Counting points on curves

Size: px
Start display at page:

Download "Counting points on curves"

Transcription

1 Counting points on curves Edgar Costa Dartmouth College Québec-Maine Number Theory conference, 8th October 2016 (joint work with David Harvey, UNSW) 1 / 22 Edgar Costa (Dartmouth College) Counting points on curves

2 Setup p = prime C P n F p = algebraic curve defined over F p The Hasse Weil zeta function of C is the generating function ( #C(F p a)t a ) Z C (t) := exp a a>0 2 / 22 Edgar Costa (Dartmouth College) Counting points on curves

3 Example Let p = 5 and C be genus 3 curve given in P 2 by x 4 + xy 3 + 2y 4 z 4 = 0 3 / 22 Edgar Costa (Dartmouth College) Counting points on curves

4 Example Let p = 5 and C be genus 3 curve given in P 2 by x 4 + xy 3 + 2y 4 z 4 = 0 By naive point enumeration, we find that #C(F p ) = 9, #C(F p 4) = 581, #C(F p 2) = 29, #C(F p 5) = 3309, #C(F p 3) = 156,... 3 / 22 Edgar Costa (Dartmouth College) Counting points on curves

5 Example Let p = 5 and C be genus 3 curve given in P 2 by x 4 + xy 3 + 2y 4 z 4 = 0 By naive point enumeration, we find that #C(F p ) = 9, #C(F p 4) = 581, #C(F p 2) = 29, #C(F p 5) = 3309, #C(F p 3) = 156,... thus: Z C (t) = 1 + 9t + 55t t t t t / 22 Edgar Costa (Dartmouth College) Counting points on curves

6 Example Let p = 5 and C be genus 3 curve given in P 2 by x 4 + xy 3 + 2y 4 z 4 = 0 By naive point enumeration, we find that thus: #C(F p ) = 9, #C(F p 4) = 581, #C(F p 2) = 29, #C(F p 5) = 3309, #C(F p 3) = 156,... Z C (t) = 1 + 9t + 55t t t t t 6 + = 1 + 3t + 6t2 + 19t t t t 6 (1 t)(1 5t) 3 / 22 Edgar Costa (Dartmouth College) Counting points on curves

7 Typical algorithms Naively computing is not practical! #C(F p ), #C(F p 2),, #C(F p g ) Looping over F p g takes at least O(p g ) time. 4 / 22 Edgar Costa (Dartmouth College) Counting points on curves

8 Typical algorithms Naively computing is not practical! #C(F p ), #C(F p 2),, #C(F p g ) Looping over F p g takes at least O(p g ) time. One can them compute the last line with variety of methods. l-adic cohomology p-adic cohomology 4 / 22 Edgar Costa (Dartmouth College) Counting points on curves

9 New method Today I will overview a new elementary method to compute L C (t). 5 / 22 Edgar Costa (Dartmouth College) Counting points on curves

10 New method Today I will overview a new elementary method to compute L C (t). Simple Practical Cohomology free! 5 / 22 Edgar Costa (Dartmouth College) Counting points on curves

11 New method - Input/Output Input: F (x, y, z) homogeneous polynomial of degree d Output: L C (t), where C is the desingularization of the zero locus of F (x, y, z) in P 2 6 / 22 Edgar Costa (Dartmouth College) Counting points on curves

12 New method - Input/Output Input: F (x, y, z) homogeneous polynomial of degree d Output: L C (t), where C is the desingularization of the zero locus of F (x, y, z) in P 2 Assumption: The polynomials F (0, y, z), F (x, 0, y) and F (x, y, 0) have no repeated factors. Geometrically, the curve given by F intersects the coordinate axes (x = 0, y = 0, and z = 0) transversally. 6 / 22 Edgar Costa (Dartmouth College) Counting points on curves

13 New method - Ingredients C curve of genus g that is the desingularization of {F = 0} P 2 Goal: compute #C(F p a) 7 / 22 Edgar Costa (Dartmouth College) Counting points on curves

14 New method - Ingredients C curve of genus g that is the desingularization of {F = 0} P 2 Goal: compute #C(F p a) Approach: Compute #{F (x, y, z) = 0 : (x, y, z) P 2 (F p a), xyz 0} Compute #{F (x, y, z) = 0 : (x, y, z) P 2 (F p a), xyz = 0} Resolve the singularities of F (x, y, z) = 0 (over F p ) Altogether, we can deduce #C(F p a). 7 / 22 Edgar Costa (Dartmouth College) Counting points on curves

