y ds y(θ, z) = 3 sin(θ) 0 z 4 Likewise the bottom of the cylinder will be a disc of radius 3 located at a fixed z = 0

Size: px
Start display at page:

Download "y ds y(θ, z) = 3 sin(θ) 0 z 4 Likewise the bottom of the cylinder will be a disc of radius 3 located at a fixed z = 0"

Transcription

1 1. Let denote the closed cylinder with bottom given by z and top given by z 4 and the lateral surface given by x 2 + y 2 9. Orient with outward normals. Determine the urface Integral y d (a) Is this a vector or a scalar surface integral? (b) Over what surface are we integrating? Can you write it with parametric equations? (c) Find a outward facing normal vector (d) Compute the integral olution: (a) The function F(x, y, z) y is a scalar valued function, so we are computing a scalar surface integral. (b) We are integration over the cylinder. We can write it with parametric equations, we need three different equations in order to write it, one for the top of the cylinder, one for the bottom, and one for the lateral surface. We will use cylindrical coordinates for all of them. Here is the top of the cylinder, it is just a disc of radius 3, located at a fixed z 4 x(θ, r) r cos(θ) θ 2π y(θ, r) r sin(θ) r 3 z(θ, r) 4 Liewise the bottom of the cylinder will be a disc of radius 3 located at a fixed z x(θ, r) r cos(θ) θ 2π y(θ, r) r sin(θ) r 3 z(θ, r) And the lateral surface will be given by x(θ, z) 3 cos(θ) θ 2π y(θ, z) 3 sin(θ) z 4 z(θ, z) z

2 (c) Now we find a normal vector. We proceed in the usual way, by taing a cross product of the partial derivatives. ince there are three parametric equations, we need three normal vectors Computing the normal for the top section which we will call N 1 : det cos(θ) sin(θ) (,, r) r sin(θ) r cos(θ) Computing the normal for the bottom section which we will call N 2 : det r sin(θ) r cos(θ) (,, r) cos(θ) sin(θ) Computing the normal vector for the lateral sides which we will call N 3 : det 3 sin(θ) 3 cos(θ) (3 cos(θ), 3 sin(θ), ) 1 (d) Now it is easy to compute the surface integral. We first compute the magnitude of each of the vectors N 1 r N 2 r N 3 3 o the surface line integral becomes 4 2π 3 9 sin θdθdz + 2 2π r 2 sin θdθdr + 2. Using the same surface, repeat a-d for the following surface integral (xi + yj)d

3 olution: (a) This time we are computing a vector surface integral, since the integrand (xi+yj) is a vector valued function (b) Nothing has changed from the setup for the previous problem, so we compute the with the same parametric equations. We will use cylindrical coordinates for all of them. Here is the top of the cylinder, it is just a disc of radius 3, located at a fixed z 4 x(θ, r) r cos(θ) θ 2π y(θ, r) r sin(θ) r 3 z(θ, r) 4 Liewise the bottom of the cylinder will be a disc of radius 3 located at a fixed z x(θ, r) r cos(θ) θ 2π y(θ, r) r sin(θ) r 3 z(θ, r) And the lateral surface will be given by x(θ, z) 3 cos(θ) θ 2π y(θ, z) 3 sin(θ) z 4 z(θ, z) z (c) The computations for the normal vector will match our previous wor as well. Computing the normal for the top section which we will call N 1 : det cos(θ) sin(θ) (,, r) r sin(θ) r cos(θ) Computing the normal for the bottom section which we will call N 2 : det r sin(θ) r cos(θ) (,, r) cos(θ) sin(θ)

4 Computing the normal vector for the lateral sides which we will call N 3 : det 3 sin(θ) 3 cos(θ) (3 cos(θ), 3 sin(θ), ) 1 (d) This time around we don t need to compute the magnitude because this is a vector line integral. We compute the integral as (xi + yj) π 3 2π 3 2π 4 2π 72π (3 cos(θ), 3 sin(θ), ) (3 cos(θ), 3 sin(θ), )dθdz+ (r cos(θ), t sin(θ), ) (,, r)dθdt+ (r cos(θ), t sin(θ), ) (,, r)dθdr 9dθdr 3. Let C be the boundary of the surface z x 2 + y 2 with x 2 and y 1, oriented with upward facing normal. Define F (x, y, z) (sin(x 3 ) + xz, x yz, cos(z 4 )) and evaluate F d C olution: This problem is given as a line integral but we will compute the line integral using toes s theorem. To being we will compute the curl of F. curlf det x y z (y, x, 1) sin(x 3 ) + xz x yz cos(z 4 ) Which is a much nicer function to wor with.

