Contents PROCESS DECOMPOSITION INTRODUCTION. Decomposition Approaches Desirable Properties

Size: px
Start display at page:

Download "Contents PROCESS DECOMPOSITION INTRODUCTION. Decomposition Approaches Desirable Properties"

Transcription

1 PRCESS DECMPSTN Contents Andrew Kusiak ntelligent Systems Laboratory Seamans Center The University of owa owa City, owa - Tel: - Fax: - andrew-kusiak@uiowa.edu NTRDUCTN DECMPSTN F AN ACTVTY-PARAMETER MATRX NDUSTRAL CASE STUDES NTRDUCTN A typical process, e.g., product development process, may involve many activities and procedures Decomposition has been recognized as a powerful tool for analysis of large and complex systems Decomposition Approaches Desirable Properties Low computational time complexity Structure enhancement Enhancement of human interaction and simplification of interface with software Generality

2 (a) a b c d e f g h Three Types of Matrices (b) a b c d e f g h (a) decomposable matrix (b) non-decomposable matrix with overlapping parameters (inputs and outputs) (c) non-decomposable matrix with overlapping activities (c) a b c d e f Decomposition Problem Decompose an activity-parameter incidence matrix representing a process into mutually separable submatrices (groups of activities and groups of parameters) with the minimum number of overlapping activities (or parameters) subject to the following constraints: Constraint C: Empty groups of activities or parameters are not allowed. Constraint C: The number of activities in a group does not exceed an upper limit, b (or alternatively, the number of parameters in a group does not exceed, d). Actions for the verlapping Activities A. ne may replace an overlapping activity with an alternative activity that involves different parameters. A. An activity can be decomposed into subactivities and each subactivity assigned to a group of parameters with some commonality with that subactivity. A. An overlapping activity can be removed from the matrix. A. The duration of the overlapping activity can be shortened (e.g.., by better management of resources or tools used). Cluster dentification Algorithm Step 0. Set iteration number k =. Step. Select row i of incidence matrix [aij](k) and draw a horizontal line hi through it ([aij](k) is read: matrix [aij] at iteration k ). Step. For each entry of crossed by the horizontal line hi draw a vertical line vj. Step. For each entry of crossed-once by the vertical line vj draw a horizontal line hk. Step. Repeat steps and until there are no more crossed-once entries of in [aij](k). All crossed-twice entries in [aij](k) form row cluster RC-k and column cluster CC-k. Step. Transform the incidence matrix [aij](k) into [aij](k+) by removing rows and columns corresponding to the horizontal and vertical lines drawn in steps through. Step. f matrix [aij](k+) = 0 (where 0 denotes a matrix with all empty elements ), stop; otherwise set k = k + and go to step.

3 Example ncidence matrix Activity nput/utput Next Step Delete all doublecrossed elements

4 Resultant Matrix teration teration v v v v h h h h Final decomposition result Example (Repeated) GA- GA- GA- G/- G/- G/- ncidence matrix

5 Matrix after Steps and Step h h h h v v v v v v Step Step h h h v v v v

6 teration teration v v v v h h h h RC- RC- RC- Final decomposition result CC- CC- CC- Example x x x 0 x x x x x x x x x 0 x x x x x x x x 0 x x x x x x x x 0 x x x x x x Activity 0 x x x x x x x x Activity-input/output incidence matrix nput/utput x 0x x x x x x x x

7 The decomposed matrix nput/utput G- G- G- G- Three independent processes GA- x x x G- G- x 0 x x x x0 x x x x x Activity GA- GA- GA- 0 x x x x x x x x x x x x x0x x x x GA- GA- GA- 0 x x x x x x x x x x x GA- x x x x GA- x x x x x x 0 Step 0. Step. Branch-and-Bound Algorithm (nitialization) Consider the incidence matrix (aij) as the initial node. Set the upper bound ZU = + and lower bound ZL = -. (Branching) Select an active node (not fathomed) with the minimum value of lower bound ZL. Apply the C algorithm to the submatrix of this node. When the submatrix does not partition, apply the branching scheme. Branching scheme: R Step. Remove from the matrix a parameter corresponding to the largest number of activities, one at a time. Remove from the matrix an activity corresponding to the largest number of inputs and outputs, one at a time. (Bounding) For each new node, obtain a lower bound ZL.

