LONG-TERM SUBSIDENCE MONITORING OF CITY AREAS AT NORDIC LATITUDES USING ERS SAR DATA

Size: px
Start display at page:

Download "LONG-TERM SUBSIDENCE MONITORING OF CITY AREAS AT NORDIC LATITUDES USING ERS SAR DATA"

Transcription

1 LONG-TERM SUBSIDENCE MONITORING OF CITY AREAS AT NORDIC LATITUDES USING ERS SAR DATA Tom R. Lauknes (1,2), Geir Engen (1), Kjell A. Høgda (1), Inge Lauknes (1), Torbjørn Eltoft (2), Dan J. Weydahl (3) and Knut Eldhuset (3) (1) NORUT Information Technology, Forskningsparken, PO Box 6434, 9294 Norway, (2) University of Tromsø, Norway, (3) Norwegian Defence Research Establishment, PO Box 25, N-2027 Kjeller, Norway, ABSTRACT The interferometric SAR (InSAR) technique may be a valuable tool for subsidence monitoring at different places of the Earth surface. Many results have been reported during the 1990 s where data from the ERS-1 and ERS-2 SAR sensors were used. This paper will present the ongoing long-term subsidence project in Norway, AO-1104, that are making use of ERS SAR data. The test area is located in the Oslo region in Norway. During the 1990 s, this area has undergone a lot of tunnel construction work, but also some smaller earthquakes have been registered in the region. Subsidence effects of several centimeters are connected to these events and documented by land surveillance. The changing topography from sea level to 700 m above sea level, the dominating coniferous forests outside the built-up areas, and the seasonal variations with snow, rain and temperatures below freezing at several months of the year, makes this project a real challenge when it comes to masking out the non-subsidence factors and interpreting the interferometric SAR signal. For this AO-project, a total of 45 ERS-1 and ERS-2 SAR raw data sets were obtained from ESA. The scenes are spanning a time interval from 1992 to Out of these scenes, 13 are from the winter, and 32 from the spring/summer/autumn period. The raw data sets are processed to single-look-complex SAR images using the phase preserving Extended Exact Transfer Function (EETF). Satellite orbit baselines are estimated using precise orbit data from ESA. Multiple differential interferograms are produced, as well as other products: coherence, lay-over and shadow masks and finally a simulated intensity map. 1 INTRODUCTION The interferometric SAR (InSAR) technique has been shown to be a valuable tool for subsidence monitoring in many different places of the Earth using various techniques of multi-temporal InSAR processing [1, 2, 3] The Oslo region in Norway is an interesting area to do subsidence monitoring with satellite SAR data. Between 1994 and 1999 there have been four smaller earthquakes in the Oslo region. Their strength has been from 2.5 to 3.6 on Richter s scale. In addition, there has been a lot of tunnel construction work in Oslo from 1992 to This has caused subsidence of several cm at different places around the city, which are documented by land surveillance techniques carried out by NORSAR, The Geological Survey of Norway, The Norwegian National Rail Administration and The Norwegian Public Roads Administration in conjunction with the tunnel construction work. It is also interesting to monitor the stability of the area north of Oslo where the new Oslo Airport Gardermoen was built in An introductory study was carried out in 2001 where interferometric ERS SAR coherence properties from the Oslo region were investigated [4]. This study concluded that as many as 811 ERS SAR scattering points within a 20 square km area in Oslo city gave high and stable coherence (greater than 0.8) over a time span of 22 months, even if the baselines varied from -670 m to +530 m. This indicated that there should be good possibilities for carrying out a closer investigation of the interferometric phase over a larger time period (i.e. between 1992 and 2000). This is indeed the aim with the work presented here that is supported under the ESA AO-1104 project where Norwegian Defence Research Establishment (FFI) is the principal investigator, and where NORUT-IT is the co-investigator. This paper first describes the test area and data set used. It then goes on to the particular SAR processing algorithm used, satellite baseline estimation and co-registration of the SAR scenes. Description of the interferometric SAR processing software is then given together with some preliminary results. Proc. of FRINGE 2003 Workshop, Frascati, Italy, 1 5 December 2003 (ESA SP-550, June 2004) 41_lauknes

