Computer Program for the Inverse Transformation of the Winkel Projection

Size: px
Start display at page:

Download "Computer Program for the Inverse Transformation of the Winkel Projection"

Transcription

1 omputer Program for the Inverse Transformation of the Winkel Projection engizhan Ipbuker 1 and I. Oztug Bildirici Abstract: The map projection problem involves transforming the graticule of meridians and parallels of a sphere onto a plane using a specified mathematical method according to certain conditions. Map projection transformations are a research field dealing with the method of transforming one kind of map projection coordinates to another. The conversion from geographical to plane coordinates is the normal practice in cartography, which is called forward transformation. The inverse transformation, which yields geographical coordinates from map coordinates, is a more recent development due to the need for transformation between different map projections, especially in Geographic Information Systems GIS. The direct inverse equations for most of the map projections are already in existence, but for the projections, which have complex functions for forward transformation, defining the inverse projection is not easy. This paper describes an iteration algorithm to derive the inverse equations of the Winkel tripel projection using the Newton Raphson iteration method. DOI: / ASE :4 15 E Database subject headings: omputer programming; Mapping; artography; Surveys; Geographic information systems. Introduction The artesian coordinates X,Y of a point on a map are calculated from latitude and longitude using the functions X = f x, Y = f y, 1 1 Istanbul Technical Univ., Faculty of ivil Engineering, Division of artography, Maslak Istanbul, Turkey. buker@itu.edu.tr Selcuk Univ., Faculty of Engineering and Architecture, Dept. of Geodesy and Photogrammetry, Kampüs, Konya, Turkey. bildirici@selcuk.edu.tr Note. Discussion open until April 1, 006. Separate discussions must be submitted for individual papers. To extend the closing date by one month, a written request must be filed with the ASE Managing Editor. The manuscript for this paper was submitted for review and possible publication on November 7, 00; approved on December 30, 004. This paper is part of the Journal of Surveying Engineering, Vol. 131, No. 4, November 1, 005. ASE, ISSN /005/ / $5.00. The X-axis denotes the equator, positive to the east, and the Y-axis denotes the central meridian, positive to the north. The functions or equations define a map projection in general. This conversion or transformation from geographical to plane coordinates is called the forward transformation and is the normal practice in cartography. A frequently faced problem in cartography is calculating the geographical coordinates from the forward projection equations. This process is commonly called inverse mapping. Although the inverse equations for many projections are already known, in some cases they must be developed Yang et al However, developing the inverse equations has sometimes proven difficult due to the complex projection equations. In some cases where projection parameters are not exactly known, numerical methods can be employed Bildirici 003. The Winkel tripel projection s inverse equations cannot be derived easily. In this study, an iterative algorithm is described for the inverse solution of the Winkel tripel projection using partial derivatives. A computer program is also developed based on this algorithm, and the test results are also presented. Winkel Tripel Projection The Winkel tripel projection was developed by Oswald Winkel in 191 by averaging the cylindrical equidistant equirectangular and Aitoff projections Winkel 191. Winkel himself applied the German term tripel in English, triple, because he considered it a compromise of the properties of three elements area, angle, and distance which resulted in a lower distortion distributed uniformly overall Kessler 000. artographers have suggested that it is suitable for whole-world applications due to the distortion characteristics Francula 1971; Ozgen and Ucar 198; apek 001. The Winkel tripel projection is a modified azimuthal projection that is neither conformal nor of equal area, like the Winkel I and II. However, by using L. P. Lee s definitions, the tripel can also be classified as a polyconic Lee The functions for the Winkel tripel projection are presented as follows: where f 1 i, i = 1 D 1/ cos i sin i + i cos 0 X =0 R f i, i = 1 D 1/ sin i + i Y R =0 D = arccos cos cos =1 cos cos 5 and 0 =standard parallel chosen by Winkel as 50 8 in the equidistant cylindrical component of the projection Winkel 191; 3 4 JOURNAL OF SURVEYING ENGINEERING ASE / NOVEMBER 005 / 15

2 Francula 1971; Bugayevsky and Snyder 1995; Kessler 000. The partial derivatives for these functions are Francula 1971; Ucar and Ipbuker 1998; Oztan et al. 001; Ipbuker 00 = sin i sin i D 4 3/ sin i sin i 6 = 1 cos i sin i f = 1 sin i cos + D 3/ cos i cos i sin i + cos 0 i 8 f = 1 sin i sin + D 3/ 1 cos i cos i +1 i 7 8 D 3/ sin i cos i sin i 9 The latitude and longitude values can be calculated using the coordinates of an arbitrary point selected on a map produced in the Winkel tripel projection by using the Newton Raphson iteration method as follows Ipbuker 00; Ipbuker and Bildirici 00 i = f i, i f 1 i, i f f f 13 Newton s iteration in Eqs. 10 and 11 needs an initial guess s, s, which is composed of initial latitude and longitude approximating the given X and Y through the forward projection equations. The initial guess is based upon the functions f 1 and f as defined by Eqs. and 3. These functions are used to examine the change in X i and Y i,tox and Y, respectively. The absolute values of Eqs. 1 and 13 are compared to an accuracy level as follows 14a 14b It can be taken as If the condition being defined with Eqs. 14a and 14b is fulfilled, the iteration will stop. This means X i and Y i are sufficiently close to the selected coordinates X,Y at this iteration step Ipbuker 00; Ipbuker and Bildirici 00. The points on the equator, the poles, and the central meridian must be handled separately. Since analytical solutions for these points are possible, no iteration is needed. If these points are included in the iteration process, iteration may not stop. Actually, it is determined that the iteration does not stop for the points on the equator and the poles. For the points on the equator i.e., Y =0, the geographical coordinates can be calculated as follows i+1 = s i 10 =0 where i+1 = s i 11 X = R 1 + cos 0 15 i = f 1 i, i f f i, i f f 1 For the points on the poles i.e., Y =±R /, the geographical coordinates = Y R Table 1. Part of the Points Used in Test 1 Point number X Y after iteration step after iteration step 16 / JOURNAL OF SURVEYING ENGINEERING ASE / NOVEMBER 005