8 Lower Bound Step. (Fathoming) Exclude a new node from further consideration if: Test : ZL = ZU, Test : Any of the submatrices of the matrix at this node violates constraint C or C. f ZL < ZU, store this solution as a new incumbent solution, set ZU = ZL, and reapply Tests and to the remaining unfathomed nodes. The lower bound ZL is the number of activities removed from the matrix. Upper Bound Step. (Stopping rule) Stop when there are no unfathomed nodes remaining; the current incumbent solution is final. therwise, go to Step. The upper bound ZU is calculated only after a feasible solution has been determined. Example Form subprocesses with no more than four activities in a subprocess 0 0 Activity-nput & utput ncidence Matrix and Enumeration Tree Matrix M

9 Branch & Bound Algorithm: Enumeration Tree M Remove Remove Remove Remove Remove Remove Remove Remove Remove Solution Remove Remove Remove Remove Fathom Fathom Fathom Fathom Matri x M 0 0 Solution ZL =, ZU = Z L =, Z U = Z L =, ZU = Z L = B&B Algorithm terations Activity removed 0 0 (Nondecomposable matrix) Apply the C Algorithm Activity removed 0 0 (Nondecomposable matrix) Apply the C Algorithm Activity removed 0 0 (Nondecomposable matrix) Apply the C Algorithm

10 Activities and removed Activities and removed 0 0 (Nondecomposable matrix) 0 0 (Nondecomposable matrix) Apply the C Algorithm Apply the C Algorithm Activities and removed Final Solution M Remove Remove Remove ZL =, ZU = 0 0 (Decomposable matrix) Apply the C Algorithm Remove Remove Remove Remove Remove Remove Solution Remove Remove Remove Remove Fathom Fathom Fathom Fathom 0 0 Solution ZL =, ZU = ZL =, ZU = ZL =

11 Example The final result Activity Parameter GA- { GA- { GP- GP- NDUSTRAL CASE STUDES Case Study : Process graph with annotated inputs and outputs (Phase ) Activity 0 Activity-input/output incidence matrix nput/output 0 0 0

12 Decomposed incidence matrix with overlapping inputs/outputs nput/output Activity 0 Decomposed process graph with overlapping inputs/outputs G- G- 0 G G- 0? Preceding Activity Question: How the information on the overlapping inputs/outputs can be utilized? nput Goal Succeeding Activity

13 Actions for the overlapping inputs/outputs Alternative inputs/outputs could be considered for the activities with overlapping inputs/outputs Some inputs may be assumed or ignored The overlapping inputs/outputs can be used as goals to the preceding activities and inputs to the follow up activities Decomposed incidence matrix with overlapping activities Activity 0 0 nput/output Decomposed process graph with overlapping activities G- G- 0 G- 0 0 G- 0 0 G- G-? Question: How the information on the overlapping activities can be utilized?

14 Actions for the overlapping activities Case Study DEF model of the conceptual design phase,,,, ne may view the overlapping activities as a server that controls a group of activities (clients),,,,,,,,,,,, ne may replace an overlapping activity with an alternative activity that involves different inputs/outputs,,,,,,,,,, 0,,, 0,,, 0,,,,, 0,,,,,,,,, 0,,,, Decomposed activity-mechanism incidence matrix SUMMARY Process decomposition is useful in process reengineering Simplifies process management Allows to make strategic decisions

DM and Cluster Identification Algorithm

DM and Cluster Identification Algorithm DM and Cluster Identification Algorithm Andrew Kusiak, Professor oratory Seamans Center Iowa City, Iowa - Tel: 9-9 Fax: 9- E-mail: andrew-kusiak@uiowa.edu Homepage: http://www.icaen.uiowa.edu/~ankusiak

More information

Cluster Analysis in Data Mining

Cluster Analysis in Data Mining Cluster Analysis in Data Mining Part II Andrew Kusiak 9 Seamans Center Iowa City, IA - 7 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Tel. 9-9 Cluster Analysis Decomposition Aggregation

More information

Outline. Graph Representation of Dependencies. Dependency (Design) Structure Matrix

Outline. Graph Representation of Dependencies. Dependency (Design) Structure Matrix Dependency (Design) Structure Matrix Outline Andrew Kusiak Seamans Center Iowa City, Iowa - Tel: - ax: - andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak DSM definition DSM and innovation Topological

More information

2 is not feasible if rounded. x =0,x 2

2 is not feasible if rounded. x =0,x 2 Integer Programming Definitions Pure Integer Programming all variables should be integers Mied integer Programming Some variables should be integers Binary integer programming The integer variables are

