OPTIMIZAÇÃO E DECISÃO 09/10

Size: px
Start display at page:

Download "OPTIMIZAÇÃO E DECISÃO 09/10"

Transcription

1 OPTIMIZAÇÃO E DECISÃO 09/10 PL #7 Integer Programming Alexandra Moutinho (from Hillier & Lieberman Introduction to Operations Research, 8 th edition) Problem 1 Pawtucket University is planning to buy new copier machines for its library. Three members of its Operations Research Department are analyzing what to buy. They are considering two different models: Model A, a high speed copier, and Model B, a lower speed but less expensive copier. Model A can handle 20,000 copies a day, and costs $6,000. Model B can handle 10,000 copies a day, but costs only $4,000. They would like to have at least six copiers so that they can spread them throughout the library. They also would like to have at least one high speed copier. Finally, the copiers need to be able to handle a capacity of at least 75,000 copies per day. The objective is to determine the mix of these two copiers that will handle all these requirements at minimum cost. a) Formulate an IP model for this problem. b) Use a graphical approach to solve this model. c) Use the computer to solve the model. Resolution: a) Let A be the number of Model A copiers to buy. Let B be the number of Model B copiers to buy. The problem formulation is as follows: Mini mize C 6,000A4,000B subject to AB 6 A 1 20,000 A10,000B 75,000 and A 0, B 0 A, B are integers. b) In the following figure, the dots indicate feasible points. As we can see, A,B2,4 is the optimal solution with a minimum cost of $28,000. A 1 20,000A10,000B 75,000 AB 6 C 6,000A4,000B 28,000 1

2 c) We use Excel to solve this problem, as shown in the following figure. The Excel Solver finds the optimal solution,, 2,4 with a minimum cost of $28,000. Problem 2 Consider the following IP problem: Maximize , subject to and 0, 0,, are integers. a) Use the MIP branch and bound algorithm presented to solve this problem by hand. For each subproblem, solve its LP relaxation automatically (Excel for example). b) Check your answer by using an automatic procedure to solve the problem. c) Use the interactive procedure for this algorithm in your IOR Tutorial to solve the problem. Resolution: a) Summary of the MIP Branch and Bound Algorithm. Initialization: Set. Apply the branching step, bounding step, fathoming step, and optimality test described below to the whole problem. If not fathomed, classify this problem as the one remaining subproblem for performing the first full iteration below. Steps for each iteration: 1. Branching: Among the remaining (unfathomed) subproblems, select the one that was created most recently. (Break ties according to which has the larger bound.) Among the integerrestricted variables that have a noninteger value in the optimal solution for the LP relaxation of the subproblem, choose the first one in the natural ordering of the variables to be the branching variable. Let be this variable and its value in this solution. Branch from the node for the subproblem to create two new subproblems by adding the respective constraints and 1, where is the greatest integer. Optimização e Decisão 09/10 PL #7 Integer Programming Alexandra Moutinho 2

3 2. Bounding: For each new subproblem, obtain its bound by applying the simplex method to its LP relaxation and using the value of for the resulting optimal solution. 3. Fathoming: For each new subproblem, apply the three fathoming tests given below, and discard those subproblems that are fathomed by any of the tests. Test 1: Its bound, where is the value of for the current incumbent. Test 2: Its LP relaxation has no feasible solutions. Test 3: The optimal solution for its LP relaxation has integer values for the integer restricted variables. (If this solution is better than the incumbent, it becomes the new incumbent and test 1 is reapplied to all unfathomed subproblems with the new larger.) Optimality test: Stop when there are no remaining subproblems; the current incumbent is optimal. Otherwise, perform another iteration. Initialization: Relaxing the integer constraints, the optimal solution of the LP relaxation of the whole problem is, 2.667,1.333 with an objective function value of This LP relaxation of the whole problem possesses feasible solutions and its optimal solution has noninteger values for and, so the whole problem is not fathomed and we are ready to move on to the first full iteration. Iteration 1: The only remaining (unfathomed) subproblem at this point is the whole problem, so we use it for branching and bounding. In the above optimal solution for its LP relaxation, both integerrestricted variables ( and ) are noninteger, so we select the first one ( ) to be the branching variable. Since in this optimal solution, we will create two new subproblems below by adding the respective constraints, and 1, where is the greatest integer, so 2. Subproblem 1: The original problem plus the additional constraint, Subproblem 2: 2. The original problem plus the additional constraint, 3. For subproblem 1, the optimal solution for its LP relaxation is, 2,3with 680. Since the solution, 2,3 is integer valued, subproblem 1 is fathomed by fathoming test 3 and this solution becomes the first incumbent. Incumbent 2,3 with 680. Now consider subproblem 2. It can be seen that the new constraint 3results in having no feasible solutions. Therefore, subproblem 2 is fathomed by fathoming test 2. At this point, there are no remaining (unfathomed) subproblems, so the optimality test indicates that the current incumbent is optimal for the original whole problem, so no additional iterations are needed., 2,3 with 680. b) As shown in the following spreadsheet, the Excel Solver finds the optimal solution,, 2,3 with 680, which is identical to the solution found in part a). Optimização e Decisão 09/10 PL #7 Integer Programming Alexandra Moutinho 3