15 New method - Ingredients C curve of genus g that is the desingularization of {F = 0} P 2 Goal: compute #C(F p a) Approach: Compute #{F (x, y, z) = 0 : (x, y, z) P 2 (F p a), xyz 0} Compute #{F (x, y, z) = 0 : (x, y, z) P 2 (F p a), xyz = 0} Resolve the singularities of F (x, y, z) = 0 (over F p ) Altogether, we can deduce #C(F p a). 7 / 22 Edgar Costa (Dartmouth College) Counting points on curves

16 New method - Trace formula Let B l = {u N 3 : i u i = l}. For u B dn, let (F n ) u be the coefficient of x u 0 y u 1 z u 2 in F n. (M s ) v,u := ( F s(p 1)) pv u for v, u B ds. 8 / 22 Edgar Costa (Dartmouth College) Counting points on curves

17 New method - Trace formula Let B l = {u N 3 : i u i = l}. For u B dn, let (F n ) u be the coefficient of x u 0 y u 1 z u 2 in F n. (M s ) v,u := ( F s(p 1)) pv u for v, u B ds. M 0, M 1,..., M λ #C(F p a) mod p λ a 8 / 22 Edgar Costa (Dartmouth College) Counting points on curves

18 New method - Trace formula Let B l = {u N 3 : i u i = l}. For u B dn, let (F n ) u be the coefficient of x u 0 y u 1 z u 2 in F n. (M s ) v,u := ( F s(p 1)) pv u for v, u B ds. M 0, M 1,..., M λ #C(F p a) mod p λ a Harvey (2015) For p not small: #{F (x, y, z) = 0 : (x, y, z) P 2 (F p a), xyz 0} λ ( ) = (p a 1) 2 λ Tr(Ms a ) mod p λ s s=0 8 / 22 Edgar Costa (Dartmouth College) Counting points on curves

19 M 1 for p = 7, d = 5 9 / 22 Edgar Costa (Dartmouth College) Counting points on curves

20 M 1 for p = 13, d = 5 10 / 22 Edgar Costa (Dartmouth College) Counting points on curves

21 M 1 for p = 53, d = 5 11 / 22 Edgar Costa (Dartmouth College) Counting points on curves

22 M 3 for p = 53, d = 5 12 / 22 Edgar Costa (Dartmouth College) Counting points on curves

23 M 3 for p = 199, d = 5 13 / 22 Edgar Costa (Dartmouth College) Counting points on curves

24 New method - Key idea There are relations between neighbouring coefficients of F n. We can derive these relations from: or any other derivative. F n+1 = F F n x F n+1 = (n + 1) x F F n 14 / 22 Edgar Costa (Dartmouth College) Counting points on curves

25 Example, d = 4 and n = 4 The coefficient (F n+1 ) (12,3,5) is known if given F n on: 15 / 22 Edgar Costa (Dartmouth College) Counting points on curves

26 Example, d = 4 and n = 4 Indeed, there are 2 independent equations involving the red dots 16 / 22 Edgar Costa (Dartmouth College) Counting points on curves

27 Example, d = 4 and n = 4 Combining enough relations we can move a larger triangle. 17 / 22 Edgar Costa (Dartmouth College) Counting points on curves

28 Example, d = 4 and n = 4 Combining enough relations we can move a larger triangle. 18 / 22 Edgar Costa (Dartmouth College) Counting points on curves

29 Example, d = 4 and n = 4 Combining enough relations we can move a larger triangle. 19 / 22 Edgar Costa (Dartmouth College) Counting points on curves

30 New method - Altogether Start with a triangle at one of the vertices, where the coefficients of F s(p 1) are trivial to compute. Move it around until we have computed by all the target coefficients. Assemble M s in O(p) time 20 / 22 Edgar Costa (Dartmouth College) Counting points on curves

31 Toy implementation in sage Setup: d = 6 and genus = 5 p = 1009 : 7 minutes p = 1999 : 14 minutes 21 / 22 Edgar Costa (Dartmouth College) Counting points on curves