More information

OPTIMIZAÇÃO E DECISÃO 09/10

OPTIMIZAÇÃO E DECISÃO 09/10 OPTIMIZAÇÃO E DECISÃO 09/10 PL #7 Integer Programming Alexandra Moutinho (from Hillier & Lieberman Introduction to Operations Research, 8 th edition) Problem 1 Pawtucket University is planning to buy new

More information

Balancing the flow. Part 3. Two-Machine Flowshop SCHEDULING SCHEDULING MODELS. Two-Machine Flowshop Two-Machine Job Shop Extensions

Balancing the flow. Part 3. Two-Machine Flowshop SCHEDULING SCHEDULING MODELS. Two-Machine Flowshop Two-Machine Job Shop Extensions PRODUCTION PLANNING AND SCHEDULING Part 3 Andrew Kusiak 3 Seamans Center Iowa City, Iowa 54-57 Tel: 3-335 534 Fax: 3-335 566 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak SCHEDULING Assignment

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information

Evolutionary Computation: Solution Representation. Set Covering Problem. Set Covering Problem. Set Covering Problem 2/28/2008.

Evolutionary Computation: Solution Representation. Set Covering Problem. Set Covering Problem. Set Covering Problem 2/28/2008. Evolutionary Computation: Solution Representation Andrew Kusiak 9 Seamans Center Iowa City, Iowa - Tel: 9-9 Fax: 9-669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Set Covering Problem

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

4.1 Interval Scheduling

4.1 Interval Scheduling 41 Interval Scheduling Interval Scheduling Interval scheduling Job j starts at s j and finishes at f j Two jobs compatible if they don't overlap Goal: find maximum subset of mutually compatible jobs a

More information

Association for Computing Machinery Hong Kong Chapter Collegiate Programming Contest 2003

Association for Computing Machinery Hong Kong Chapter Collegiate Programming Contest 2003 Association for Computing Machinery Hong Kong Chapter Collegiate Programming Contest Venue: The University of Hong Kong Date: June,. Time: :pm to 6:pm Number of questions: 6 Number of non-cover pages:

More information

Non-convex Multi-objective Optimization

Non-convex Multi-objective Optimization Non-convex Multi-objective Optimization Multi-objective Optimization Real-world optimization problems usually involve more than one criteria multi-objective optimization. Such a kind of optimization problems

More information

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin King Saud University College of Science Department of Mathematics 151 Math Exercises (5.2) Graph Terminology and Special Types of Graphs Malek Zein AL-Abidin ه Basic Terminology First, we give some terminology

More information

Chapter Introduction

Chapter Introduction Chapter 4.1 Introduction After reading this chapter, you should be able to 1. define what a matrix is. 2. identify special types of matrices, and 3. identify when two matrices are equal. What does a matrix

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Introduction to Software Engineering

Introduction to Software Engineering Introduction to Software Engineering (CS350) Lecture 17 Jongmoon Baik Testing Conventional Applications 2 Testability Operability it operates cleanly Observability the results of each test case are readily

More information

Data Set. What is Data Mining? Data Mining (Big Data Analytics) Illustrative Applications. What is Knowledge Discovery?

Data Set. What is Data Mining? Data Mining (Big Data Analytics) Illustrative Applications. What is Knowledge Discovery? Data Mining (Big Data Analytics) Andrew Kusiak Intelligent Systems Laboratory 2139 Seamans Center The University of Iowa Iowa City, IA 52242-1527 andrew-kusiak@uiowa.edu http://user.engineering.uiowa.edu/~ankusiak/

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Generalized Network Flow Programming

Generalized Network Flow Programming Appendix C Page Generalized Network Flow Programming This chapter adapts the bounded variable primal simplex method to the generalized minimum cost flow problem. Generalized networks are far more useful

More information

Improved Submatrix Maximum Queries in Monge Matrices. Pawel Gawrychowski, Shay Mozes, Oren Weimann. Max?