5 Now we will need a parametric equation for the surface. ince the surface is the graph of a function we can easily find the parametric equation X(u, v) ( u, v, u 2 + v 2) Which has the upward facing normal vector of ( 2u, 2v, 1) Now we can setup the integral ( v, u, 1) ( 2u, 2v, 1)dudv 2uv 2uv + 1dudv 1 2 4uv + 1dudv 2 4. The helicoid surface is parametrized by X(s, t) (s cos(t), s sin(t), t) for s 1 and t π/2. Compute the line integral F df For the function F(x, y, z) zi + xj + y olution: This problem is stated as a line integral, and ass you to use toes theorem. o the way we will use the theorem is setup the integral as a flux integral. First we need to compute F, you will recall that this is the curl and is computed with x y z (1, 1, 1) z x y We will also need to compute the normal vector r sin(t) cos(t) (sin(t), cos(t), s) cos(t) sin(t) 1

6 Then the integral is: (1, 1, 1) (sin(t), cos(t), s) 1 π/2 sin(t) cos(t) + sdtds π 4 5. Let be the hemisphere x 2 + y 2 + z 2 4 with z oriented upwards. Let F(x, y, z) (x 2 e yz, y 2 e xz, z 2 e xy ) be a vector field. Evaluate: curl F d olution: First we can chec that curl F so we expect the integral to be zero. But we want to do this using toes Theorem. o we replace curl F d With the other side of toes Theorem, Namely F ds The boundary of is a circle of radius 2 in the z plane. We create a parametric equation for this circle as (2 cos(θ), 2 sin(θ), ) Then computing the line integral we have: C 2π 2π F (x, y, z) 2π ( x 2 e yz, y 2 e xz, z 2 e xy) ( sin(θ), cos(θ), ) ( cos 2 (t), sin 2 (t), ) ( sin(θ), cos(θ), ) cos 2 (t) sin(t) + sin 2 (t) cos(t)

7 6. Let F(x, y, z) (xy, e z2 + y, x + y) and let be the graph of the function y x 2 /9 + z 2 /9 1 with z oriented so that the normal vector has positive y component. Compute the integral F d olution: This problem is setup in order to use toes s Theorem. We will convert the given flux integral by means of a line integral. All we must do is figure out what the boundary is. We can recognize this surface as a paraboloid opening along the y axis. Thus its boundary will lay on the y plane. When y we now x 2 /9 + y 2 /9 1 or x 2 + y 2 9, which is the equation for a circle of radius 3. The parametric equation for this circle is x(θ) (3 cos(θ),, 3 sin(θ)) for θ 2π. When we setup a line integral we also need to compute the derivative x (θ) which is easily found to be x (θ) ( 3 sin(θ),, 3 cos(θ)) Now we can use toes s theorem to setup F d C Fds The right hand side of this can be written more exactly as Fds (xy, e z2 + y, x + y)ds C C (3 cos(θ), e (3 sin(θ)2 +, 3 cos(θ) + ) ( 3 sin(θ),, 3 cos(θ)) C 2π 2π 9 cos 2 (θ)dθ 9 cos 2 (θ)dθ 9π 7. Use toes Theorem to evaluate F ds where F(x, y, z) (y, z, x) and C is the triangle with vertices (,, ), (2,, ) and (, 2, 2) oriented counterclocwise when viewed from above. olution: In this problem we will use toes s theorem to convert a line integral into a surface integral. The first step will the be to find a parametric equation for a surface whose boundary is the triangle with vertices (,, ), (2,, ) and (, 2, 2).

8 The parametric equations we come up with are u Φ(u, v) u v With the bounds on u and v being u 2 u 2 v Having the parametric equations in hand, we can proceed to computing the normal vector We also must compute the curl of F. curlf ( 1, 1, 1) Finally, we can setup and solve the integral. F ds curlfd ( 1, 1, 1) (1, 1, )d 2 2dvdu 4 u 2 8. The height of a mountain at a point (x, y) is given by z 2 x 2 y 2. You wal counterclocwise around the mountain on the boundary of the region R defined by 1 x 1 and 1 y 1. A magnetic field is exerting force F(x, y, z) (x 2 y, 2x(y 2 +z), z 3 ) on your compass. Use toes theorem to calculate the wor done by the magnetic field as you wal around the mountain. olution: Once again we are going to convert a line integral into a surface integral to mae integration easier. The surface here is already given to use, we simply need to find parametric equations for it. ince this is the graph of a function, parametric equations are easy to find. u Φ(u, v) v 2 u 2 v 2