32 Toy implementation in sage Setup: d = 6 and genus = 5 p = 1009 : 7 minutes p = 1999 : 14 minutes Tuitman s algorithm in Magma: p = 1009 : 8 minutes p = 1999 : 24 minutes Disclaimer: this is NOT a fair comparison. 21 / 22 Edgar Costa (Dartmouth College) Counting points on curves

33 Future Short term: Finish C++ implementation precision bounds Long term, perhaps consider the two obvious improvements: reduce the running time to p 1/2+o(1). average polynomial time 22 / 22 Edgar Costa (Dartmouth College) Counting points on curves

34 Future Short term: Finish C++ implementation precision bounds Long term, perhaps consider the two obvious improvements: reduce the running time to p 1/2+o(1). average polynomial time Thank you! 22 / 22 Edgar Costa (Dartmouth College) Counting points on curves

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C).

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C). 4. Planes and distances How do we represent a plane Π in R 3? In fact the best way to specify a plane is to give a normal vector n to the plane and a point P 0 on the plane. Then if we are given any point

More information

On phylogenetic trees algebraic geometer's view

On phylogenetic trees algebraic geometer's view On phylogenetic trees algebraic geometer's view Joint project with Weronika Buczyńska and other students Microsoft Research Center Trento, Feb. 16th, 2006 What about algebraic geometry? Nature [biology]

More information

Parameter spaces for curves on surfaces and enumeration of rational curves

Parameter spaces for curves on surfaces and enumeration of rational curves Compositio Mathematica 3: 55 8, 998. 55 c 998 Kluwer Academic Publishers. Printed in the Netherlands. Parameter spaces for curves on surfaces and enumeration of rational curves LUCIA CAPORASO and JOE HARRIS

More information

The customary introduction to hyperbolic functions mentions that the combinations and

The customary introduction to hyperbolic functions mentions that the combinations and An Introduction to Hyperbolic Functions in Elementary Calculus Jerome Rosenthal, Broward Community College, Pompano Beach, FL 33063 Mathematics Teacher, April 986, Volume 79, Number 4, pp. 98 300. Mathematics

More information

Dale Husemoller. Elliptic Curves. Second Edition. With Appendices by Otto Forster, Ruth Lawrence, and Stefan Theisen. With 42 Illustrations.

Dale Husemoller. Elliptic Curves. Second Edition. With Appendices by Otto Forster, Ruth Lawrence, and Stefan Theisen. With 42 Illustrations. Dale Husemoller Elliptic Curves Second Edition With Appendices by Otto Forster, Ruth Lawrence, and Stefan Theisen With 42 Illustrations Springer Preface to the Second Edition Preface to the First Edition

More information

Elliptic Curve Cryptography (ECC) Elliptic Curve Cryptography. Elliptic Curves. Elliptic Curve Cryptography (ECC) Elliptic curve

Elliptic Curve Cryptography (ECC) Elliptic Curve Cryptography. Elliptic Curves. Elliptic Curve Cryptography (ECC) Elliptic curve Elliptic Curve Cryptography Gerardo Pelosi Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) Politecnico di Milano gerardo.pelosi - at - polimi.it ECC was introduced by Victor Miller and

More information

From String Theory to Elliptic Curves over Finite Field, F p

From String Theory to Elliptic Curves over Finite Field, F p From String Theory to Elliptic Curves over Finite Field, F p A Senior Project submitted to The Division of Science, Mathematics, and Computing of Bard College by Linh Thi Dieu Pham Annandale-on-Hudson,

More information

On the classification of real algebraic curves and surfaces

On the classification of real algebraic curves and surfaces On the classification of real algebraic curves and surfaces Ragni Piene Centre of Mathematics for Applications and Department of Mathematics, University of Oslo COMPASS, Kefermarkt, October 2, 2003 1 Background

More information

Notes for Lecture 10

Notes for Lecture 10 COS 533: Advanced Cryptography Lecture 10 (October 16, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Dylan Altschuler Notes for Lecture 10 1 Motivation for Elliptic Curves Diffie-Hellman For

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

Conics on the Cubic Surface

Conics on the Cubic Surface MAAC 2004 George Mason University Conics on the Cubic Surface Will Traves U.S. Naval Academy USNA Trident Project This talk is a preliminary report on joint work with MIDN 1/c Andrew Bashelor and my colleague

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

The derivative of a function at one point. 1. Secant lines and tangents. 2. The tangent problem