2 2 TEST AREA AND DATA SET The test area is located in the region around Oslo, the capital of Norway. This area have a lot of coniferous forest. The built-up areas consist of city centers having large concrete blocks and houses, residential areas with concrete blocks of flats, residential areas with houses made of wood and with small gardens attached, industrial areas with large concrete/metal warehouses and parking areas, roads/highways and railway lines. Some agricultural areas are located in the northeastern part, and to the south. The elevations are ranging from sea level and up to 700 m. The higher elevations in the Oslo region will normally be covered by snow several months during the winter season. However, for the built-up areas the winter conditions in the 1990 s have varied considerably from snow to sleet and rain. We requested ESA for 41 ERS SAR raw data sets acquired over the Oslo region between May 1992 and January Some of the scenes were not available, and we finally received 20 ERS-1 and 14 ERS-2 SAR scenes from ESA. They were delivered from both the Italian PAF and UK PAF. In addition, FFI had 11 ERS-2 SAR raw data scenes that previously had been ordered from Tromsø Satellite Station (TSS) for another project [4]. The SAR data ordered from TSS were acquired between December 1997 and March All the 45 ERS SAR scenes were ordered using descending satellite track 337 and frame The ERS SAR coverage over the Oslo region is shown in Fig. 1. Out of these scenes, 20 were acquired with ERS-1 and 25 with ERS-2. There are 6 tandem pairs from 1995/1996. There are 13 scenes from the winter season (November to April), and 32 from the spring/summer/autumn. Fig. 1: Approximate ERS SAR coverage over the Oslo region in south Norway. 3 METHODOLOGY The raw scenes are processed to single look complex (SLC) images using the 2nd order Extended Exact Transfer Function (EETF) developed by FFI [5]. This SAR processor is preserving the phase very well. The processor has previously been tested on large volumes of ERS SAR data [6]. The SLC-images are laid out in the zero-doppler coordinate system during the SAR processing. This processing to zero-doppler results in congruent geometry for repeat orbit images and significantly simplifies the interferometric processing. The co-registration and the interferometric processing is performed using software developed by NORUT-IT. Parts of this software is tested extensively through the ESA pilot project [7]. The coarse co-registration of the SLC images is already defined through the zero-doppler coordinate system, the azimuth time to the first range line, and the precise orbit parameters. In the co-registration, one image will be referred to as the master, while the other is the slave. The PRC orbit defines the geometry for the master image, while the slave orbit is modified according to the co-registration process. In this manner it is possible to index every pixel in the two images by referring to the inter-orbit geometry that is now established between the images. ERS precision orbit files (PRC) are

3 downloaded from an ESA server at DLR where the ERS orbit data are given in 30 seconds intervals. The satellite baseline for pairs of images are estimated using the following procedure The master image is defining the scene geometry using the PRC information The slave image is using an estimated orbit based on the geometry established in the co-registration process. The satellite baseline is estimated for the center azimuth line Satellite baselines for other time positions along the azimuth direction are estimated using forward and backward orbit propagation using the ESA-propagator. SAR Raw data FFI EETF SAR Data (Single Look) Master Slave Precise Orbits DEM in map grid Coregistration and Resampling Calibration and Filtering MAP2SAR transform DEMSAR Formation Topographic phase estimation Layover/Shadow Mask Reference phase Removal Reference phase estimation Phase Complex Coherence map Topographic phase Removal Differential Fig. 2: Figure showing the processing flowchart The complex master and slave images are spectral filtered in both range and azimuth to enhance the signal to noise ratio. When producing the interferogram we do a complex multi-looking in both range and azimuth direction before calculating the interferogram phase. This measured phase can be given as a sum of different contributions [1]. φ = φ top + φ def + φ atm + φ n (1) Here, φ top is the phase due to two slightly different viewing angles, φ def is the phase contribution due to a possible motion of the target in the line-of-sight (LOS) direction. φ atm is a phase contribution caused by different path length through the atmosphere due to changing refractive index along the signal path. Finally, φ n is the phase noise. For this project we are interested in φ def, the deformation signal. The only component we can estimate and remove is φ top, and there are at least two ways to do it, one can either use the so-called three pass interferometry [8] or one can use a-priori information about the topography. In our case we have available a N50 Digital Elevation Model (DEM) delivered by the Norwegian Mapping Authority. This national DEM is made from digitizing the 1:50000 topographic maps with 20 m elevation contours. The digital raster version of this DEM has a grid spacing of 25x25 m. Our approach to simulate the topographic phase is to use the external reference DEM, and a backward solution of the range-doppler equations similar to [9]. By using this method the need for regridding in the SAR image domain is reduced. Using the original state vector of the master image, and the radar converted DEM, we simulate a brightness image using the local incidence angle and the terrain slope. We also produce lay-over and shadow masks to facilitate data processing. The simulated brightness image is correlated with the measured one to obtain and correct for a constant offset. The