3 Table. Steps at Point 10 in Table 1 angle unit is radians step X = R cos 0 For the points on the central meridian i.e., X=0 16 = Y R 17 =0 onsidering these cases, the initial values of the geographical coordinates for the iteration can be taken as omputer Program s = Y R X s = R 1 + cos 0 18 In order to determine that the method described above can be used properly, a computer program was developed with the FORTRAN 90 programming language. The program is capable of forward and inverse transformation of Winkel tripel projection. We call it WPROJ. It processes DXF or text files, which must be formatted accordingly. The subroutines for forward and inverse transformation can be found in the Appendix. Some of the points and their coordinates are shown in Table 1. In the table the iteration steps are given for longitudes and latitudes. Since the iteration steps are at acceptable levels, and the steps for longitudes and latitudes do not differ significantly, it can be assumed that the initial guess in Eq. 18 is suitable. For one of the points, the iteration steps are given in detail in Table. The plane coordinates and iterative geographical coordinates were calculated in the same program session, hence the test above looks a bit artificial. Therefore a second test was done. In the Test, a DXF file that contains worldwide country data was transformed to Winkel plane coordinates, which is shown in Fig. 1. From these coordinates, the geographical coordinates were obtained with iteration. Some coordinates of test points are shown in Table 3. The test characteristics and results are as follows: R=6370 km Earth radius ; X and Y coordinates are rounded to 1 decimal places in DXF file ; =10 1 precision ; Number of points= 46,67; Maximum iteration step= 94; and Minimum iteration step= 4. Test of the Program and Method In order to examine if both the method and the program work properly, we performed two tests. In Test 1 we created a 5 5 degree graticule of points. We first calculated the plane coordinates of these points, and then we recalculated the geographical coordinates using the iterative method presented here. The test characteristics and results are as follows: R=1 Earth radius ; X and Y coordinates are not rounded; =10 1 precision ; Number of points= 703; Maximum iteration step=49 =85, =180 ; and Minimum iteration step= 7. Fig. 1. Worldwide country data in Winkel tripel projection data set of test JOURNAL OF SURVEYING ENGINEERING ASE / NOVEMBER 005 / 17

4 Table 3. Sample oordinates of Test X km Y km Step Step In Table 3 the iteration steps are also given. From the table it can be concluded that the iteration steps for latitudes increase toward the equator. It is also significant that the longitudes are calculated with less iteration in this direction. In Test iteration steps are also at acceptable levels as in Test 1, so the initial guess in Eq. 18 seems to be suitable. Since Test includes a large amount of points with homogenous distribution, this initial guess can be used for the whole world. We can conclude from the tests above that the iteration always stops at reasonable steps. With a computer program 94 steps do not cause a large amount of PU time. For example, the whole PU time for the Test transformation of 46,67 points is about 0 s with a P III 550 processor. This time also includes reading from an input file and writing to an output file. Since each DXF file input file and output file contains 661,106 lines, the processing time should be considered reasonable. Appendix. Subroutines for Winkel Projection onclusion The forward projection functions for the Winkel projection are complex. Therefore, to derive the inverse projection functions, a specific method is required. The algorithm used here is a Newton Raphson iteration with partial derivatives. Since the manual calculation using this algorithm is not easy, a computer program was developed. With such a program, data capture from analog maps produced using Winkel tripel projection can be possible; captured data can also be easily integrated into any GIS system. After tests we performed with our program WPROJ we showed that the iteration actually stopped at reasonable steps. The total PU time was also relatively short. We also showed that some special points e.g., points on equator could be analytically transformed, which had to be actually excluded from the iteration due to their negative effect. They cause large numbers of iteration steps, or iteration does not stop. Finally, we suggest that the algorithm presented here can be efficiently used for the inverse transformation of Winkel tripel projection. 18 / JOURNAL OF SURVEYING ENGINEERING ASE / NOVEMBER 005

