This Chapter

Objectives of This Chapter Chapter 6 C Arrays Objectives of This Chapter Array data structures to represent the set of values. Defining and initializing arrays. Defining symbolic constant in a program. Using arrays to store, list,

More information

Basic matrix math in R

Basic matrix math in R 1 Basic matrix math in R This chapter reviews the basic matrix math operations that you will need to understand the course material and how to do these operations in R. 1.1 Creating matrices in R Create

More information

Hypergraph Partitioning for Computing Matrix Powers

Hypergraph Partitioning for Computing Matrix Powers Hypergraph Partitioning for Computing Matrix Powers Nicholas Knight Erin Carson, James Demmel UC Berkeley, Parallel Computing Lab CSC 11 1 Hypergraph Partitioning for Computing Matrix Powers Motivation

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Computing the rank of big sparse matrices modulo p using gaussian elimination

Computing the rank of big sparse matrices modulo p using gaussian elimination Computing the rank of big sparse matrices modulo p using gaussian elimination Charles Bouillaguet 1 Claire Delaplace 2 12 CRIStAL, Université de Lille 2 IRISA, Université de Rennes 1 JNCF, 16 janvier 2017

More information

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography 1 A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography He Huang, Liqiang Wang, Po Chen(University of Wyoming) John Dennis (NCAR) 2 LSQR in Seismic Tomography

More information

Preconditioning for linear least-squares problems

Preconditioning for linear least-squares problems Preconditioning for linear least-squares problems Miroslav Tůma Institute of Computer Science Academy of Sciences of the Czech Republic tuma@cs.cas.cz joint work with Rafael Bru, José Marín and José Mas

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information