4 offset in azimuth is mainly due to the uncertainties in the orbital state vectors. Finally, we generate the differential interferogram by doing a complex multiplication with the conjugated simulated topographic interferogram. After generation of the Differential interferogram, the baseline component is adjusted to obtain a flat interferogram without any orbital fringes. Fig. 2 shows the processing flowchart leading to the output products: phase, coherence, differential interferogram, lay-over/shadow mask and a simulated intensity image. The DEM is also available in the radar coordinate system after processing. Fig. 3 and Fig. 4 shows examples of some products. 4 EXPERIMENTAL RESULTS Fig. 3: Upper left: Elevation map of Oslo area. Upper right: Intensity map of ERS-1 image taken August 16, Lower left: Simulated intensity map. Lower right: Estimated coherence, August 16, 1995 June 26, Temporal baseline is 315 days. 5 SUMMARY The processing method will be tested on multiple SAR data for further verification. For the temporal analysis of the long-term Interferometric data set we will investigate the SBAS technique [2]. This technique makes it possible to link different subsets of interferograms separated by a rather short baseline. An estimate of atmospheric and topographic

5 Fig. 4: Left: Differential interferogram, Right:Differential, artifacts is given. Finally a temporal displacement estimation will be done and the results compared with land surveillance measurements. The final results will be geocoded and included in a GIS environment. REFERENCES [1] Ferretti A., Prati C. and Rocca F., Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, pp , [2] Berardino P., Fornaro G., Lanari R. and Sansosti E., A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential s, IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 11, pp , [3] Werner C., Wegmüller U., Strozzi T. and Wiesmann A., Interferometric Point Target Analysis for Deformation Mapping, Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, France, July 2003, Vol. VII, pp , [4] Weydahl D. J., Eldhuset K. and Hauge S., Atmospheric effects on advanced modes, WEAG EUCLID CEPA9 RTP9.6 WE4.1.3, FFI-RAPPORT-2001/04826, Norwegian Defence Research Establishment, Kjeller, Norway, [5] Eldhuset K., Andersen P. H., Hauge S., Isaksson E., and Weydahl D. J., ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard, International Journal of Remote Sensing, Vol. 24, No. 7, pp , [6] Eldhuset K., Aanvik F., Aksnes K., Amlien J., Andersen P. H., Hauge S., Isaksson E., Wahl T. and Weydahl D. J., First results from ERS tandem INSAR processing on Svalbard, ESA Fringe 96 Workshop on ERS SAR Interferometry, Vol. 1, pp , [7] Engen G., Guneriussen T. and Overrein Ø., Delta-K Interferometric SAR Technique for Snow Water Equivalent (SWE) Retrieval, IEEE Transactions on Geoscience and Remote Sensing, in press, [8] Zebker H. A., Rosen P. A., Goldstein R. M., Gabriel A. and Werner C. L., On the derivation of coseismic displacement fields using differential radar interferometry: The Landers Earthquake, Journal of Geophysical Research, Vol. 99, No. B10, pp , [9] Eineder M., Efficient Simulation of SAR s of Large Areas and of Rugged Terrain, IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, pp , 2003.