5 X coordinate axis denotes the equator positive to the east ; Y coordinate axis denotes the central meridian positive to the north ; accuracy level taken as 10 1 ; geographical longitude; geographical latitude; 0 latitude of the standard parallel chosen by Winkel as 50 8 ; and s, s initial latitude and longitude values for the iteration. References Notation The following symbols are used in this paper: R radius of Earth curvature; Bildirici, I. O Numerical inverse transformation for map projections. omput. Geosci., 9, Bugayevski, L., and Snyder, J. P Map projections: A reference manual, Taylor and Francis, London. apek, R Which is the best projection for the world map? Proc., 0th Int. artographic onf., Beijing, hina, Vol. 5, Francula, N Die vorteilhaftesten Abbildungen in der Atlaskartographie. Dissertation, Uniersitaet Bonn. Ipbuker,. 00. An inverse solution to the Winkel tripel projection using partial derivatives. artogr. Geogr. Inf. Syst., 9 1, Ipbuker,., and Bildirici, I. O. 00. A general algorithm for the inverse transformation of map projections using Jacobian matrices. Proc., 3rd Int. onf. on Mathematical & omputational Applications, Konya, Turkey, Kessler, F A visual basic algorithm for the Winkel tripel projection. artogr. Geogr. Inf. Syst., 7, Lee, L. P The nomenclature and classification of map projections. Empire Survey Review, 7 51, Oztan, O., Ipbuker,., and Ulugtekin, N A numerical approach to pseudo-projections on example Franz Mayr projection. J. General ommand of Mapping, 15, in Turkish. Ozgen, M. G., and Ucar, D Investigation of suitable projections for mapping the whole world. J.. General ommand of Mapping, 88, 1 11 in Turkish. Ucar, D., and Ipbuker, Graphic visualisation of deformation ellipses in cartographic projections. J. General ommand of Mapping, 119, in Turkish. Winkel, O Neue gradnetzkombinationen. Petermanns Mitteilungen, 6, Yang, Q., Snyder, J. P., and Tobler, W Map projection transformation: Principles and applications, Taylor and Francis, London. JOURNAL OF SURVEYING ENGINEERING ASE / NOVEMBER 005 / 19

LECTURE TWO Representations, Projections and Coordinates

LECTURE TWO Representations, Projections and Coordinates LECTURE TWO Representations, Projections and Coordinates GEOGRAPHIC COORDINATE SYSTEMS Why project? What is the difference between a Geographic and Projected coordinate system? PROJECTED COORDINATE SYSTEMS

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Lecture 5 August 31 2016 Topics: Polar coordinate system Conversion of polar coordinates to 2-D

More information

How to Create the Best Suitable Map Projection

How to Create the Best Suitable Map Projection How to Create the Best Suitable Map Projection Yury HURYEU and Uladzimir PADSHYVALAU, Belarus Key words: map projection, best suitable projection, polyconic projection, composite projection, coordinate

More information

Derivation of a polynomial equation for the Natural Earth projection

Derivation of a polynomial equation for the Natural Earth projection Derivation of a polynomial equation for the Natural Earth projection Graduation Thesis Author: Bojan Šavrič Supervisors: Assist. Prof. Dr. Dušan Petrovič, UL FGG Dr. Bernhard Jenny, IKG ETH Zürich Prof.

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

WHERE THEORY MEETS PRACTICE

WHERE THEORY MEETS PRACTICE world from others, leica geosystems WHERE THEORY MEETS PRACTICE A NEW BULLETIN COLUMN BY CHARLES GHILANI ON PRACTICAL ASPECTS OF SURVEYING WITH A THEORETICAL SLANT february 2012 ² ACSM BULLETIN ² 27 USGS

More information

COMP ARISON OF DIFFERENT ALGORITHMS TO TRANSFORM GEOCENTRIC TO GEODETIC COORDINATES. Alireza Amiri Seemkooei

COMP ARISON OF DIFFERENT ALGORITHMS TO TRANSFORM GEOCENTRIC TO GEODETIC COORDINATES. Alireza Amiri Seemkooei Survey Review 36, 286 (October 2002) COMP ARISON OF DIFFERENT ALGORITHMS TO TRANSFORM GEOCENTRIC TO GEODETIC COORDINATES Alireza Amiri Seemkooei Dept. of Surveying Engineering The University of Isfahan,

More information

January 30, 2019 LECTURE 2: FUNCTIONS OF SEVERAL VARIABLES.

January 30, 2019 LECTURE 2: FUNCTIONS OF SEVERAL VARIABLES. January 30, 2019 LECTURE 2: FUNCTIONS OF SEVERAL VARIABLES 110211 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN Synopsis Today we begin the course in earnest in Chapter 2, although, again like

More information

LOCAL GEODETIC HORIZON COORDINATES

LOCAL GEODETIC HORIZON COORDINATES LOCAL GEODETIC HOIZON COODINATES In many surveying applications it is necessary to convert geocentric Cartesian coordinates X,,Z to local geodetic horizon Cartesian coordinates E,N,U (East,North,Up). Figure

More information

Accurate Conversion of Earth-Fixed Earth-Centered Coordinates to Geodetic Coordinates

Accurate Conversion of Earth-Fixed Earth-Centered Coordinates to Geodetic Coordinates Accurate Conversion of Earth-Fixed Earth-Centered Coordinates to Geodetic Coordinates Karl Osen To cite this version: Karl Osen. Accurate Conversion of Earth-Fixed Earth-Centered Coordinates to Geodetic

More information

COORDINATE TRANSFORMATION. Lecture 6

COORDINATE TRANSFORMATION. Lecture 6 COORDINATE TRANSFORMATION Lecture 6 SGU 1053 SURVEY COMPUTATION 1 Introduction Geomatic professional are mostly confronted in their work with transformations from one two/three-dimensional coordinate system