The derivative of a function at one point. 1. Secant lines and tangents. 2. The tangent problem 1. Secant lines and tangents The derivative of a function at one point A secant line (or just secant ) is a line passing through two points of a curve. As the two points are brought together (or, more

More information

Differentiability and Tangent Planes October 2013

Differentiability and Tangent Planes October 2013 Differentiability and Tangent Planes 14.4 04 October 2013 Differentiability in one variable. Recall for a function of one variable, f is differentiable at a f (a + h) f (a) lim exists and = f (a) h 0 h

More information

TABLE 2: Mathematics College Readiness Standards for Score Range 13 15

TABLE 2: Mathematics College Readiness Standards for Score Range 13 15 TABLE 2: Mathematics College Readiness Standards for Score Range 13 15 Perform one-operation computation with whole numbers and decimals Solve problems in one or two steps using whole numbers Perform common

More information

The Hoffman-Singleton Graph and its Automorphisms

The Hoffman-Singleton Graph and its Automorphisms Journal of Algebraic Combinatorics, 8, 7, 00 c 00 Kluwer Academic Publishers. Manufactured in The Netherlands. The Hoffman-Singleton Graph and its Automorphisms PAUL R. HAFNER Department of Mathematics,

More information

Polytopes With Large Signature

Polytopes With Large Signature Polytopes With Large Signature Joint work with Michael Joswig Nikolaus Witte TU-Berlin / TU-Darmstadt witte@math.tu-berlin.de Algebraic and Geometric Combinatorics, Anogia 2005 Outline 1 Introduction Motivation

More information

Linear Systems of Conics

Linear Systems of Conics Synopsis for Tuesday, November 6 and Thursday, November 8 Linear Systems of Conics As we have already noted, the linear space of global sections Γ(2H) of the divisor 2H on P 2 consists of all the conics.

More information

Cremona transformations

Cremona transformations Synopsis for Tuesday, November 1 Cremona transformations Let N be a net with base-points. It gives a generically one-to-one map of P 2 into N blowing up the base-points and blowing-down the lines joining

More information

Elliptic Curve Cryptography (ECC) Elliptic Curve Cryptography. Elliptic Curves. Elliptic Curve Cryptography (ECC) Elliptic curve

Elliptic Curve Cryptography (ECC) Elliptic Curve Cryptography. Elliptic Curves. Elliptic Curve Cryptography (ECC) Elliptic curve Elliptic Curve Cryptography Gerardo Pelosi Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) Politecnico di Milano gerardo.pelosi - at - polimi.it ECC was introduced by Victor Miller and

More information

Lesson 1 Introduction to Algebraic Geometry

Lesson 1 Introduction to Algebraic Geometry Lesson 1 Introduction to Algebraic Geometry I. What is Algebraic Geometry? Algebraic Geometry can be thought of as a (vast) generalization of linear algebra and algebra. Recall that, in linear algebra,

More information

LECTURE 13, THURSDAY APRIL 1, 2004

LECTURE 13, THURSDAY APRIL 1, 2004 LECTURE 13, THURSDAY APRIL 1, 2004 FRANZ LEMMERMEYER 1. Parametrizing Curves of Genus 0 As a special case of the theorem that curves of genus 0, in particular those with the maximal number of double points,

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5 UNIVERSITI TEKNOLOGI MALAYSIA SSE 189 ENGINEERING MATHEMATIS TUTORIAL 5 1. Evaluate the following surface integrals (i) (x + y) ds, : part of the surface 2x+y+z = 6 in the first octant. (ii) (iii) (iv)

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Nemo: a computer algebra package for Julia

Nemo: a computer algebra package for Julia TU Kaiserslautern July 12, 2017 Introducing A computer algebra package for the Julia programming language. http://nemocas.org/ Background 2006 David Harvey and I began the Flint C library for fast arithmetic

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

9.3 Hyperbolas and Rotation of Conics

9.3 Hyperbolas and Rotation of Conics 9.3 Hyperbolas and Rotation of Conics Copyright Cengage Learning. All rights reserved. What You Should Learn Write equations of hyperbolas in standard form. Find asymptotes of and graph hyperbolas. Use

More information

2017 SOLUTIONS (PRELIMINARY VERSION)

2017 SOLUTIONS (PRELIMINARY VERSION) SIMON MARAIS MATHEMATICS COMPETITION 07 SOLUTIONS (PRELIMINARY VERSION) This document will be updated to include alternative solutions provided by contestants, after the competition has been mared. Problem

More information

The x coordinate tells you how far left or right from center the point is. The y coordinate tells you how far up or down from center the point is.