Repeat-pass SAR Interferometry Experiments with Gaofen-3: A Case Study of Ningbo Area

Repeat-pass SAR Interferometry Experiments with Gaofen-3: A Case Study of Ningbo Area Repeat-pass SAR Interferometry Experiments with Gaofen-3: A Case Study of Ningbo Area Tao Zhang, Xiaolei Lv, Bing Han, Bin Lei and Jun Hong Key Laboratory of Technology in Geo-spatial Information Processing

More information

MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS

MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS U. WEGMÜLLER, C. WERNER, T. STROZZI, AND A. WIESMANN Gamma Remote Sensing AG. Thunstrasse 130, CH-3074 Muri (BE), Switzerland wegmuller@gamma-rs.ch,

More information

Lateral Ground Movement Estimation from Space borne Radar by Differential Interferometry.

Lateral Ground Movement Estimation from Space borne Radar by Differential Interferometry. Lateral Ground Movement Estimation from Space borne Radar by Differential Interferometry. Abstract S.Sircar 1, 2, C.Randell 1, D.Power 1, J.Youden 1, E.Gill 2 and P.Han 1 Remote Sensing Group C-CORE 1

More information

DETECTION AND QUANTIFICATION OF ROCK GLACIER. DEFORMATION USING ERS D-InSAR DATA

DETECTION AND QUANTIFICATION OF ROCK GLACIER. DEFORMATION USING ERS D-InSAR DATA DETECTION AND QUANTIFICATION OF ROCK GLACIER DEFORMATION USING ERS D-InSAR DATA Lado W. Kenyi 1 and Viktor Kaufmann 2 1 Institute of Digital Image Processing, Joanneum Research Wastiangasse 6, A-8010 Graz,

More information

Airborne Differential SAR Interferometry: First Results at L-Band

Airborne Differential SAR Interferometry: First Results at L-Band 1516 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 6, JUNE 2003 Airborne Differential SAR Interferometry: First Results at L-Band Andreas Reigber, Member, IEEE, and Rolf Scheiber Abstract

More information

A GENERIC DIFFERENTIAL INTERFEROMETRIC SAR PROCESSING SYSTEM, WITH APPLICATIONS TO LAND SUBSIDENCE AND SNOW- WATER EQUIVALENT RETRIEVAL

A GENERIC DIFFERENTIAL INTERFEROMETRIC SAR PROCESSING SYSTEM, WITH APPLICATIONS TO LAND SUBSIDENCE AND SNOW- WATER EQUIVALENT RETRIEVAL A GENERIC DIFFERENTIAL INTERFEROMETRIC SAR PROCESSING SYSTEM, WITH APPLICATIONS TO LAND SUBSIDENCE AND SNOW- WATER EQUIVALENT RETRIEVAL Yngvar Larsen, Geir Engen, Tom Rune Lauknes, Eirik Malnes, Kjell

More information

LINEAR AND NON-LINEAR LONG-TERM TERRAIN DEFORMATION WITH DINSAR (CPT: COHERENT PIXELS TECHNIQUE)

LINEAR AND NON-LINEAR LONG-TERM TERRAIN DEFORMATION WITH DINSAR (CPT: COHERENT PIXELS TECHNIQUE) LINEAR AND NON-LINEAR LONG-TERM TERRAIN DEFORMATION WITH DINSAR (CPT: COHERENT PIXELS TECHNIQUE) Jordi J. Mallorquí (1), Oscar Mora (1,2), Pablo Blanco (1), Antoni Broquetas (1) (1) Universitat Politècnica

More information

In addition, the image registration and geocoding functionality is also available as a separate GEO package.