More information

Navigation coordinate systems

Navigation coordinate systems Lecture 3 Navigation coordinate systems Topic items: 1. Basic Coordinate Systems. 2. Plane Cartesian Coordinate Systems. 3. Polar Coordinate Systems. 4. Earth-Based Locational Reference Systems. 5. Reference

More information

Fundamentals of Surveying MSS 220 Prof. Gamal El-Fiky

Fundamentals of Surveying MSS 220 Prof. Gamal El-Fiky Fundamentals of Surveying MSS 220 Prof. Gamal l-fiky Maritime Studies Department, Faculty of Marine Science King Abdulaziz University gamal_elfiky@yahoo.com Room 221 What is Surveying? Surveying is defined

More information

Fundamentals of Structural Geology Exercise: concepts from chapter 2

Fundamentals of Structural Geology Exercise: concepts from chapter 2 0B Reading: Fundamentals of Structural Geology, Ch 2 1) Develop a MATLAB script that plots the spherical datum (Fig. 2.1a) with unit radius as a wire-frame diagram using lines of constant latitude and

More information

Assignment 2 Arrays and Functions

Assignment 2 Arrays and Functions Assignment 2 Arrays and Functions Assigned TA: Yohai Mandabi. Publication date: 17.11.13. Introduction The geographic coordinate system is a grid allowing the specification of any location on Earth. The

More information

Introduction to MATLAB

Introduction to MATLAB GLOBAL EDITION Introduction to MATLAB THIRD EDITION Delores M. Etter 3.3 Trigonometric Functions 77 tan(x) asin(x) sinh(x) Computes the tangent of x, where x is in radians. tan(pi) -1.2246e-16 Computes

More information

Well Unknown ID AKA EPSG: 3857

Well Unknown ID AKA EPSG: 3857 Well Unknown ID AKA EPSG: 3857 Pamela Kanu November 2016 WGS 1984 WEB MERCATOR ALIASES: AUXILIARY SPHERE, WKID: 3857, WKID: 102100, WKID: 102113, SHERICAL MERCATOR, WGS 84/PSEUDO-MERCATOR, OPEN LAYERS:

More information

Creating Mercator s Map Projection

Creating Mercator s Map Projection Creating Mercator s Map Projection Andrew Geldean December 17, 2014 Abstract: This map developed by Gerardus Mercator in 1569 is created by producing a cylinder around the globe projecting the surface

More information

Use of n-vector for Radar Applications

Use of n-vector for Radar Applications Use of n-vector for Radar Applications Nina Ødegaard, Kenneth Gade Norwegian Defence Research Establishment Kjeller, NORWAY email: Nina.Odegaard@ffi.no Kenneth.Gade@ffi.no Abstract: This paper aims to

More information

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ) Boise State Math 275 (Ultman) Worksheet 3.5: Triple Integrals in Spherical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

EE 570: Location and Navigation: Theory & Practice

EE 570: Location and Navigation: Theory & Practice EE 570: Location and Navigation: Theory & Practice Navigation Mathematics Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 1 of 14 Coordinate Frames - ECI The Earth-Centered

More information

Empirical methods of reducing the observations in geodetic networks

Empirical methods of reducing the observations in geodetic networks GEODESY AND CARTOGRAPHY Vol. 65, No 1, 2016, pp. 13-40 Polish Academy of Sciences DOI: 10.1515/geocart-2016-0001 Empirical methods of reducing the observations in geodetic networks Rzeszów University of

More information

BASIC MATHEMATICS FOR CADASTRAL MAPPING

BASIC MATHEMATICS FOR CADASTRAL MAPPING BASIC MATHEMATICS FOR CADASTRAL MAPPING Chapter 5 2015 Cadastral Mapping Manual 5-1 Introduction Data which a mapper must use to solve problems comes from a myriad of sources both new and old. The general

More information

Yandex.Maps API Background theory

Yandex.Maps API Background theory 8.02.2018 .. Version 1.0 Document build date: 8.02.2018. This volume is a part of Yandex technical documentation. Yandex helpdesk site: http://help.yandex.ru 2008 2018 Yandex LLC. All rights reserved.

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1. April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE

NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1. April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1 April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE A. J. Burford INTRODUCTION This memorandum discusses two methods

More information

# Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4). use Math::Trig ':pi';

# Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4). use Math::Trig ':pi'; NAME Math::Trig - trigonometric functions SYNOPSIS use Math::Trig; $x = tan(0.9); $y = acos(3.7); $z = asin(2.4); $halfpi = pi/2; $rad = deg2rad(120); # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4).