9 With the bounds 1 u 1 1 v 1 We can also compute the normal vector 1 2u 1 2v 2u 2v 1 (here we have taen care to pic the upward facing normal vector). We also must compute the curl of F. curlf ( 2x,, 2y 2 + z x 2 ) o we can now setup and compute the integral F ds curlfd ( 2u,, 2u 2 + 2(v 2 ) + 2 u 2 v 2 ) (2u, 2v, 1)d u 2 dudv Let F(x, y, z) (xy 2, yx 2, z 2 ), calculate the total flux out of a canister W, which can be expressed by the equations x 2 + y 2 9 and 1 z 3. olution: We will solve this problem using the divergence theorem. As the problem is stated we want compute a flux (surface) integral over the boundary of W. That is we want to compute W Using the divergence theorem this becomes It is not difficult to compute the div of F W Fd Div W da

10 Div F ( ) xy 2 + ( ) yx 2 + ( ) z 2 x y z y 2 + x 2 2z o we setup the integral according to the divergence theorem, and writing the region in cylindrical coordinates W y 2 + z 2 2z 3 2π 3 1 (r 2 2z)rdrdθdz 9π 1. Use the Divergence Theorem to compute the value of the flux integral Fd olution: Where F(x, y, z) (y 3 +3x, xz+y, z+x 4 cos(x 2 y)) and is the boundary of the region bounded by x 2 + y 2 1, x, y and z 1 Using the divergence theorem we will compute this rather difficult integral into a (hopefully) simpler triple integral over the divergence of F. To begin let us compute Div F ( Div (F) x, y, ) (y 3 + 3x, xz + y, z + x 4 cos(x 2 y) ) 5 z We then can setup the triple integral as W 5dV Looing at the region we want to compute in cylindrical coordinates as 1 π 2 1 5rdrdθdz 5π 4 Which is the value of the surface integral, by the Divergence theorem.

11 11. The department of transportation is building a elliptical road around mount dull, which they plan to name the Tedium Trail (as in has no exits, only on ramps). The road is to be bounded by the curves x y y2 9 4 while the height of the land at the point (x, y) is given by x 2 z h(x, y) 1 x 2 2y 2 (a) Find a parametric equation for the road surface (b) ince Mount Dull is located in North America, its orientation is given using a upward facing normal vector. Find this upward facing normal vector. (c) Find parametric equations for the edge of the road, which are consistent with the orientation. What does this say about what side of the road people drive on. (d) The people of Australia decide to build a copy of Tedium Trail, but down under, where they prefer to use a downward facing normal vector. How does the different normal vector change your answers to parts (b) and (c). olution: (a) To parametrize the surface, we will use a modification of polar coordinates which has scaled the x coordinates scaled by a factor of 2 and the y coordinates scaled by a factor of 3. We will the write the z coordinate in terms of the x and y parametrization. x(r, θ) 2r cos(θ) Φ(r, θ) y(r, θ) 3r sin(θ) z(r, θ) 1 4r 2 cos(θ) 2 9r 2 sin(θ) 2 Notice that when r 1 this satisfies the equation x2 + y2 1 and when r this satisfies the equation x2 + y2 4, so we have the bounds on r of 1 r (b) To compute the normal vector we begin by computing the two tangent vectors, then compute their cross product. We don t now, apriori what direction the normal vector will face, but we can fix that later. 2 cos(θ) T r 3 sin(θ) 8r cos(θ) 2 18r sin(θ) 2 2r sin(θ) T θ 3r sin(θ) 1r 2 cos(t) sin(t) 24r 2 cos(θ) N Φ 36r 2 sin(θ) 6r