The x coordinate tells you how far left or right from center the point is. The y coordinate tells you how far up or down from center the point is. We will review the Cartesian plane and some familiar formulas. College algebra Graphs 1: The Rectangular Coordinate System, Graphs of Equations, Distance and Midpoint Formulas, Equations of Circles Section

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 17 Notes These notes correspond to Section 10.1 in the text. Three-Dimensional Coordinate Systems Over the course of the next several lectures, we will

More information

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

Euclidean Space. Definition 1 (Euclidean Space) A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,.

Euclidean Space. Definition 1 (Euclidean Space) A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,. Definition 1 () A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,. 1 Inner Product Definition 2 (Inner Product) An inner product, on a real vector space X

More information

Duality of Plane Curves

Duality of Plane Curves Duality of Plane Curves Maria Monks December 1, 2011 Abstract The dual of an algebraic curve C in RP 2 defined by the polynomial equation f(x, y, z) = ( f x ) f f 0 is the locus of points (a, b, c) : (a,

More information

FINDING CRYPTOGRAPHICALLY STRONG ELLIPTIC CURVES: A TECHNICAL REPORT

FINDING CRYPTOGRAPHICALLY STRONG ELLIPTIC CURVES: A TECHNICAL REPORT FINDING CRYPTOGRAPHICALLY STRONG ELLIPTIC CURVES: A TECHNICAL REPORT HAMISH IVEY-LAW AND ROBERT ROLLAND Abstract. Elliptic curve cryptography is becoming the standard for public key cryptography. Unfortunately,

More information

Rational Tilings of the Unit Square

Rational Tilings of the Unit Square Bard College Bard Digital Commons Senior Projects Spring 205 Bard Undergraduate Senior Projects 205 Rational Tilings of the Unit Square Galen Dorpalen-Barry Bard College Recommended Citation Dorpalen-Barry,

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3

A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3 A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3 ANDREW J. HANSON AND JI-PING SHA In this paper we present a systematic and explicit algorithm for tessellating the algebraic surfaces (real 4-manifolds) F

More information

More About Factoring Trinomials

More About Factoring Trinomials Section 6.3 More About Factoring Trinomials 239 83. x 2 17x 70 x 7 x 10 Width of rectangle: Length of rectangle: x 7 x 10 Width of shaded region: 7 Length of shaded region: x 10 x 10 Area of shaded region:

More information

Note. f 2 (-z. = f 1 (-z) f 1 () z f 2 () z = -f 1 (-z ) - f 2 (-z) = - f 1 (-z ) f 2 (-z. 7 Completed Riemann Zeta. 7.1 Even Function & Odd Function

Note. f 2 (-z. = f 1 (-z) f 1 () z f 2 () z = -f 1 (-z ) - f 2 (-z) = - f 1 (-z ) f 2 (-z. 7 Completed Riemann Zeta. 7.1 Even Function & Odd Function 7 Completed Riemann Zeta 7. Even Function & Odd Function Definition 7..0 Let f() be a function in the domain D. () When f() = f( -), f() is an even function. () When f() = -f(- ), f() is an odd function.

More information

1 Affine and Projective Coordinate Notation

1 Affine and Projective Coordinate Notation CS348a: Computer Graphics Handout #9 Geometric Modeling Original Handout #9 Stanford University Tuesday, 3 November 992 Original Lecture #2: 6 October 992 Topics: Coordinates and Transformations Scribe:

More information

Random strongly regular graphs?

Random strongly regular graphs? Graphs with 3 vertices Random strongly regular graphs? Peter J Cameron School of Mathematical Sciences Queen Mary, University of London London E1 NS, U.K. p.j.cameron@qmul.ac.uk COMB01, Barcelona, 1 September

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

Unknot recognition, linear programming and the elusive polynomial time algorithm

Unknot recognition, linear programming and the elusive polynomial time algorithm Unknot recognition, linear programming and the elusive polynomial time algorithm Benjamin Burton The University of Queensland June 16, 2011 1 / 28 2 / 28 Outline 1 Decision problems in geometric topology