4 c) Optimização e Decisão 09/10 PL #7 Integer Programming Alexandra Moutinho 4

5 Optimização e Decisão 09/10 PL #7 Integer Programming Alexandra Moutinho 5

6 Optimização e Decisão 09/10 PL #7 Integer Programming Alexandra Moutinho 6

TIM 206 Lecture Notes Integer Programming

TIM 206 Lecture Notes Integer Programming TIM 206 Lecture Notes Integer Programming Instructor: Kevin Ross Scribe: Fengji Xu October 25, 2011 1 Defining Integer Programming Problems We will deal with linear constraints. The abbreviation MIP stands

More information

Unit.9 Integer Programming

Unit.9 Integer Programming Unit.9 Integer Programming Xiaoxi Li EMS & IAS, Wuhan University Dec. 22-29, 2016 (revised) Operations Research (Li, X.) Unit.9 Integer Programming Dec. 22-29, 2016 (revised) 1 / 58 Organization of this

More information

2 is not feasible if rounded. x =0,x 2

2 is not feasible if rounded. x =0,x 2 Integer Programming Definitions Pure Integer Programming all variables should be integers Mied integer Programming Some variables should be integers Binary integer programming The integer variables are

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem Column Generation: Cutting Stock A very applied method thst@man.dtu.dk Outline History The Simplex algorithm (re-visited) Column Generation as an extension of the Simplex algorithm A simple example! DTU-Management

More information

Column Generation: Cutting Stock

Column Generation: Cutting Stock Column Generation: Cutting Stock A very applied method thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline History The Simplex algorithm (re-visited) Column Generation as an extension

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Math 5593 Linear Programming Final Exam

Math 5593 Linear Programming Final Exam Math 5593 Linear Programming Final Exam Department of Mathematical and Statistical Sciences University of Colorado Denver, Fall 2013 Name: Points: /30 This exam consists of 6 problems, and each problem

More information

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods 5.8J Integer Programming and Combinatorial Optimization Fall 9 A knapsack problem Enumerative Methods Let s focus on maximization integer linear programs with only binary variables For example: a knapsack

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 491 Introduction Given a directed network defined by nodes, arcs, and flow capacities, this procedure finds the maximum flow that can occur between a source node and a sink node. An example of

More information

V. Solving Integer Linear Programs

V. Solving Integer Linear Programs Optimization Methods Draft of August 26, 2005 V. Solving Integer Linear Programs Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston, Illinois 60208-3119,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.05 Introduction to Optimization (Spring 005) Problem Set 8, Due April 4, 005 You will need 4.5 points out of 5 to receive a grade of.5.. Integer Programming and

More information

The University of Jordan Department of Mathematics. Branch and Cut

The University of Jordan Department of Mathematics. Branch and Cut The University of Jordan Department of Mathematics Heythem Marhoune Amina-Zahra Rezazgui Hanaa Kerim Sara Chabbi Branch and Cut Prepared and presented by : Sid Ahmed Benchiha Ibtissem Ben Kemache Lilia

More information

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM 9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM Whereas the simplex method is effective for solving linear programs, there is no single technique for solving integer programs. Instead, a

More information

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School Heuristics in MILP Group 1 D. Assouline, N. Molyneaux, B. Morén Supervisors: Michel Bierlaire, Andrea Lodi Zinal 2017 Winter School 0 / 23 Primal heuristics Original paper: Fischetti, M. and Lodi, A. (2011).