More information

THE SIMPLE POLYNOMAIL TECHNIQUE TO COMPUTE THE ORTHOMETRIC HEIGHT IN EGYPT

THE SIMPLE POLYNOMAIL TECHNIQUE TO COMPUTE THE ORTHOMETRIC HEIGHT IN EGYPT THE SIMPLE POLYNOMAIL TECHNIQUE TO COMPUTE THE ORTHOMETRIC HEIGHT IN EGYPT M.Kaloop 1, M. EL-Mowafi 2, M.Rabah 3 1 Assistant lecturer, Public Works Engineering Department, Faculty of Engineering, El-Mansoura

More information

( ) Derivation of Polar Reduction Formula for a Calculator Robert Bernecky April, 2018 ( )

( ) Derivation of Polar Reduction Formula for a Calculator Robert Bernecky April, 2018 ( ) Derivation of Polar Reduction Formula for a Calculator Robert Bernecky April, 2018 1 Problem Statement The polar reduction formula takes an observer's assumed position (lat, lon), and a body's celestial

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

High Altitude Balloon Localization from Photographs

High Altitude Balloon Localization from Photographs High Altitude Balloon Localization from Photographs Paul Norman and Daniel Bowman Bovine Aerospace August 27, 2013 Introduction On December 24, 2011, we launched a high altitude balloon equipped with a

More information

Structure in Quaternions Corresponding to the 4-Dimensional Tetrahedron

Structure in Quaternions Corresponding to the 4-Dimensional Tetrahedron Structure in Quaternions Corresponding to the 4-Dimensional Tetrahedron AJ Friend School of Mathematics Georgia Institute of Technology Atlanta, GA Advised by: Adrian Ocneanu Department of Mathematics

More information

Module 6: Pinhole camera model Lecture 32: Coordinate system conversion, Changing the image/world coordinate system

Module 6: Pinhole camera model Lecture 32: Coordinate system conversion, Changing the image/world coordinate system The Lecture Contains: Back-projection of a 2D point to 3D 6.3 Coordinate system conversion file:///d /...(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2032/32_1.htm[12/31/2015

More information

HP-35s Calculator Program Closure 7A

HP-35s Calculator Program Closure 7A Traverse Program using Latitude and Longitude and the Gauss Mid-Latitude Formulae Programmer: Dr. Bill Hazelton Date: March, 2008. Version: 1.0 Line Instruction Display User Programming Instructions J001

More information

State Plane Coordinates and Computations using them GISC Spring 2013

State Plane Coordinates and Computations using them GISC Spring 2013 State Plane Coordinates and Computations using them GISC-3325 - Spring 2013 Map Projections From UNAVCO site hosting.soonet.ca/eliris/gpsgis/lec2geodesy.html Taken from Ghilani, SPC State Plane Coordinate

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences Page 1 UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in INF3480 Introduction to Robotics Day of exam: May 31 st 2010 Exam hours: 3 hours This examination paper consists of 5 page(s).

More information

1498. End-effector vibrations reduction in trajectory tracking for mobile manipulator

1498. End-effector vibrations reduction in trajectory tracking for mobile manipulator 1498. End-effector vibrations reduction in trajectory tracking for mobile manipulator G. Pajak University of Zielona Gora, Faculty of Mechanical Engineering, Zielona Góra, Poland E-mail: g.pajak@iizp.uz.zgora.pl

More information

Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati

Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Lecture - 03 Coordinate System and Reference Frame Hello everyone. Welcome back on

More information

Geometry and Gravitation

Geometry and Gravitation Chapter 15 Geometry and Gravitation 15.1 Introduction to Geometry Geometry is one of the oldest branches of mathematics, competing with number theory for historical primacy. Like all good science, its

More information

Computation of Slope

Computation of Slope Computation of Slope Prepared by David R. Maidment and David Tarboton GIS in Water Resources Class University of Texas at Austin September 2011, Revised December 2011 There are various ways in which slope

More information

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW Thorsten Thormählen, Hellward Broszio, Ingolf Wassermann thormae@tnt.uni-hannover.de University of Hannover, Information Technology Laboratory,

More information

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6)

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6) Jacobians 6.1 Linearized Kinematics In previous chapters we have seen how kinematics relates the joint angles to the position and orientation of the robot's endeffector. This means that, for a serial robot,

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information

Novel Real-Time Coordinate Transformations based on N-Dimensional Geo-Registration Parameters' Matrices

Novel Real-Time Coordinate Transformations based on N-Dimensional Geo-Registration Parameters' Matrices FIG Working Week 009, Eilat, Israel, -8 May 009 Novel Real-Time Coordinate Transformations based on N-Dimensional Geo-Registration Parameters' Matrices Sagi Dalyot, Ariel Gershkovich, Yerach Doythser Mapping

More information

4.2 Description of surfaces by spherical harmonic functions

4.2 Description of surfaces by spherical harmonic functions Chapter 4. Parametrization of closed curves and surfaces Im[z] Im[z] Translation Im[z] Im[z] Rotation Scale Starting point Re[z] Re[z] Re[z] Re[z] a b c d Figure 4.: Normalization steps of Fourier coefficients;

More information

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory Roshdy Foaad Abo-Shanab Kafr Elsheikh University/Department of Mechanical Engineering, Kafr Elsheikh,

More information

Formulas and constants for the calculation of the Swiss conformal cylindrical projection and for the transformation between coordinate systems

Formulas and constants for the calculation of the Swiss conformal cylindrical projection and for the transformation between coordinate systems _ìåçéë~ãíñωêi~åçéëíçéçöê~ñáé lññáåéñ Ç ê~äçéíçéçöê~éüáé péñíáöéåëíê~ëëéosq `ejpmuqt~äéêå rññáåáçñéçéê~äéçáíçéçöê~ñá~ qéäéñçå HQNPNVSPONNN céçéê~älññáåéçñqçéçöê~éüó qéäéñ~ñ HQNPNVSPOQRV Formulas and constants