More information

Dubna 2018: lines on cubic surfaces

Dubna 2018: lines on cubic surfaces Dubna 2018: lines on cubic surfaces Ivan Cheltsov 20th July 2018 Lecture 1: projective plane Complex plane Definition A line in C 2 is a subset that is given by ax + by + c = 0 for some complex numbers

More information

CURVE SKETCHING EXAM QUESTIONS

CURVE SKETCHING EXAM QUESTIONS CURVE SKETCHING EXAM QUESTIONS Question 1 (**) a) Express f ( x ) in the form ( ) 2 f x = x + 6x + 10, x R. f ( x) = ( x + a) 2 + b, where a and b are integers. b) Describe geometrically the transformations

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

PERIODS OF ALGEBRAIC VARIETIES

PERIODS OF ALGEBRAIC VARIETIES PERIODS OF ALGEBRAIC VARIETIES OLIVIER DEBARRE Abstract. The periods of a compact complex algebraic manifold X are the integrals of its holomorphic 1-forms over paths. These integrals are in general not

More information

Math 162b Syllabus p-adic Galois Representations

Math 162b Syllabus p-adic Galois Representations Math 162b Syllabus p-adic Galois Representations Andrei Jorza 2012-01-03 Contents 1 Local Class Field Theory 1.1 Local fields 1.2 Newton polygons 1.3 Ramification of local fields 1.4 Main results of local

More information

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 Name GRAPHICAL REPRESENTATION OF DATA: You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 ) and (x, y ) is x1 x y1 y,.

More information

Folding and Spiralling: The Word View

Folding and Spiralling: The Word View Folding and Spiralling: The Word View Marcus Schaefer 1 CTI, DePaul University Chicago, Illinois 60604 Eric Sedgwick 2 CTI, DePaul University Chicago, Illinois 60604 Daniel Štefankovič 3 Computer Science

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics SIMPLIFYING TRIANGULATIONS OF S 3 Aleksandar Mijatović Volume 208 No. 2 February 2003 PACIFIC JOURNAL OF MATHEMATICS Vol. 208, No. 2, 2003 SIMPLIFYING TRIANGULATIONS OF S

More information

AP CALCULUS BC 2014 SCORING GUIDELINES

AP CALCULUS BC 2014 SCORING GUIDELINES SCORING GUIDELINES Question The graphs of the polar curves r = and r = sin ( θ ) are shown in the figure above for θ. (a) Let R be the shaded region that is inside the graph of r = and inside the graph

More information

Graphing Linear Inequalities in Two Variables.

Graphing Linear Inequalities in Two Variables. Many applications of mathematics involve systems of inequalities rather than systems of equations. We will discuss solving (graphing) a single linear inequality in two variables and a system of linear

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Trajectory planning

Prof. Fanny Ficuciello Robotics for Bioengineering Trajectory planning Trajectory planning to generate the reference inputs to the motion control system which ensures that the manipulator executes the planned trajectories path and trajectory joint space trajectories operational

More information

SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS SYSTEMS OF LINEAR EQUATIONS A system of linear equations is a set of two equations of lines. A solution of a system of linear equations is the set of ordered pairs that makes each equation true. That is

More information

Geometric Queries for Ray Tracing

Geometric Queries for Ray Tracing CSCI 420 Computer Graphics Lecture 16 Geometric Queries for Ray Tracing Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11] Jernej Barbic University of Southern California 1 Ray-Surface Intersections

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

Generation of lattices of points for bivariate interpolation

Generation of lattices of points for bivariate interpolation Generation of lattices of points for bivariate interpolation J. M. Carnicer and M. Gasca Departamento de Matemática Aplicada. University of Zaragoza, Spain Abstract. Principal lattices in the plane are

More information

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0.

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0. ) Give a set-theoretic description of the given points as a subset W of R. a) The points on the plane x + y z =. x Solution: W = {x: x = [ x ], x + x x = }. x b) The points in the yz-plane. Solution: W

More information

TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe:

TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe: TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe: 27.10.2005 1. Übung Geometrie I (Lines in P 2 (R), Separation, Desargues) 1. Aufgabe Line equations

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

1. Complex Projective Surfaces

1. Complex Projective Surfaces 1. Complex Projective Surfaces 1.1 Notation and preliminaries In this section we fix some notations and some basic results (we do not prove: good references are [Bea78] and [BPV84]) we will use in these

More information

Some algebraic geometry problems arising in the field of mechanism theory. J-P. Merlet INRIA, BP Sophia Antipolis Cedex France