More information

Integer Programming! Using linear programming to solve discrete problems

Integer Programming! Using linear programming to solve discrete problems Integer Programming! Using linear programming to solve discrete problems Solving Discrete Problems Linear programming solves continuous problem! problems over the reai numbers.! For the remainder of the

More information

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs Computational Integer Programming Lecture 12: Branch and Cut Dr. Ted Ralphs Computational MILP Lecture 12 1 Reading for This Lecture Wolsey Section 9.6 Nemhauser and Wolsey Section II.6 Martin Computational

More information

Solving linear programming

Solving linear programming Solving linear programming (From Last week s Introduction) Consider a manufacturer of tables and chairs. They want to maximize profits. They sell tables for a profit of $30 per table and a profit of $10

More information

Chapter 7. Linear Programming Models: Graphical and Computer Methods

Chapter 7. Linear Programming Models: Graphical and Computer Methods Chapter 7 Linear Programming Models: Graphical and Computer Methods To accompany Quantitative Analysis for Management, Eleventh Edition, by Render, Stair, and Hanna Power Point slides created by Brian

More information

lpsymphony - Integer Linear Programming in R

lpsymphony - Integer Linear Programming in R lpsymphony - Integer Linear Programming in R Vladislav Kim October 30, 2017 Contents 1 Introduction 2 2 lpsymphony: Quick Start 2 3 Integer Linear Programming 5 31 Equivalent and Dual Formulations 5 32

More information

A LARGE SCALE INTEGER AND COMBINATORIAL OPTIMIZER

A LARGE SCALE INTEGER AND COMBINATORIAL OPTIMIZER A LARGE SCALE INTEGER AND COMBINATORIAL OPTIMIZER By Qun Chen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Industrial Engineering) at the

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI

GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI Outline Review the column generation in Generalized Assignment Problem (GAP) GAP Examples in Branch and Price 2 Assignment Problem The assignment

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

AMPL Integer Linear Programming And Sensitivity Analysis for LP. ORLAB Operations Research Laboratory. Borzou Rostami. Politecnico di Milano, Italy

AMPL Integer Linear Programming And Sensitivity Analysis for LP. ORLAB Operations Research Laboratory. Borzou Rostami. Politecnico di Milano, Italy AMPL Integer Linear Programming And Sensitivity Analysis for LP ORLAB Operations Research Laboratory Borzou Rostami Politecnico di Milano, Italy December 6, 2012 Integer Programming: Many linear programming

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Linear Programming: Basic Concepts. Chapter 2: Hillier and Hillier

Linear Programming: Basic Concepts. Chapter 2: Hillier and Hillier Linear Programming: Basic Concepts Chapter 2: Hillier and Hillier Agenda Define Linear Programming The Case of the Wyndor Glass Co. A Maximization Problem Developing a Mathematical Representation of Wyndor

More information

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL The Heuristic (Dark) Side of MIP Solvers Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL 1 Table of content [Lodi], The Heuristic (Dark) Side of MIP Solvers, Hybrid Metaheuristics, 273-284,

More information

Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class)

Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class) CPS 590.1 - Linear and integer programming Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class) Please read the rules for assignments on the course web page. Contact Vince (conitzer@cs.duke.edu)

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 1 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 30, 2017 2 Outline Branch and Bound Theory Branch and Bound Linear Programming Node Selection Strategies

More information

Linear programming II João Carlos Lourenço

Linear programming II João Carlos Lourenço Decision Support Models Linear programming II João Carlos Lourenço joao.lourenco@ist.utl.pt Academic year 2012/2013 Readings: Hillier, F.S., Lieberman, G.J., 2010. Introduction to Operations Research,

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 10: Optimisation (1) A/Prof Chun Tung Chou CSE, UNSW COMP9334, Chun Tung Chou, 2016 Three Weeks of Optimisation The lectures for these

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Modelling of LP-problems (2WO09)

Modelling of LP-problems (2WO09) Modelling of LP-problems (2WO09) assignor: Judith Keijsper room: HG 9.31 email: J.C.M.Keijsper@tue.nl course info : http://www.win.tue.nl/ jkeijspe Technische Universiteit Eindhoven meeting 1 J.Keijsper

More information

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University Integer Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 1 / 42

More information

Agenda. Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions!