12 We notice the 6r so the normal vector is upward facing. (c) The boundary of the road will be two ellipses and nowing a parametric equation for the road, its not difficult to find a parametrization for the edges of the road. By looing at r 1 and r 2 we easily find C inside (θ) Φ(1, θ) 2 cos(θ) 3 sin(θ) 1 4 cos(θ) 2 9 sin(θ) 2 4 cos(θ) C outside (θ) Φ(1, θ) 6 sin(θ) 1 16 cos(θ) 2 36 sin(θ) 2 However, in order to obey the right hand rule, the inside curve must have a clocwise orientation, so we will modify the sign of the y coordinate. C inside (θ) Φ(1, θ) 2 cos(θ) 3 sin(θ) 1 4 cos(θ) 2 9 sin(θ) 2 This means that when you are traveling clocwise, you should be driving on the right side of the road. (d) This reverses the orientation of both boundary curves, so we have C inside (θ) Φ(1, θ) 2 cos(θ) 3 sin(θ) 1 4 cos(θ) 2 9 sin(θ) 2 4 cos(θ) C outside (θ) Φ(1, θ) 6 sin(θ) 1 16 cos(θ) 2 36 sin(θ) 2 Notice that now, when driving in a clocwise direction, you are on the left side of the road.

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

Math 6A Practice Problems III

Math 6A Practice Problems III Math 6A Practice Problems III Written by Victoria Kala vtkala@math.ucsb.edu H 63u Office Hours: R 1:3 1:3pm Last updated 6//16 Answers 1. 3. 171 1 3. π. 5. a) 8π b) 8π 6. 7. 9 3π 3 1 etailed olutions 1.

More information

Curves: We always parameterize a curve with a single variable, for example r(t) =

Curves: We always parameterize a curve with a single variable, for example r(t) = Final Exam Topics hapters 16 and 17 In a very broad sense, the two major topics of this exam will be line and surface integrals. Both of these have versions for scalar functions and vector fields, and

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written.

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written. Math 2374 Spring 2006 Final May 8, 2006 Time Limit: 1 Hour Name (Print): Student ID: Section Number: Teaching Assistant: Signature: This exams contains 11 pages (including this cover page) and 10 problems.

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM Problem Score 1 2 Name: SID: Section: Instructor: 3 4 5 6 7 8 9 10 11 12 Total MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, 2004 12:20-2:10 PM INSTRUCTIONS There are 12 problems on this exam for a total

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Math 240 Practice Problems

Math 240 Practice Problems Math 4 Practice Problems Note that a few of these questions are somewhat harder than questions on the final will be, but they will all help you practice the material from this semester. 1. Consider the

More information

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE.

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE. Ch17 Practice Test Sketch the vector field F. F(x, y) = (x - y)i + xj Evaluate the line integral, where C is the given curve. C xy 4 ds. C is the right half of the circle x 2 + y 2 = 4 oriented counterclockwise.

More information

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2 Math 251 Quiz 5 Fall 2002 1. a. Calculate 5 1 0 1 x dx dy b. Calculate 1 5 1 0 xdxdy 2. Sketch the region. Write as one double integral by interchanging the order of integration: 0 2 dx 2 x dy f(x,y) +

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters.

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters. Math 55 - Vector Calculus II Notes 14.6 urface Integrals Let s develop some surface integrals. First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). urfaces

More information

Dr. Allen Back. Nov. 19, 2014

Dr. Allen Back. Nov. 19, 2014 Why of Dr. Allen Back Nov. 19, 2014 Graph Picture of T u, T v for a Lat/Long Param. of the Sphere. Why of Graph Basic Picture Why of Graph Why Φ(u, v) = (x(u, v), y(u, v), z(u, v)) Tangents T u = (x u,

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

10.7 Triple Integrals. The Divergence Theorem of Gauss

10.7 Triple Integrals. The Divergence Theorem of Gauss 10.7 riple Integrals. he Divergence heorem of Gauss We begin by recalling the definition of the triple integral f (x, y, z) dv, (1) where is a bounded, solid region in R 3 (for example the solid ball {(x,

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010 8/5/21 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 21 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points.

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points. MATH 261 FALL 2 FINAL EXAM STUDENT NAME - STUDENT ID - RECITATION HOUR - RECITATION INSTRUCTOR INSTRUCTOR - INSTRUCTIONS 1. This test booklet has 14 pages including this one. There are 25 questions, each

More information

Math 11 Fall Multivariable Calculus. Final Exam

Math 11 Fall Multivariable Calculus. Final Exam Math 11 Fall 2004 Multivariable Calculus for Two-Term Advanced Placement First-Year Students Final Exam Tuesday, December 7, 11:30-2:30 Murdough, Cook Auditorium Your name (please print): Instructions:

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer 1. Find the distance between the sphere (x 1) + (y + 1) + z = 1 4 and the sphere (x 3) + (y + ) + (z + ) = 1. Find, a a + b, a b, a, and 3a + 4b