Some algebraic geometry problems arising in the field of mechanism theory. J-P. Merlet INRIA, BP Sophia Antipolis Cedex France Some algebraic geometry problems arising in the field of mechanism theory J-P. Merlet INRIA, BP 93 06902 Sophia Antipolis Cedex France Abstract Mechanism theory has always been a favorite field of study

More information

Perspective projection and Transformations

Perspective projection and Transformations Perspective projection and Transformations The pinhole camera The pinhole camera P = (X,,) p = (x,y) O λ = 0 Q λ = O λ = 1 Q λ = P =-1 Q λ X = 0 + λ X 0, 0 + λ 0, 0 + λ 0 = (λx, λ, λ) The pinhole camera

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

CS770/870 Spring 2017 Ray Tracing Implementation

CS770/870 Spring 2017 Ray Tracing Implementation Useful ector Information S770/870 Spring 07 Ray Tracing Implementation Related material:angel 6e: h.3 Ray-Object intersections Spheres Plane/Polygon Box/Slab/Polyhedron Quadric surfaces Other implicit/explicit

More information

Understanding Cryptography by Christof Paar and Jan Pelzl. Chapter 9 Elliptic Curve Cryptography

Understanding Cryptography by Christof Paar and Jan Pelzl. Chapter 9 Elliptic Curve Cryptography Understanding Cryptography by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 9 Elliptic Curve Cryptography ver. February 2nd, 2015 These slides were prepared by Tim Güneysu, Christof Paar

More information

Introduction to Transformations. In Geometry

Introduction to Transformations. In Geometry + Introduction to Transformations In Geometry + What is a transformation? A transformation is a copy of a geometric figure, where the copy holds certain properties. Example: copy/paste a picture on your

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

Mirrors of reflections of regular maps

Mirrors of reflections of regular maps ISSN 1855-3966 (printed edn), ISSN 1855-3974 (electronic edn) ARS MATHEMATICA CONTEMPORANEA 15 (018) 347 354 https://doiorg/106493/1855-3974145911d (Also available at http://amc-journaleu) Mirrors of reflections

More information

A CLASS OF INDIRECT UTILITY FUNCTIONS PREDICTING GIFFEN BEHAVIOUR. P.G. MOFFATT, School of Economics, University of East Anglia, UK.

A CLASS OF INDIRECT UTILITY FUNCTIONS PREDICTING GIFFEN BEHAVIOUR. P.G. MOFFATT, School of Economics, University of East Anglia, UK. A CLASS OF INDIRECT UTILITY FUNCTIONS PREDICTING GIFFEN BEHAVIOUR P.G. MOFFATT, School of Economics, University of East Anglia, UK September 2010 Abstract The problem of recognising Giffen behaviour is

More information

Algorithms for arithmetic Kleinian groups

Algorithms for arithmetic Kleinian groups supervised by John Voight September 6, 2011 Université Bordeaux 1 Definition A quaternion algebra over a field F is a central simple algebra of dimension 4. Explicitely, if char F 2 it admits a presentation

More information

Size Transformations in the Coordinate Plane

Size Transformations in the Coordinate Plane Size Transformations in the Coordinate Plane I.e. Dilations (adapted from Core Plus Math, Course 2) Concepts 21-26 Lesson Objectives In this investigation you will use coordinate methods to discover several

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Prentice Hall Algebra Correlated to: ACT College Readiness Standards for Mathematics

Prentice Hall Algebra Correlated to: ACT College Readiness Standards for Mathematics Score Range 1 12 Students who score in the 1 12 range are most likely beginning to develop the knowledge and skills assessed in the other score ranges. Score Range 13-15 Perform one-operation computation

More information

Section 4: Extreme Values & Lagrange Multipliers.