In addition, the image registration and geocoding functionality is also available as a separate GEO package. GAMMA Software information: GAMMA Software supports the entire processing from SAR raw data to products such as digital elevation models, displacement maps and landuse maps. The software is grouped into

More information

Sentinel-1 Toolbox. Interferometry Tutorial Issued March 2015 Updated August Luis Veci

Sentinel-1 Toolbox. Interferometry Tutorial Issued March 2015 Updated August Luis Veci Sentinel-1 Toolbox Interferometry Tutorial Issued March 2015 Updated August 2016 Luis Veci Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ http://step.esa.int Interferometry Tutorial The

More information

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014 Sentinel-1 Toolbox TOPS Interferometry Tutorial Issued May 2014 Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ https://sentinel.esa.int/web/sentinel/toolboxes Interferometry Tutorial

More information

A STATISTICAL-COST APPROACH TO UNWRAPPING THE PHASE OF INSAR TIME SERIES

A STATISTICAL-COST APPROACH TO UNWRAPPING THE PHASE OF INSAR TIME SERIES A STATISTICAL-COST APPROACH TO UNWRAPPING THE PHASE OF INSAR TIME SERIES Andrew Hooper Delft Institute of Earth Observation and Space Systems, Delft University of Technology, Delft, Netherlands, Email:

More information

SENTINEL-1 SUPPORT IN THE GAMMA SOFTWARE

SENTINEL-1 SUPPORT IN THE GAMMA SOFTWARE SENTINEL-1 SUPPORT IN THE GAMMA SOFTWARE Urs Wegmüller, Charles Werner, Tazio Strozzi, Andreas Wiesmann, Othmar Frey, and Maurizio Santoro Gamma Remote Sensing, Worbstrasse 225, 3073 Gümligen BE, Switzerland

More information

The 2017 InSAR package also provides support for the generation of interferograms for: PALSAR-2, TanDEM-X

The 2017 InSAR package also provides support for the generation of interferograms for: PALSAR-2, TanDEM-X Technical Specifications InSAR The Interferometric SAR (InSAR) package can be used to generate topographic products to characterize digital surface models (DSMs) or deformation products which identify

More information

Sentinel-1 InSAR AP workshop

Sentinel-1 InSAR AP workshop Sentinel-1 InSAR AP workshop Sentinel-1 InSAR progress and experience at GAMMA U. Wegmüller, C. Werner, A. Wiesmann, T. Strozzi Gamma Remote Sensing AG - Progress made since S1A Expert Users meeting at

More information

SAR Interferometry. Dr. Rudi Gens. Alaska SAR Facility

SAR Interferometry. Dr. Rudi Gens. Alaska SAR Facility SAR Interferometry Dr. Rudi Gens Alaska SAR Facility 2 Outline! Relevant terms! Geometry! What does InSAR do?! Why does InSAR work?! Processing chain " Data sets " Coregistration " Interferogram generation

More information

InSAR Operational and Processing Steps for DEM Generation

InSAR Operational and Processing Steps for DEM Generation InSAR Operational and Processing Steps for DEM Generation By F. I. Okeke Department of Geoinformatics and Surveying, University of Nigeria, Enugu Campus Tel: 2-80-5627286 Email:francisokeke@yahoo.com Promoting

More information

DINSAR: Differential SAR Interferometry

DINSAR: Differential SAR Interferometry DINSAR: Differential SAR Interferometry Fabio Rocca 1 SAR interferometric phase: ground motion contribution If a scatterer on the ground slightly changes its relative position in the time interval between

More information

Interferometry Tutorial with RADARSAT-2 Issued March 2014 Last Update November 2017

Interferometry Tutorial with RADARSAT-2 Issued March 2014 Last Update November 2017 Sentinel-1 Toolbox with RADARSAT-2 Issued March 2014 Last Update November 2017 Luis Veci Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ http://step.esa.int with RADARSAT-2 The goal of

More information

WIDE BASELINE INTERFEROMETRY WITH VERY LOW RESOLUTION SAR SYSTEMS

WIDE BASELINE INTERFEROMETRY WITH VERY LOW RESOLUTION SAR SYSTEMS 1 of 25 26/03/2008 22.35 ne previo WIDE BASELINE INTERFEROMETRY WITH VERY LOW RESOLUTION SAR SYSTEMS Abstract: A. Monti Guarnieri, C. Prati, F. Rocca and Y-L. Desnos (*) Dipartimento di Elettronica e Informazione