Improved Submatrix Maximum Queries in Monge Matrices. Pawel Gawrychowski, Shay Mozes, Oren Weimann. Max? Improved Submatrix Maximum Queries in Monge Matrices Pawel Gawrychowski, Shay Mozes, Oren Weimann Max? Improved Submatrix Maximum Queries in Monge Matrices 1746-1818 Improved Submatrix Maximum Queries

More information

XVIII Open Cup named after E.V. Pankratiev Stage 1: Grand Prix of Romania, Sunday, September 17, 2017

XVIII Open Cup named after E.V. Pankratiev Stage 1: Grand Prix of Romania, Sunday, September 17, 2017 Problem A. Balance file: 1 second 512 mebibytes We say that a matrix A of size N N is balanced if A[i][j] + A[i + 1][j + 1] = A[i + 1][j] + A[i][j + 1] for all 1 i, j N 1. You are given a matrix A of size

More information

On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments

On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments Electronic Journal of Graph Theory and Applications 3 (2) (2015), 191 196 On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments Rafael Del Valle

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 16 Cutting Plane Algorithm We shall continue the discussion on integer programming,

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

context. (Similarly, we write ν for ν(g), etc. if there is no risk of confusion.) For a subset A V we write N G (A) = {v V ( w A)(v w)} (the set of

context. (Similarly, we write ν for ν(g), etc. if there is no risk of confusion.) For a subset A V we write N G (A) = {v V ( w A)(v w)} (the set of Graph Theory CMSC-27500 Spring 2015 http://people.cs.uchicago.edu/ laci/15graphs Homework set #4. First batch posted 4-9, 8am, updated 10:20am. Problems 4.16 4.31 added at 11:30pm. Due Tuesday, April 14

More information

On Your Own. ). Another way is to multiply the. ), and the image. Applications. Unit 3 _ _

On Your Own. ). Another way is to multiply the. ), and the image. Applications. Unit 3 _ _ Applications 1 a 90 clockwise rotation matrix: - b As can be seen by the diagram, the image of P is Q and the image of R is P The coordinate of Q can be found by symmetry y R 1 P, Thus, the 45 clockwise

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

What is Data Mining? Data Mining. Data Mining Architecture. Illustrative Applications. Pharmaceutical Industry. Pharmaceutical Industry

What is Data Mining? Data Mining. Data Mining Architecture. Illustrative Applications. Pharmaceutical Industry. Pharmaceutical Industry Data Mining Andrew Kusiak Intelligent Systems Laboratory 2139 Seamans Center The University it of Iowa Iowa City, IA 52242-1527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Tel. 319-335

More information

What is Data Mining? Data Mining. Data Mining Architecture. Illustrative Applications. Pharmaceutical Industry. Pharmaceutical Industry

What is Data Mining? Data Mining. Data Mining Architecture. Illustrative Applications. Pharmaceutical Industry. Pharmaceutical Industry Data Mining Andrew Kusiak Intelligent Systems Laboratory 2139 Seamans Center The University of Iowa Iowa City, IA 52242-1527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Tel. 319-335 5934

More information

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph Nechama Florans Mentor: Dr. Boram Park G: V 5 Vertex Clique Covers and Edge Clique Covers: Suppose we have a graph

More information

PART 1 GRAPHICAL STRUCTURE

PART 1 GRAPHICAL STRUCTURE PART 1 GRAPHICAL STRUCTURE in this web service in this web service 1 Treewidth and Hypertree Width Georg Gottlob, Gianluigi Greco, Francesco Scarcello This chapter covers methods for identifying islands

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics An Introduction to Graph Theory. Introduction. Definitions.. Vertices and Edges... The Handshaking Lemma.. Connected Graphs... Cut-Points and Bridges.

More information

5.4 Pure Minimal Cost Flow

5.4 Pure Minimal Cost Flow Pure Minimal Cost Flow Problem. Pure Minimal Cost Flow Networks are especially convenient for modeling because of their simple nonmathematical structure that can be easily portrayed with a graph. This

More information

Iterative Signature Algorithm for the Analysis of Large-Scale Gene Expression Data. By S. Bergmann, J. Ihmels, N. Barkai

Iterative Signature Algorithm for the Analysis of Large-Scale Gene Expression Data. By S. Bergmann, J. Ihmels, N. Barkai Iterative Signature Algorithm for the Analysis of Large-Scale Gene Expression Data By S. Bergmann, J. Ihmels, N. Barkai Reasoning Both clustering and Singular Value Decomposition(SVD) are useful tools

More information

Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret

Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret Greedy Algorithms (continued) The best known application where the greedy algorithm is optimal is surely

More information

Lesson 24: Matrix Notation Encompasses New Transformations!