Agenda. Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions! Modeling 2 Agenda Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions! Part 1: Overview of selected modeling techniques Background Range constraints

More information

Introduction to Linear Programming. Chapter 3: Hillier and Lieberman Chapter 3: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course

Introduction to Linear Programming. Chapter 3: Hillier and Lieberman Chapter 3: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course Introduction to Linear Programming Chapter 3: Hillier and Lieberman Chapter 3: Decision Tools for Agribusiness Dr Hurley s AGB 328 Course Terms to Know Simplex Method, Feasible Region, Slope- Intercept

More information

Application of Cutting Stock Problem in Minimizing The Waste of Al-Quran Cover

Application of Cutting Stock Problem in Minimizing The Waste of Al-Quran Cover Kaunia, Vol.XII, Num., April 206, pp. 7~22 Available online at http://ejournal.uin-suka.ac.id/saintek/kaunia Application of Cutting Stock Problem in Minimizing The Waste of Al-Quran Cover Noor Saif Muhammad

More information

Introduction. Chapter 15. Optimization Modeling: Applications. Integer Programming. Manufacturing Example. Three Types of ILP Models

Introduction. Chapter 15. Optimization Modeling: Applications. Integer Programming. Manufacturing Example. Three Types of ILP Models Chapter 5 Optimization Modeling: Applications Integer Programming Introduction When one or more variables in an LP problem must assume an integer value we have an Integer Linear Programming (ILP) problem.

More information

Solving lexicographic multiobjective MIPs with Branch-Cut-Price

Solving lexicographic multiobjective MIPs with Branch-Cut-Price Solving lexicographic multiobjective MIPs with Branch-Cut-Price Marta Eso (The Hotchkiss School) Laszlo Ladanyi (IBM T.J. Watson Research Center) David Jensen (IBM T.J. Watson Research Center) McMaster

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

An Introduction to Dual Ascent Heuristics

An Introduction to Dual Ascent Heuristics An Introduction to Dual Ascent Heuristics Introduction A substantial proportion of Combinatorial Optimisation Problems (COPs) are essentially pure or mixed integer linear programming. COPs are in general

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 16 Cutting Plane Algorithm We shall continue the discussion on integer programming,

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Timo Berthold Xpress Optimization Team Gerald Gamrath Zuse Institute Berlin Domenico Salvagnin Universita degli Studi di Padova This presentation

More information

The Simplex Algorithm for LP, and an Open Problem

The Simplex Algorithm for LP, and an Open Problem The Simplex Algorithm for LP, and an Open Problem Linear Programming: General Formulation Inputs: real-valued m x n matrix A, and vectors c in R n and b in R m Output: n-dimensional vector x There is one

More information

Parallel Branch & Bound

Parallel Branch & Bound Parallel Branch & Bound Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Outline Mixed integer programming (MIP) and branch & bound (B&B) Linear programming (LP) based B&B Relaxation and

More information

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lecture 5 Mixed Integer Programming and Exercises Marco Chiarandini 2. 3. 2 Outline Modeling 1. Min cost flow Shortest path 2. Max flow Assignment

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

Manpower Planning: Task Scheduling. Anders Høeg Dohn

Manpower Planning: Task Scheduling. Anders Høeg Dohn : Task Scheduling Anders Høeg Dohn Scope During these lectures I will: Go over some of the practical problems encountered in manpower planning. Rostering Task Scheduling Propose models that can be used

More information

Working Under Feasible Region Contraction Algorithm (FRCA) Solver Environment

Working Under Feasible Region Contraction Algorithm (FRCA) Solver Environment Working Under Feasible Region Contraction Algorithm (FRCA) Solver Environment E. O. Effanga Department of Mathematics/Statistics and Comp. Science, University of Calabar P.M.B. 1115, Calabar, Cross River

More information

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Vijay Gupta Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh Bora Tarhan ExxonMobil

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Metaheuristic Optimization with Evolver, Genocop and OptQuest

Metaheuristic Optimization with Evolver, Genocop and OptQuest Metaheuristic Optimization with Evolver, Genocop and OptQuest MANUEL LAGUNA Graduate School of Business Administration University of Colorado, Boulder, CO 80309-0419 Manuel.Laguna@Colorado.EDU Last revision:

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

L2: Algorithms: Knapsack Problem & BnB

L2: Algorithms: Knapsack Problem & BnB L2: Algorithms: Knapsack Problem & BnB This tutorial covers the basic topics on creating a forms application, common form controls and the user interface for the optimization models, algorithms and heuristics,