Section 4: Extreme Values & Lagrange Multipliers. Section 4: Extreme Values & Lagrange Multipliers. Compiled by Chris Tisdell S1: Motivation S2: What are local maxima & minima? S3: What is a critical point? S4: Second derivative test S5: Maxima and Minima

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs Nicolas Lichiardopol Attila Pór Jean-Sébastien Sereni Abstract In 1981, Bermond and Thomassen conjectured that every digraph

More information

Doing Algebraic Geometry with the RegularChains Library

Doing Algebraic Geometry with the RegularChains Library Doing Algebraic Geometry with the RegularChains Library Parisa Alvandi 1, Changbo Chen 2, Steffen Marcus 3, Marc Moreno Maza 1, Éric Schost 1, and Paul Vrbik 1 1 University of Western Ontario, Canada {palvandi,moreno,eschost,pvrbik}@csd.uwo.ca

More information

SKILL: What we want students to DO. Students will be able to: (pp. 1 61)

SKILL: What we want students to DO. Students will be able to: (pp. 1 61) TIME FRAME [By Date/Week/ Month] STANDARD OR BENCHMARK CURRICULUM End Product of Learning, What You Teach CONTENT: What we want students to KNOW. SKILL: What we want students to DO. INSTRUCTION Means to

More information

Preliminary Mathematics Extension 1

Preliminary Mathematics Extension 1 Phone: (0) 8007 684 Email: info@dc.edu.au Web: dc.edu.au 018 HIGHER SCHOOL CERTIFICATE COURSE MATERIALS Preliminary Mathematics Extension 1 Parametric Equations Term 1 Week 1 Name. Class day and time Teacher

More information

Lecture 2 Algorithms with numbers

Lecture 2 Algorithms with numbers Advanced Algorithms Floriano Zini Free University of Bozen-Bolzano Faculty of Computer Science Academic Year 2013-2014 Lecture 2 Algorithms with numbers 1 RSA Algorithm Why does RSA work? RSA is based

More information

EXPLORE MATHEMATICS TEST

EXPLORE MATHEMATICS TEST EXPLORE MATHEMATICS TEST Table 4: The College Readiness The describe what students who score in the specified score ranges are likely to know and to be able to do. The help teachers identify ways of enhancing

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

LEVEL-SET METHOD FOR WORKSPACE ANALYSIS OF SERIAL MANIPULATORS

LEVEL-SET METHOD FOR WORKSPACE ANALYSIS OF SERIAL MANIPULATORS LEVEL-SET METHOD FOR WORKSPACE ANALYSIS OF SERIAL MANIPULATORS Erika Ottaviano*, Manfred Husty** and Marco Ceccarelli* * LARM: Laboratory of Robotics and Mechatronics DiMSAT University of Cassino Via Di

More information

The Elliptic Curve Discrete Logarithm and Functional Graphs

The Elliptic Curve Discrete Logarithm and Functional Graphs Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 7-9-0 The Elliptic Curve Discrete Logarithm and Functional Graphs Christopher J. Evans

More information

Singularity Loci of Planar Parallel Manipulators with Revolute Joints

Singularity Loci of Planar Parallel Manipulators with Revolute Joints Singularity Loci of Planar Parallel Manipulators with Revolute Joints ILIAN A. BONEV AND CLÉMENT M. GOSSELIN Département de Génie Mécanique Université Laval Québec, Québec, Canada, G1K 7P4 Tel: (418) 656-3474,

More information

3D Computer Graphics. Jared Kirschner. November 8, 2010

3D Computer Graphics. Jared Kirschner. November 8, 2010 3D Computer Graphics Jared Kirschner November 8, 2010 1 Abstract We are surrounded by graphical displays video games, cell phones, television sets, computer-aided design software, interactive touch screens,

More information

AN INTRODUCTION TO MAPLE

AN INTRODUCTION TO MAPLE AN INTRODUCTION TO MAPLE CHRISTOPHER J HILLAR Introduction This document introduces Maple, a commercial computer program for mathematical computation. You can learn about Maple from its website http://www.maplesoft.com/.

More information

0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect

0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect 0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect Value (TI-83 and TI-89), Eval (TI-86) The Value or Eval feature allows us to enter a specific x coordinate and the cursor moves

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

More information

On the maximum rank of completions of entry pattern matrices

On the maximum rank of completions of entry pattern matrices Linear Algebra and its Applications 525 (2017) 1 19 Contents lists available at ScienceDirect Linear Algebra and its Applications wwwelseviercom/locate/laa On the maximum rank of completions of entry pattern

More information

SOLVING SYSTEMS OF EQUATIONS

SOLVING SYSTEMS OF EQUATIONS SOLVING SYSTEMS OF EQUATIONS GRAPHING System of Equations: 2 linear equations that we try to solve at the same time. An ordered pair is a solution to a system if it makes BOTH equations true. Steps to

More information