Lesson 24: Matrix Notation Encompasses New Transformations! Classwork Example 1 Determine the following: a. 1 0 0 1 3 b. 1 0 7 0 1 1 c. 1 0 3 5 0 1 1 d. 1 0 3 1 0 1 7 6 e. 9 1 0 1 3 1 0 1 f. 1 0 cc aa 0 1 bb dd xx yy 0 g. 1 zz ww 0 1 Date: 1/5/15 S.14 Example Can

More information

Delay Estimation for Technology Independent Synthesis

Delay Estimation for Technology Independent Synthesis Delay Estimation for Technology Independent Synthesis Yutaka TAMIYA FUJITSU LABORATORIES LTD. 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, JAPAN, 211-88 Tel: +81-44-754-2663 Fax: +81-44-754-2664 E-mail:

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

An iteration of Branch and Bound One iteration of Branch and Bound consists of the following four steps: Some definitions. Branch and Bound.

An iteration of Branch and Bound One iteration of Branch and Bound consists of the following four steps: Some definitions. Branch and Bound. ranch and ound xamples and xtensions jesla@man.dtu.dk epartment of Management ngineering Technical University of enmark ounding ow do we get ourselves a bounding function? Relaxation. Leave out some constraints.

More information

Contents Systems of Linear Equations and Determinants

Contents Systems of Linear Equations and Determinants Contents 6. Systems of Linear Equations and Determinants 2 Example 6.9................................. 2 Example 6.10................................ 3 6.5 Determinants................................

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

Dual-fitting analysis of Greedy for Set Cover

Dual-fitting analysis of Greedy for Set Cover Dual-fitting analysis of Greedy for Set Cover We showed earlier that the greedy algorithm for set cover gives a H n approximation We will show that greedy produces a solution of cost at most H n OPT LP

More information

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm In the name of God Part 4. 4.1. Dantzig-Wolf Decomposition Algorithm Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Introduction Real world linear programs having thousands of rows and columns.

More information

Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology. Assignment

Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology. Assignment Class: V - CE Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology Sub: Design and Analysis of Algorithms Analysis of Algorithm: Assignment

More information

Fractional cell formation in group technology using modified ART1 neural networks

Fractional cell formation in group technology using modified ART1 neural networks Int J Adv Manuf Technol (2006) 28: 761 765 DOI 10.1007/s00170-004-2421-z ORIGINAL ARTICLE P. Venkumar A. Noorul Haq Fractional cell formation in group technology using modified ART1 neural networks Received:

More information

CS 61A, Fall, 2002, Midterm #2, L. Rowe. 1. (10 points, 1 point each part) Consider the following five box-and-arrow diagrams.

CS 61A, Fall, 2002, Midterm #2, L. Rowe. 1. (10 points, 1 point each part) Consider the following five box-and-arrow diagrams. CS 61A, Fall, 2002, Midterm #2, L. Rowe 1. (10 points, 1 point each part) Consider the following five box-and-arrow diagrams. a) d) 3 1 2 3 1 2 e) b) 3 c) 1 2 3 1 2 1 2 For each of the following Scheme

More information

(Team Name) (Project Title) Software Design Document. Student Name (s):

(Team Name) (Project Title) Software Design Document. Student Name (s): (Team Name) (Project Title) Software Design Document Student Name (s): TABLE OF CONTENTS 1. INTRODUCTION 2 1.1Purpose 2 1.2Scope 2 1.3Overview 2 1.4Reference Material 2 1.5Definitions and Acronyms 2 2.

More information

Unit.9 Integer Programming

Unit.9 Integer Programming Unit.9 Integer Programming Xiaoxi Li EMS & IAS, Wuhan University Dec. 22-29, 2016 (revised) Operations Research (Li, X.) Unit.9 Integer Programming Dec. 22-29, 2016 (revised) 1 / 58 Organization of this

More information

implementing the breadth-first search algorithm implementing the depth-first search algorithm

implementing the breadth-first search algorithm implementing the depth-first search algorithm Graph Traversals 1 Graph Traversals representing graphs adjacency matrices and adjacency lists 2 Implementing the Breadth-First and Depth-First Search Algorithms implementing the breadth-first search algorithm

More information

1.OA.1. 1.OA.2 MP: Make sense of problems and persevere in solving them MP: Model with mathematics. Common Core Institute

1.OA.1. 1.OA.2 MP: Make sense of problems and persevere in solving them MP: Model with mathematics. Common Core Institute Operations and Cluster: Represent and solve problems involving addition and subtraction. 1.OA.1: Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking

More information

Cell Decomposition for Building Model Generation at Different Scales

Cell Decomposition for Building Model Generation at Different Scales Cell Decomposition for Building Model Generation at Different Scales Norbert Haala, Susanne Becker, Martin Kada Institute for Photogrammetry Universität Stuttgart Germany forename.lastname@ifp.uni-stuttgart.de

More information

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

The University of Iowa Intelligent Systems Laboratory The University of Iowa Intelligent Systems Laboratory

The University of Iowa Intelligent Systems Laboratory The University of Iowa Intelligent Systems Laboratory Warehousing Outline Andrew Kusiak 2139 Seamans Center Iowa City, IA 52242-1527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Tel. 319-335 5934 Introduction warehousing concepts Relationship

More information

Lecture 5. Figure 1: The colored edges indicate the member edges of several maximal matchings of the given graph.

Lecture 5. Figure 1: The colored edges indicate the member edges of several maximal matchings of the given graph. 5.859-Z Algorithmic Superpower Randomization September 25, 204 Lecture 5 Lecturer: Bernhard Haeupler Scribe: Neil Shah Overview The next 2 lectures are on the topic of distributed computing there are lots

More information

Orange3 Data Fusion Documentation. Biolab

Orange3 Data Fusion Documentation. Biolab Biolab Mar 07, 2018 Widgets 1 IMDb Actors 1 2 Chaining 5 3 Completion Scoring 9 4 Fusion Graph 13 5 Latent Factors 17 6 Matrix Sampler 21 7 Mean Fuser 25 8 Movie Genres 29 9 Movie Ratings 33 10 Table

More information

Existing model. Existing model. Conceptual Model. Logical constraints. Temporal constraints

Existing model. Existing model. Conceptual Model. Logical constraints. Temporal constraints Motivation Production scheduling with alternative product routes and unary resources Handling lternatives in Temporal Networks Roman Bartá Barták Charles University (Czech Republic) roman.bartak@mff.cuni.cz

More information

1.1 ELEMENTARY LINEAR GRAPH THEORY: IMPORTANT TERMS

1.1 ELEMENTARY LINEAR GRAPH THEORY: IMPORTANT TERMS NETWORK TOPOLOGY 2. INTRODUCTION The solution of a given linear network problem requires the formation of a set of equations describing the response of the network. The mathematical model so derived, must

More information

Joint Entity Resolution

Joint Entity Resolution Joint Entity Resolution Steven Euijong Whang, Hector Garcia-Molina Computer Science Department, Stanford University 353 Serra Mall, Stanford, CA 94305, USA {swhang, hector}@cs.stanford.edu No Institute

More information

Dense Matrix Algorithms

Dense Matrix Algorithms Dense Matrix Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text Introduction to Parallel Computing, Addison Wesley, 2003. Topic Overview Matrix-Vector Multiplication

More information

Giovanni De Micheli. Integrated Systems Centre EPF Lausanne

Giovanni De Micheli. Integrated Systems Centre EPF Lausanne Two-level Logic Synthesis and Optimization Giovanni De Micheli Integrated Systems Centre EPF Lausanne This presentation can be used for non-commercial purposes as long as this note and the copyright footers

More information

Search Algorithms. IE 496 Lecture 17

Search Algorithms. IE 496 Lecture 17 Search Algorithms IE 496 Lecture 17 Reading for This Lecture Primary Horowitz and Sahni, Chapter 8 Basic Search Algorithms Search Algorithms Search algorithms are fundamental techniques applied to solve

More information

One-mode Additive Clustering of Multiway Data

One-mode Additive Clustering of Multiway Data One-mode Additive Clustering of Multiway Data Dirk Depril and Iven Van Mechelen KULeuven Tiensestraat 103 3000 Leuven, Belgium (e-mail: dirk.depril@psy.kuleuven.ac.be iven.vanmechelen@psy.kuleuven.ac.be)

More information

AN ABSTRACTION-BASED METHODOLOGY FOR MECHANICAL CONFIGURATION DESIGN

AN ABSTRACTION-BASED METHODOLOGY FOR MECHANICAL CONFIGURATION DESIGN AN ABSTRACTION-BASED METHODOLOGY FOR MECHANICAL CONFIGURATION DESIGN by Gary Lee Snavely A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real 14.3 Interval trees We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real numbers ], with Interval ]represents the set Open and half-open intervals

More information

Advanced optimizations of cache performance ( 2.2)