More information

Special Quartics with Triple Points

Special Quartics with Triple Points Journal for Geometry and Graphics Volume 6 (2002), No. 2, 111 119. Special Quartics with Triple Points Sonja Gorjanc Faculty of Civil Engineering, University of Zagreb V. Holjevca 15, 10010 Zagreb, Croatia

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

Numerical Approaches to Map Projections + Waldo R. Tobler, Michigan, USA. With 3 figures and 6 tables

Numerical Approaches to Map Projections + Waldo R. Tobler, Michigan, USA. With 3 figures and 6 tables Numerical Approaches to Map Projections + Waldo R. Tobler, Michigan, USA With 3 figures and 6 tables Abstract: The classical approach to map projections is to obtain an explicit pair of equations relating

More information

Revision Problems for Examination 2 in Algebra 1

Revision Problems for Examination 2 in Algebra 1 Centre for Mathematical Sciences Mathematics, Faculty of Science Revision Problems for Examination in Algebra. Let l be the line that passes through the point (5, 4, 4) and is at right angles to the plane

More information

Review of Operations on the Set of Real Numbers

Review of Operations on the Set of Real Numbers 1 Review of Operations on the Set of Real Numbers Before we start our jurney through algebra, let us review the structure of the real number system, properties of four operations, order of operations,

More information

Control of a Novel PV Tracking System Considering the Shadow Influence

Control of a Novel PV Tracking System Considering the Shadow Influence 524 Journal of Electrical Engineering & Technology Vol. 7, No. 4, pp. 524~529, 212 http://dx.doi.org/1.537/jeet.212.7.4.524 ontrol of a Novel PV Tracking System onsidering the Shadow Influence Jae-Sub

More information

Lagrange Multipliers and Problem Formulation

Lagrange Multipliers and Problem Formulation Lagrange Multipliers and Problem Formulation Steven J. Miller Department of Mathematics and Statistics Williams College Williamstown, MA 01267 Abstract The method of Lagrange Multipliers (and its generalizations)

More information

Mathematics in Orbit

Mathematics in Orbit Mathematics in Orbit Dan Kalman American University Slides and refs at www.dankalman.net Outline Basics: 3D geospacial models Keyhole Problem: Related Rates! GPS: space-time triangulation Sensor Diagnosis:

More information

Barycentric Coordinates and Parameterization

Barycentric Coordinates and Parameterization Barycentric Coordinates and Parameterization Center of Mass Geometric center of object Center of Mass Geometric center of object Object can be balanced on CoM How to calculate? Finding the Center of Mass

More information

3.1 Units. Angle Unit. Direction Reference

3.1 Units. Angle Unit. Direction Reference Various settings allow the user to configure the software to function to his/her preference. It is important to review all the settings prior to using the software to ensure they are set to produce the

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

Erik W. Grafarend Friedrich W. Krumm. Map Projections. Cartographic Information Systems. With 230 Figures. 4y Springer

Erik W. Grafarend Friedrich W. Krumm. Map Projections. Cartographic Information Systems. With 230 Figures. 4y Springer Erik W. Grafarend Friedrich W. Krumm Map Projections Cartographic Information Systems With 230 Figures 4y Springer Contents Preface ***************************************** V 1 F r o m R i e m a n n manifolds

More information

Unit 1 Algebraic Functions and Graphs

Unit 1 Algebraic Functions and Graphs Algebra 2 Unit 1 Algebraic Functions and Graphs Name: Unit 1 Day 1: Function Notation Today we are: Using Function Notation We are successful when: We can Use function notation to evaluate a function This

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

Convert Local Coordinate Systems to Standard Coordinate Systems

Convert Local Coordinate Systems to Standard Coordinate Systems BENTLEY SYSTEMS, INC. Convert Local Coordinate Systems to Standard Coordinate Systems Using 2D Conformal Transformation in MicroStation V8i and Bentley Map V8i Jim McCoy P.E. and Alain Robert 4/18/2012

More information

# Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4). use Math::Trig ':pi';

# Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4). use Math::Trig ':pi'; NAME Math::Trig - trigonometric functions SYNOPSIS use Math::Trig; Perl version 5.26.1 documentation - Math::Trig $x = tan(0.9); $y = acos(3.7); $z = asin(2.4); $halfpi = pi/2; $rad = deg2rad(120); # Import

More information

Section 1.2: Points and Lines

Section 1.2: Points and Lines Section 1.2: Points and Lines Objective: Graph points and lines using x and y coordinates. Often, to get an idea of the behavior of an equation we will make a picture that represents the solutions to the

More information

Introduction P phase arrival times

Introduction P phase arrival times Introduction...1 P phase arrival times...1 Earthquake location...1 Summary of products for the write-up:...3 Diagrammatic summary of location procedure...4 Appendix 1. DISTAZ function...8 Appendix 2: Excel

More information

MATHEMATICS 105 Plane Trigonometry

MATHEMATICS 105 Plane Trigonometry Chapter I THE TRIGONOMETRIC FUNCTIONS MATHEMATICS 105 Plane Trigonometry INTRODUCTION The word trigonometry literally means triangle measurement. It is concerned with the measurement of the parts, sides,