More information

Operational process interferometric for the generation of a digital model of ground Applied to the couple of images ERS-1 ERS-2 to the area of Algiers

Operational process interferometric for the generation of a digital model of ground Applied to the couple of images ERS-1 ERS-2 to the area of Algiers Operational process interferometric for the generation of a digital model of ground Applied to the couple of images ERS-1 ERS-2 to the area of Algiers F. Hocine, M.Ouarzeddine, A. elhadj-aissa,, M. elhadj-aissa,,

More information

ERS AND ENVISAT DIFFERENTIAL SAR INTERFEROMETRY FOR SUBSIDENCE MONITORING

ERS AND ENVISAT DIFFERENTIAL SAR INTERFEROMETRY FOR SUBSIDENCE MONITORING ERS AND ENVISAT DIFFERENTIAL SAR INTERFEROMETRY FOR SUBSIDENCE MONITORING Urs Wegmüller 1, Tazio Strozzi 1, and Luigi Tosi 2 1 Gamma Remote Sensing, Thunstrasse 130, CH-3074 Muri b. Bern, Switzerland Tel:

More information

DEFORMATION MEASUREMENT USING INTERFEROMETRIC SAR DATA

DEFORMATION MEASUREMENT USING INTERFEROMETRIC SAR DATA DEFORMATION MEASUREMENT USING INTERFEROMETRIC SAR DATA M. Crosetto Institute of Geomatics, Campus de Castelldefels, 08860 Castelldefels (Barcelona), Spain - michele.crosetto@ideg.es Commission II, WG II/2

More information

DEFORMATION MONITORING USING REMOTELY SENSED RADAR INTERFEROMETRIC DATA

DEFORMATION MONITORING USING REMOTELY SENSED RADAR INTERFEROMETRIC DATA Proceedings, 11 th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003. DEFORMATION MONITORING USING REMOTELY SENSED RADAR INTERFEROMETRIC DATA Michele Crosetto 1, Alain Arnaud 2, Javier

More information

InSAR DEM; why it is better?

InSAR DEM; why it is better? InSAR DEM; why it is better? What is a DEM? Digital Elevation Model (DEM) refers to the process of demonstrating terrain elevation characteristics in 3-D space, but very often it specifically means the

More information

GAMMA Interferometric Point Target Analysis Software (IPTA): Users Guide

GAMMA Interferometric Point Target Analysis Software (IPTA): Users Guide GAMMA Interferometric Point Target Analysis Software (IPTA): Users Guide Contents User Handbook Introduction IPTA overview Input data Point list generation SLC point data Differential interferogram point

More information

WIDE AREA DEFORMATION MAP GENERATION WITH TERRASAR-X DATA: THE TOHOKU-OKI EARTHQUAKE 2011 CASE

WIDE AREA DEFORMATION MAP GENERATION WITH TERRASAR-X DATA: THE TOHOKU-OKI EARTHQUAKE 2011 CASE WIDE AREA DEFORMATION MAP GENERATION WITH TERRASAR-X DATA: THE TOHOKU-OKI EARTHQUAKE 2011 CASE Nestor Yague-Martinez (1), Michael Eineder (2), Christian Minet (2), Birgitt Schättler (2) (1) Starlab Barcelona

More information

SAR Interferometry on a Very Long Time Scale: A Study of the Interferometric Characteristics of Man-Made Features

SAR Interferometry on a Very Long Time Scale: A Study of the Interferometric Characteristics of Man-Made Features 2118 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 4, JULY 1999 training set size reflects the true priors. The classification maps for LOOC+DAFE+ECHO and blooc+dafe+echo are shown in

More information

Interferometric processing. Rüdiger Gens

Interferometric processing. Rüdiger Gens Rüdiger Gens Why InSAR processing? extracting three-dimensional information out of a radar image pair covering the same area digital elevation model change detection 2 Processing chain 3 Processing chain