Advanced optimizations of cache performance ( 2.2) Advanced optimizations of cache performance ( 2.2) 30 1. Small and Simple Caches to reduce hit time Critical timing path: address tag memory, then compare tags, then select set Lower associativity Direct-mapped

More information

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

More information

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University Integer Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 1 / 42

More information

The block triangular form and bipartite matchings

The block triangular form and bipartite matchings Outline The block triangular form and bipartite matchings Jean-Yves L Excellent and Bora Uçar GRAAL, LIP, ENS Lyon, France CR-07: Sparse Matrix Computations, November 2010 http://graal.ens-lyon.fr/~bucar/cr07/

More information

Assignment 1 Introduction to Graph Theory CO342

Assignment 1 Introduction to Graph Theory CO342 Assignment 1 Introduction to Graph Theory CO342 This assignment will be marked out of a total of thirty points, and is due on Thursday 18th May at 10am in class. Throughout the assignment, the graphs are

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Lecture 7 Networks Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow The Bridges of Königsberg The town of Konigsberg in 18 th century

More information

Unsupervised Learning : Clustering

Unsupervised Learning : Clustering Unsupervised Learning : Clustering Things to be Addressed Traditional Learning Models. Cluster Analysis K-means Clustering Algorithm Drawbacks of traditional clustering algorithms. Clustering as a complex

More information

Lecture 14: General Problem-Solving Methods

Lecture 14: General Problem-Solving Methods Lecture 14: General Problem-Solving Methods Problem Solving Methods Greedy Method Divide-and-Conquer Backtracking Dynamic Programming Branch-and-Bound Greedy Method The greedy method consists of an iteration

More information

16.10 Exercises. 372 Chapter 16 Code Improvement. be translated as

16.10 Exercises. 372 Chapter 16 Code Improvement. be translated as 372 Chapter 16 Code Improvement 16.10 Exercises 16.1 In Section 16.2 we suggested replacing the instruction r1 := r2 / 2 with the instruction r1 := r2 >> 1, and noted that the replacement may not be correct

More information

Information modeling and reengineering for product development process

Information modeling and reengineering for product development process ISSN 1 746-7233, England, UK International Journal of Management Science and Engineering Management Vol. 2 (2007) No. 1, pp. 64-74 Information modeling and reengineering for product development process

More information

Job-shop scheduling with limited capacity buffers

Job-shop scheduling with limited capacity buffers Job-shop scheduling with limited capacity buffers Peter Brucker, Silvia Heitmann University of Osnabrück, Department of Mathematics/Informatics Albrechtstr. 28, D-49069 Osnabrück, Germany {peter,sheitman}@mathematik.uni-osnabrueck.de

More information

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009) Lecture 10,11: General Matching Polytope, Maximum Flow Lecturer: Mohammad R Salavatipour Date: Oct 6 and 8, 2009 Scriber: Mohammad

More information

4.1 The original problem and the optimal tableau

4.1 The original problem and the optimal tableau Chapter 4 Sensitivity analysis The sensitivity analysis is performed after a given linear problem has been solved, with the aim of studying how changes to the problem affect the optimal solution In particular,

More information

AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 2014

AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 2014 AC64/AT64 DESIGN & ANALYSIS OF ALGORITHMS DEC 214 Q.2 a. Design an algorithm for computing gcd (m,n) using Euclid s algorithm. Apply the algorithm to find gcd (31415, 14142). ALGORITHM Euclid(m, n) //Computes

More information

MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING

MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING Roman Barták (Charles University in Prague, Czech Republic) MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING Two worlds planning vs. scheduling planning is about finding activities

More information

Introduction to Parallel Programming for Multicore/Manycore Clusters Part II-3: Parallel FVM using MPI

Introduction to Parallel Programming for Multicore/Manycore Clusters Part II-3: Parallel FVM using MPI Introduction to Parallel Programming for Multi/Many Clusters Part II-3: Parallel FVM using MPI Kengo Nakajima Information Technology Center The University of Tokyo 2 Overview Introduction Local Data Structure

More information

Fall 09, Homework 5

Fall 09, Homework 5 5-38 Fall 09, Homework 5 Due: Wednesday, November 8th, beginning of the class You can work in a group of up to two people. This group does not need to be the same group as for the other homeworks. You

More information

Expressions vs statements

Expressions vs statements Expressions vs statements Every expression results in a value (+side-effects?): 1+2, str.length(), f(x)+1 Imperative prg: Statements have just side-effects, no value: (for, if, break) Assignment is statement/expression