More information

Real Geodetic Map (Map without Projection) Abstract Keywords: 1. Introduction

Real Geodetic Map (Map without Projection) Abstract Keywords: 1. Introduction Real ( without Projection) Ahmad Shaker 1 Abdullah Saad 1 Abdurrahman Arafa 2* 1.Surveying Dep., Shoubra Faculty of Engineering, Benha University, Egypt 2.Manager of Surveying Dep. in Horse Company. Egypt

More information

PHYSICAL AND ADMINISTRATIVE MAP OF SOUTH AMERICA AND THE BASIS OF DATA ATTACHED TO IT

PHYSICAL AND ADMINISTRATIVE MAP OF SOUTH AMERICA AND THE BASIS OF DATA ATTACHED TO IT Journal of Young Scientist, Volume I, 2013 ISSN 2344-1283; ISSN CD-ROM 2344-1291; ISSN Online 2344-1305; ISSN-L 2344 1283 PHYSICAL AND ADMINISTRATIVE MAP OF SOUTH AMERICA AND THE BASIS OF DATA ATTACHED

More information

Uniform spherical grids via equal area projection from the cube to the sphere

Uniform spherical grids via equal area projection from the cube to the sphere Uniform spherical grids via equal area projection from the cube to the sphere Daniela Roşca Gerlind Plonka April 4, 0 Abstract We construct an area preserving map from the cube to the unit sphere S, both

More information

Jump Stitch Metadata & Depth Maps Version 1.1

Jump Stitch Metadata & Depth Maps Version 1.1 Jump Stitch Metadata & Depth Maps Version 1.1 jump-help@google.com Contents 1. Introduction 1 2. Stitch Metadata File Format 2 3. Coverage Near the Poles 4 4. Coordinate Systems 6 5. Camera Model 6 6.

More information

Repeat or Not? That Is the Question!

Repeat or Not? That Is the Question! Repeat or Not? That Is the Question! Exact Decimal Representations of Fractions Learning Goals In this lesson, you will: Use decimals and fractions to evaluate arithmetic expressions. Convert fractions

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

Aberrations in Holography

Aberrations in Holography Aberrations in Holography D Padiyar, J Padiyar 1070 Commerce St suite A, San Marcos, CA 92078 dinesh@triple-take.com joy@triple-take.com Abstract. The Seidel aberrations are described as they apply to

More information

mmm Internal Report #13 -^ /y ELAINE LITMAN

mmm Internal Report #13 -^ /y ELAINE LITMAN QUIET2QiE imwfmmge MiLXSIS mmm Internal Report #13 -^ /y ELAINE LITMAN QUIETZON is a program to compute the power density expected at Green Bank from any proposed transmitter site in the Radio Quiet Zone.

More information

RELATIONSHIP BETWEEN ASTRONOMIC COORDINATES φ, λ, AND GEODETIC COORDINATES φ G, λ G,

RELATIONSHIP BETWEEN ASTRONOMIC COORDINATES φ, λ, AND GEODETIC COORDINATES φ G, λ G, RELTIOSHIP BETWEE STROOMIC COORDITES φ, λ, D EODETIC COORDITES φ, λ, h H In geodesy it is important to know the relationships between observed quantities such as horizontal directions (or azimuths) and

More information

Visualisation Pipeline : The Virtual Camera

Visualisation Pipeline : The Virtual Camera Visualisation Pipeline : The Virtual Camera The Graphics Pipeline 3D Pipeline The Virtual Camera The Camera is defined by using a parallelepiped as a view volume with two of the walls used as the near

More information

Coordinate Free Perspective Projection of Points in the Conformal Model Using Transversions

Coordinate Free Perspective Projection of Points in the Conformal Model Using Transversions Coordinate Free Perspective Projection of Points in the Conformal Model Using Transversions Stephen Mann Abstract Goldman presented a method for computing a versor form of the perspective projection of

More information

A Scanning Method for Industrial Data Matrix Codes marked on Spherical Surfaces

A Scanning Method for Industrial Data Matrix Codes marked on Spherical Surfaces A Scanning Method for Industrial Data Matrix Codes marked on Spherical Surfaces ION-COSMIN DITA, MARIUS OTESTEANU Politehnica University of Timisoara Faculty of Electronics and Telecommunications Bd. Vasile

More information

Rotated earth or when your fantasy world goes up side down

Rotated earth or when your fantasy world goes up side down Rotated earth or when your fantasy world goes up side down A couple of weeks ago there was a discussion started if Fractal Terrain 3 (FT3) can rotate our earth. http://forum.profantasy.com/comments.php?discussionid=4709&page=1

More information

INSTRUCTIONS FOR TYPESETTING MANUSCRIPTS USING TEX OR L A TEX

INSTRUCTIONS FOR TYPESETTING MANUSCRIPTS USING TEX OR L A TEX International Journal of Information Technology & Decision Making c World Scientific Publishing Company INSTRUCTIONS FOR TYPESETTING MANUSCRIPTS USING TEX OR L A TEX FIRST AUTHOR University Department,

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

포인트클라우드파일의측점재배치를통한파일참조옥트리의성능향상

포인트클라우드파일의측점재배치를통한파일참조옥트리의성능향상 Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 33, No. 5, 437-442, 2015 http://dx.doi.org/10.7848/ksgpc.2015.33.5.437 ISSN 1598-4850(Print) ISSN 2288-260X(Online)

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

ECAS. Conversion Specification. Provided to ECAS. Issue 4.1. Document No.