More information

1 Vector Functions and Space Curves

1 Vector Functions and Space Curves ontents 1 Vector Functions and pace urves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions...................... 2 1.2 Arc Length and urvature..................................... 2 1.3 Motion

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates ections 15.4 Integration using Transformations in Polar, Cylindrical, and pherical Coordinates Cylindrical Coordinates pherical Coordinates MATH 127 (ection 15.5) Applications of Multiple Integrals The

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5 UNIVERSITI TEKNOLOGI MALAYSIA SSE 189 ENGINEERING MATHEMATIS TUTORIAL 5 1. Evaluate the following surface integrals (i) (x + y) ds, : part of the surface 2x+y+z = 6 in the first octant. (ii) (iii) (iv)

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

f x = 2e xy +y(2x+y)e xy = (2+2xy+y 2 )e xy.

f x = 2e xy +y(2x+y)e xy = (2+2xy+y 2 )e xy. gri (rg38778) Homework 11 gri (11111) 1 This print-out should have 3 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Find lim (x,y) (,) 1

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

the straight line in the xy plane from the point (0, 4) to the point (2,0)

the straight line in the xy plane from the point (0, 4) to the point (2,0) Math 238 Review Problems for Final Exam For problems #1 to #6, we define the following paths vector fields: b(t) = the straight line in the xy plane from the point (0, 4) to the point (2,0) c(t) = the

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1993 ENGINEERING MATHEMATICS II TUTORIAL 2. 1 x cos dy dx x y dy dx. y cosxdy dx

UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1993 ENGINEERING MATHEMATICS II TUTORIAL 2. 1 x cos dy dx x y dy dx. y cosxdy dx UNIVESITI TEKNOLOI MALAYSIA SSCE 99 ENINEEIN MATHEMATICS II TUTOIAL. Evaluate the following iterated integrals. (e) (g) (i) x x x sinx x e x y dy dx x dy dx y y cosxdy dx xy x + dxdy (f) (h) (y + x)dy

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM MATH 4: CALCULUS 3 MAY 9, 7 FINAL EXAM I have neither given nor received aid on this exam. Name: 1 E. Kim................ (9am) E. Angel.............(1am) 3 I. Mishev............ (11am) 4 M. Daniel...........

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Math 210, Exam 2, Spring 2010 Problem 1 Solution

Math 210, Exam 2, Spring 2010 Problem 1 Solution Math, Exam, Spring Problem Solution. Find and classify the critical points of the function f(x,y) x 3 +3xy y 3. Solution: By definition, an interior point (a,b) in the domain of f is a critical point of

More information

Calculus III Meets the Final

Calculus III Meets the Final Calculus III Meets the Final Peter A. Perry University of Kentucky December 7, 2018 Homework Review for Final Exam on Thursday, December 13, 6:00-8:00 PM Be sure you know which room to go to for the final!

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

12/15/2017 FINAL EXAM Math 21a, Fall Name:

12/15/2017 FINAL EXAM Math 21a, Fall Name: 12/15/2017 FINL EXM Math 21a, Fall 2017 Name: MWF 9 Jameel l-idroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10 Matt Demers

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Parametrization. Surface. Parametrization. Surface Integrals. Dr. Allen Back. Nov. 17, 2014

Parametrization. Surface. Parametrization. Surface Integrals. Dr. Allen Back. Nov. 17, 2014 Dr. Allen Back Nov. 17, 2014 Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be

More information

12/19/2009, FINAL PRACTICE I Math 21a, Fall Name:

12/19/2009, FINAL PRACTICE I Math 21a, Fall Name: 12/19/2009, FINAL PRACTICE I Math 21a, Fall 2009 Name: MWF 9 Jameel Al-Aidroos MWF 10 Andrew Cotton-Clay MWF 10 Oliver Knill MWF 10 HT Yau MWF 11 Ana Caraiani MWF 11 Chris Phillips MWF 11 Ethan Street

More information

Math 52 Final Exam March 16, 2009

Math 52 Final Exam March 16, 2009 Math 52 Final Exam March 16, 2009 Name : Section Leader: Josh Lan Xiannan (Circle one) Genauer Huang Li Section Time: 10:00 11:00 1:15 2:15 (Circle one) This is a closed-book, closed-notes exam. No calculators

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols Lecture 23 urface integrals, tokes theorem, and the divergence theorem an Nichols nichols@math.umass.edu MATH 233, pring 218 University of Massachusetts April 26, 218 (2) Last time: Green s theorem Theorem

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

38. Triple Integration over Rectangular Regions

38. Triple Integration over Rectangular Regions 8. Triple Integration over Rectangular Regions A rectangular solid region S in R can be defined by three compound inequalities, a 1 x a, b 1 y b, c 1 z c, where a 1, a, b 1, b, c 1 and c are constants.