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Hardware-Software Codesign

Hardware-Software Codesign Hardware-Software Codesign 4. System Partitioning Lothar Thiele 4-1 System Design specification system synthesis estimation SW-compilation intellectual prop. code instruction set HW-synthesis intellectual

More information

TIM 206 Lecture Notes Integer Programming

TIM 206 Lecture Notes Integer Programming TIM 206 Lecture Notes Integer Programming Instructor: Kevin Ross Scribe: Fengji Xu October 25, 2011 1 Defining Integer Programming Problems We will deal with linear constraints. The abbreviation MIP stands

More information

CHAPTER 6 IDENTIFICATION OF CLUSTERS USING VISUAL VALIDATION VAT ALGORITHM

CHAPTER 6 IDENTIFICATION OF CLUSTERS USING VISUAL VALIDATION VAT ALGORITHM 96 CHAPTER 6 IDENTIFICATION OF CLUSTERS USING VISUAL VALIDATION VAT ALGORITHM Clustering is the process of combining a set of relevant information in the same group. In this process KM algorithm plays

More information

v GMS 10.0 Tutorial MODFLOW Advanced PEST Pilot Points, SVD-Assist, Parallel PEST Prerequisite Tutorials MODFLOW PEST Pilot Points

v GMS 10.0 Tutorial MODFLOW Advanced PEST Pilot Points, SVD-Assist, Parallel PEST Prerequisite Tutorials MODFLOW PEST Pilot Points v. 10.0 GMS 10.0 Tutorial Pilot Points, SVD-Assist, Parallel PEST Objectives Learn how to parameterize a MODFLOW model and run PEST to obtain optimal parameter values. Experiment with truncated singular

More information

Chapter 2 Graphs. 2.1 Definition of Graphs

Chapter 2 Graphs. 2.1 Definition of Graphs Chapter 2 Graphs Abstract Graphs are discrete structures that consist of vertices and edges connecting some of these vertices. Graphs have many applications in Mathematics, Computer Science, Engineering,

More information

Grade 5 Unit 2 Volume Approximate Time Frame: 4-5 weeks Connections to Previous Learning: Focus of the Unit: Connections to Subsequent Learning:

Grade 5 Unit 2 Volume Approximate Time Frame: 4-5 weeks Connections to Previous Learning: Focus of the Unit: Connections to Subsequent Learning: Approximate Time Frame: 4-5 weeks Connections to Previous Learning: In third grade, students began working with area and covering spaces. The concept of volume should be extended from area. In fourth grade,

More information

1. Introduction. Classic algorithms for Pairwise Testing. Andreas Rothmann Hochschule Offenburg November 2008.

1. Introduction. Classic algorithms for Pairwise Testing. Andreas Rothmann Hochschule Offenburg November 2008. Classic algorithms for Pairwise ing Andreas Rothmann Hochschule Offenburg andy.rothmann@gmx.de November 2008 Abstract This paper gives an overview on the most important classic algorithms for pairwise

More information

Approximation Algorithms for Wavelength Assignment

Approximation Algorithms for Wavelength Assignment Approximation Algorithms for Wavelength Assignment Vijay Kumar Atri Rudra Abstract Winkler and Zhang introduced the FIBER MINIMIZATION problem in [3]. They showed that the problem is NP-complete but left

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

Parallelizing The Matrix Multiplication. 6/10/2013 LONI Parallel Programming Workshop

Parallelizing The Matrix Multiplication. 6/10/2013 LONI Parallel Programming Workshop Parallelizing The Matrix Multiplication 6/10/2013 LONI Parallel Programming Workshop 2013 1 Serial version 6/10/2013 LONI Parallel Programming Workshop 2013 2 X = A md x B dn = C mn d c i,j = a i,k b k,j

More information

Mathematics for Decision Making: An Introduction. Lecture 4

Mathematics for Decision Making: An Introduction. Lecture 4 Mathematics for Decision Making: An Introduction Lecture 4 Matthias Köppe UC Davis, Mathematics January 15, 2009 4 1 Modeling the TSP as a standard optimization problem, I A key observation is that every

More information

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow Graph Theory Connectivity, Coloring, Matching Arjun Suresh 1 1 GATE Overflow GO Classroom, August 2018 Thanks to Subarna/Sukanya Das for wonderful figures Arjun, Suresh (GO) Graph Theory GATE 2019 1 /

More information