More information

WP September 1996

WP September 1996 Working Paper Modular Optimizer for Mixed Integer Programming MOMIP Version 2.3 W lodzimierz Ogryczak, Krystian Zorychta WP-96-106 September 1996 IIASA International Institute for Applied Systems Analysis

More information

Parallel and Distributed Optimization with Gurobi Optimizer

Parallel and Distributed Optimization with Gurobi Optimizer Parallel and Distributed Optimization with Gurobi Optimizer Our Presenter Dr. Tobias Achterberg Developer, Gurobi Optimization 2 Parallel & Distributed Optimization 3 Terminology for this presentation

More information

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D. Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

A NEW SEQUENTIAL CUTTING PLANE ALGORITHM FOR SOLVING MIXED INTEGER NONLINEAR PROGRAMMING PROBLEMS

A NEW SEQUENTIAL CUTTING PLANE ALGORITHM FOR SOLVING MIXED INTEGER NONLINEAR PROGRAMMING PROBLEMS EVOLUTIONARY METHODS FOR DESIGN, OPTIMIZATION AND CONTROL P. Neittaanmäki, J. Périaux and T. Tuovinen (Eds.) c CIMNE, Barcelona, Spain 2007 A NEW SEQUENTIAL CUTTING PLANE ALGORITHM FOR SOLVING MIXED INTEGER

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs Juan Pablo Vielma Shabbir Ahmed George L. Nemhauser H. Milton Stewart School of Industrial and Systems

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Experiments On General Disjunctions

Experiments On General Disjunctions Experiments On General Disjunctions Some Dumb Ideas We Tried That Didn t Work* and Others We Haven t Tried Yet *But that may provide some insight Ted Ralphs, Serdar Yildiz COR@L Lab, Department of Industrial

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC Pivot and Gomory Cut A MIP Feasibility Heuristic Shubhashis Ghosh Ryan Hayward shubhashis@randomknowledge.net hayward@cs.ualberta.ca NSERC CGGT 2007 Kyoto Jun 11-15 page 1 problem given a MIP, find a feasible

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

NETWORK OPTIMIZATION MODELS

NETWORK OPTIMIZATION MODELS NETWORK OPTIMIZATION MODELS Network models Transportation, electrical and communication networks pervade our daily lives. Network representation are widely used in: Production, distribution, project planning,

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

Exact solutions to mixed-integer linear programming problems

Exact solutions to mixed-integer linear programming problems Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011 Mixed-Integer

More information

AMPL Integer Linear Programming. ORLAB Operations Research Laboratory. Borzou Rostami. Politecnico di Milano, Italy.

AMPL Integer Linear Programming. ORLAB Operations Research Laboratory. Borzou Rostami. Politecnico di Milano, Italy. AMPL Integer Linear Programming ORLAB Operations Research Laboratory Borzou Rostami Politecnico di Milano, Italy January 18, 2012 Integer Programming: Many linear programming problems require certain variables

More information

Lagrangean Methods bounding through penalty adjustment

Lagrangean Methods bounding through penalty adjustment Lagrangean Methods bounding through penalty adjustment thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Brief introduction How to perform Lagrangean relaxation Subgradient techniques

More information

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 2. Modeling AEA 2018/2019 Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 Content Introduction Modeling phases Modeling Frameworks Graph Based Models Mixed

More information

Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics

Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics Sebastian Orlowski, Zuse Institute Berlin, Takustr. 7, D-14195 Berlin, orlowski@zib.de Arie M.C.A. Koster, Zuse Institute Berlin,

More information

Exploiting Degeneracy in MIP

Exploiting Degeneracy in MIP Exploiting Degeneracy in MIP Tobias Achterberg 9 January 2018 Aussois Performance Impact in Gurobi 7.5+ 35% 32.0% 30% 25% 20% 15% 14.6% 10% 5.7% 7.9% 6.6% 5% 0% 2.9% 1.2% 0.1% 2.6% 2.6% Time limit: 10000

More information

Contents PROCESS DECOMPOSITION INTRODUCTION. Decomposition Approaches Desirable Properties