More information

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU School of Mathematics, KSU Theorem The rectangular coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point P are related as follows: x = r cos θ, y = r sin θ, tan θ = y x, r 2 = x 2

More information

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55.

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55. MATH 24 -Review for Final Exam. Let f(x, y, z) x 2 yz + y 3 z x 2 + z, and a (2,, 3). Note: f (2xyz 2x, x 2 z + 3y 2 z, x 2 y + y 3 + ) f(a) (8, 2, 6) (a) Find all stationary points (if any) of f. et f.

More information

A1:Orthogonal Coordinate Systems

A1:Orthogonal Coordinate Systems A1:Orthogonal Coordinate Systems A1.1 General Change of Variables Suppose that we express x and y as a function of two other variables u and by the equations We say that these equations are defining a

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

14.1 Vector Fields. Gradient of 3d surface: Divergence of a vector field:

14.1 Vector Fields. Gradient of 3d surface: Divergence of a vector field: 14.1 Vector Fields Gradient of 3d surface: Divergence of a vector field: 1 14.1 (continued) url of a vector field: Ex 1: Fill in the table. Let f (x, y, z) be a scalar field (i.e. it returns a scalar)

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d .(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? (a) / Z a rdr d (b) / Z a rdr d (c) Z a dr d (d) / Z a dr d (e) / Z a a rdr d.(6pts)

More information

1 Double Integral. 1.1 Double Integral over Rectangular Domain

1 Double Integral. 1.1 Double Integral over Rectangular Domain Double Integral. Double Integral over Rectangular Domain As the definite integral of a positive function of one variable represents the area of the region between the graph and the x-asis, the double integral

More information

1 Double Integrals over Rectangular Regions

1 Double Integrals over Rectangular Regions Contents ouble Integrals over Rectangular Regions ouble Integrals Over General Regions 7. Introduction.................................... 7. Areas of General Regions............................. 9.3 Region

More information

= x i + y j + z k. div F = F = P x + Q. y + R

= x i + y j + z k. div F = F = P x + Q. y + R Abstract The following 25 problems, though challenging at times, in my opinion are problems that you should know how to solve as a students registered in Math 39200 C or any other section offering Math

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following:

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following: Quiz problem bank Quiz problems. Find all solutions x, y) to the following: xy x + y = x + 5x + 4y = ) x. Let gx) = ln. Find g x). sin x 3. Find the tangent line to fx) = xe x at x =. 4. Let hx) = x 3

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

Workbook. MAT 397: Calculus III

Workbook. MAT 397: Calculus III Workbook MAT 397: Calculus III Instructor: Caleb McWhorter Name: Summer 2017 Contents Preface..................................................... 2 1 Spatial Geometry & Vectors 3 1.1 Basic n Euclidean

More information

MATH SPRING 2000 (Test 01) FINAL EXAM INSTRUCTIONS

MATH SPRING 2000 (Test 01) FINAL EXAM INSTRUCTIONS MATH 61 - SPRING 000 (Test 01) Name Signature Instructor Recitation Instructor Div. Sect. No. FINAL EXAM INSTRUCTIONS 1. You must use a # pencil on the mark-sense sheet (answer sheet).. If you have test

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

Lesson 10. Transforming 3D Integrals

Lesson 10. Transforming 3D Integrals Lesson 10 Transforming D Integrals Example 1: Triple Integrals to Compute Volume ecall that in previous chapters we could find the length of an interval I by computing dx or the area of a region by computing

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Math 241, Exam 3 Information.

Math 241, Exam 3 Information. Math 241, xam 3 Information. 11/28/12, LC 310, 11:15-12:05. xam 3 will be based on: Sections 15.2-15.4, 15.6-15.8. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Functions of Several Variables

Functions of Several Variables . Functions of Two Variables Functions of Several Variables Rectangular Coordinate System in -Space The rectangular coordinate system in R is formed by mutually perpendicular axes. It is a right handed

More information