ECAS. Conversion Specification. Provided to ECAS. Issue 4.1. Document No. ECAS Mobile Conversion Specification Location Provided to ECAS Issue 4.1 Document No. Document Information Document Title Mobile Location Conversion Specification Filename Mobile Location Conversion Specification

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Wednesday Class Definition of heights Ellipsoidal height (geometric) Orthometric height (potential field based) Shape of equipotential surface: Geoid for

More information

Research on Evaluation Method of Product Style Semantics Based on Neural Network

Research on Evaluation Method of Product Style Semantics Based on Neural Network Research Journal of Applied Sciences, Engineering and Technology 6(23): 4330-4335, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: September 28, 2012 Accepted:

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

Can Maps Make the World Go Round?

Can Maps Make the World Go Round? Can Maps Make the World Go Round? Vijay Ravikumar CMI July 3, 2017 Vijay Ravikuar (CMI) Can Maps Make the World Go Round? July 3, 2017 1 / 48 A common map of the Earth. Maybe you ve seen this map before.

More information

4.1 QUANTIZATION NOISE

4.1 QUANTIZATION NOISE DIGITAL SIGNAL PROCESSING UNIT IV FINITE WORD LENGTH EFFECTS Contents : 4.1 Quantization Noise 4.2 Fixed Point and Floating Point Number Representation 4.3 Truncation and Rounding 4.4 Quantization Noise

More information

Deformation vector differences between two dimensional (2D) and three dimensional (3D) deformation analysis

Deformation vector differences between two dimensional (2D) and three dimensional (3D) deformation analysis Deformation vector differences between two dimensional (D) and three dimensional (3D) deformation analysis H. HAKAN DENLI Civil Engineering Faculty, Geomatics Division Istanbul Technical University 34469

More information

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne Hartley - Zisserman reading club Part I: Hartley and Zisserman Appendix 6: Iterative estimation methods Part II: Zhengyou Zhang: A Flexible New Technique for Camera Calibration Presented by Daniel Fontijne

More information

A DH-parameter based condition for 3R orthogonal manipulators to have 4 distinct inverse kinematic solutions

A DH-parameter based condition for 3R orthogonal manipulators to have 4 distinct inverse kinematic solutions Wenger P., Chablat D. et Baili M., A DH-parameter based condition for R orthogonal manipulators to have 4 distinct inverse kinematic solutions, Journal of Mechanical Design, Volume 17, pp. 150-155, Janvier

More information

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle Trigonometric Functions of Any Angle MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: evaluate trigonometric functions of any angle,

More information

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1 David H. Myszka e-mail: dmyszka@udayton.edu Andrew P. Murray e-mail: murray@notes.udayton.edu University of Dayton, Dayton, OH 45469 James P. Schmiedeler The Ohio State University, Columbus, OH 43210 e-mail:

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

For storage efficiency, longitude and latitude values are often represented in DMS format. For McBryde Hall:

For storage efficiency, longitude and latitude values are often represented in DMS format. For McBryde Hall: Parsing Input and Formatted Output in C Dealing with Geographic Coordinates You will provide an implementation for a complete C program that reads geographic coordinates from an input file, does some simple

More information

A second order algorithm for orthogonal projection onto curves and surfaces

A second order algorithm for orthogonal projection onto curves and surfaces A second order algorithm for orthogonal projection onto curves and surfaces Shi-min Hu and Johannes Wallner Dept. of Computer Science and Technology, Tsinghua University, Beijing, China shimin@tsinghua.edu.cn;

More information

IMPROVEMENT AND RESTORATION OF BIOMEDICAL IMAGES BLURRED BY BODY MOVEMENT

IMPROVEMENT AND RESTORATION OF BIOMEDICAL IMAGES BLURRED BY BODY MOVEMENT Proceedings 3rd Annual Conference IEEE/EBS Oct.5-8, 00, Istanbul, TURKEY IPROVEET AD RESTORATIO OF BIOEDICA IAGES BURRED BY BODY OVEET J. Hori, Y. Saitoh, T. Kiryu, K. Okamoto 3, K. Sakai 3 Faculty of

More information

Practical Exercise 1 Question 1: The Hello World Program Write a Fortran 95 program to write out Hello World on the screen.

Practical Exercise 1 Question 1: The Hello World Program Write a Fortran 95 program to write out Hello World on the screen. Practical Exercise Question : The Hello World Program Write a Fortran 95 program to write out Hello World on the screen. Question : Some Division One Results A particular number can be expressed as the

More information

HP-33S Calculator Program TM 1

HP-33S Calculator Program TM 1 Programmer: Dr. Bill Hazelton Date: March, 2005. Line Instruction Line Instruction Line Instruction T0001 LBL T U0022 STOP U0061 x < > y T0002 CL Σ U0023 RCL U U0062 x < 0? T0003 INPUT K U0024 RCL E U0063

More information

Solution of inverse kinematic problem for serial robot using dual quaterninons and plucker coordinates

Solution of inverse kinematic problem for serial robot using dual quaterninons and plucker coordinates University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2009 Solution of inverse kinematic problem for

More information