Contents PROCESS DECOMPOSITION INTRODUCTION. Decomposition Approaches Desirable Properties PRCESS DECMPSTN Contents Andrew Kusiak ntelligent Systems Laboratory Seamans Center The University of owa owa City, owa - Tel: - Fax: - andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak NTRDUCTN

More information

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management Mathematical Tools for Engineering and Management Lecture 8 8 Dec 0 Overview Models, Data and Algorithms Linear Optimization Mathematical Background: Polyhedra, Simplex-Algorithm Sensitivity Analysis;

More information

Approximation in Linear Stochastic Programming Using L-Shaped Method

Approximation in Linear Stochastic Programming Using L-Shaped Method Approximation in Linear Stochastic Programming Using L-Shaped Method Liza Setyaning Pertiwi 1, Rini Purwanti 2, Wilma Handayani 3, Prof. Dr. Herman Mawengkang 4 1,2,3,4 University of North Sumatra, Indonesia

More information

Solving Hybrid Decision-Control Problems Through Conflict-Directed Branch & Bound

Solving Hybrid Decision-Control Problems Through Conflict-Directed Branch & Bound Solving Hybrid Decision-Control Problems Through Conflict-Directed Branch & Bound by Raj Krishnan Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the

More information

LECTURE NOTES Non-Linear Programming

LECTURE NOTES Non-Linear Programming CEE 6110 David Rosenberg p. 1 Learning Objectives LECTURE NOTES Non-Linear Programming 1. Write out the non-linear model formulation 2. Describe the difficulties of solving a non-linear programming model

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Network Optimization Models. Chapter 10: Hillier and Lieberman Chapter 8: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course

Network Optimization Models. Chapter 10: Hillier and Lieberman Chapter 8: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course Network Optimization Models Chapter 10: Hillier and Lieberman Chapter 8: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course Terms to Know Nodes, Arcs, Directed Arc, Undirected Arc, Links, Directed

More information

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem The Ninth International Symposium on Operations Research and Its Applications (ISORA 10) Chengdu-Jiuzhaigou, China, August 19 23, 2010 Copyright 2010 ORSC & APORC, pp. 301 308 A Row-and-Column Generation

More information

The SYMPHONY Callable Library for Mixed-Integer Linear Programming

The SYMPHONY Callable Library for Mixed-Integer Linear Programming The SYMPHONY Callable Library for Mixed-Integer Linear Programming Ted Ralphs and Menal Guzelsoy Industrial and Systems Engineering Lehigh University INFORMS Computing Society Conference, Annapolis, MD,

More information

Benders in a nutshell Matteo Fischetti, University of Padova

Benders in a nutshell Matteo Fischetti, University of Padova Benders in a nutshell Matteo Fischetti, University of Padova ODS 2017, Sorrento, September 2017 1 Benders decomposition The original Benders decomposition from the 1960s uses two distinct ingredients for

More information

Free modelling languages for linear and integer programming

Free modelling languages for linear and integer programming Alistair Clark Free modelling languages for linear and integer programming Alistair Clark Faculty of Computing, Engineering and Mathematical Sciences University of the West of England alistair.clark@uwe.ac.uk

More information

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX)

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Andrea Tramontani CPLEX Optimization, IBM CWI, Amsterdam, June 12, 2018 Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Agenda CPLEX Branch-and-Bound (B&B) Primal heuristics in CPLEX

More information

Restrict and Relax Search

Restrict and Relax Search Restrict and Relax Search George Nemhauser Georgia Tech Menal Guzelsoy, SAS Mar-n Savelsbergh, Newcastle MIP 2013, Madison, July 2013 Outline Mo-va-on Restrict and Relax Search Ini-al restric-on Fixing

More information

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008 LP-Modelling dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven January 30, 2008 1 Linear and Integer Programming After a brief check with the backgrounds of the participants it seems that the following

More information

NOTATION AND TERMINOLOGY

NOTATION AND TERMINOLOGY 15.053x, Optimization Methods in Business Analytics Fall, 2016 October 4, 2016 A glossary of notation and terms used in 15.053x Weeks 1, 2, 3, 4 and 5. (The most recent week's terms are in blue). NOTATION

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

Network Flow Models. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Network Flow Models. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Network Flow Models Chapter 7 7-1 Chapter Topics The Shortest Route Problem The Minimal Spanning Tree Problem The Maximal Flow Problem 7-2 Network Components A network is an arrangement of paths (branches)

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information