More information

ALOS-PALSAR performances on a multiple sensor DInSAR scenario for deformation monitoring

ALOS-PALSAR performances on a multiple sensor DInSAR scenario for deformation monitoring ALOS-PALSAR performances on a multiple sensor DInSAR scenario for deformation monitoring Pablo Blanco, Roman Arbiol and Vicenç Palà Remote Sensing Department Institut Cartogràfic de Catalunya (ICC) Parc

More information

COREGISTRATION BETWEEN SAR IMAGE SUBSETS USING POINTWISE TARGETS

COREGISTRATION BETWEEN SAR IMAGE SUBSETS USING POINTWISE TARGETS COREGISTRATION BETWEEN SAR IMAGE SUBSETS USING POINTWISE TARGETS Teng Wang (1), Sigurjón Jónsson (1), Ramon Hanssen (2) (1) Division of Physical Sciences and Engineering, King Abdullah University of Science

More information

APPLICATION OF SAR INTERFEROMETRIC TECHNIQUES FOR SURFACE DEFORMATION MONITORING

APPLICATION OF SAR INTERFEROMETRIC TECHNIQUES FOR SURFACE DEFORMATION MONITORING APPLICATION OF SAR INTERFEROMETRIC TECHNIQUES FOR SURFACE DEFORMATION MONITORING Urs Wegmüller, Charles Werner, Tazio Strozzi, and Andreas Wiesmann Gamma Remote Sensing, Worbstrasse 225, 3073 Gümligen,

More information

Individual Interferograms to Stacks!

Individual Interferograms to Stacks! Individual Interferograms to Stacks! Piyush Agram! Jet Propulsion Laboratory!! Jun 29, 2015! @UNAVCO! Thanks to my colleagues from JPL, Caltech, Stanford University and from all over the world for providing

More information

2-PASS DIFFERENTIAL INTERFEROMETRY IN THE AREA OF THE SLATINICE ABOVE- LEVEL DUMP. Milan BOŘÍK 1

2-PASS DIFFERENTIAL INTERFEROMETRY IN THE AREA OF THE SLATINICE ABOVE- LEVEL DUMP. Milan BOŘÍK 1 2-PASS DIFFERENTIAL INTERFEROMETRY IN THE AREA OF THE SLATINICE ABOVE- LEVEL DUMP Milan BOŘÍK 1 1 Department of Mathematics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova

More information

SMALL SCALE SURFACE DEFORMATION MONITORING IN MINING REGIONS USING DIFFERENTIAL RADAR INTERFEROMETRY.

SMALL SCALE SURFACE DEFORMATION MONITORING IN MINING REGIONS USING DIFFERENTIAL RADAR INTERFEROMETRY. Proceedings, 11 th FIG Symposium on Deformation Measurements, Santorini, Greece, 003. SMALL SCALE SURFACE DEFORMATION MONITORING IN MINING REGIONS USING DIFFERENTIAL RADAR INTERFEROMETRY. Ireneusz Baran

More information

PSI Precision, accuracy and validation aspects

PSI Precision, accuracy and validation aspects PSI Precision, accuracy and validation aspects Urs Wegmüller Charles Werner Gamma Remote Sensing AG, Gümligen, Switzerland, wegmuller@gamma-rs.ch Contents Aim is to obtain a deeper understanding of what

More information

Coherence Based Polarimetric SAR Tomography

Coherence Based Polarimetric SAR Tomography I J C T A, 9(3), 2016, pp. 133-141 International Science Press Coherence Based Polarimetric SAR Tomography P. Saranya*, and K. Vani** Abstract: Synthetic Aperture Radar (SAR) three dimensional image provides

More information

Individual Interferograms to Stacks

Individual Interferograms to Stacks Individual Interferograms to Stacks Piyush Agram Jet Propulsion Laboratory Aug 1, 2016 @UNAVCO Thanks to my colleagues from JPL, Caltech, Stanford University and from all over the world for providing images

More information

PROBLEMS AND SOLUTIONS FOR INSAR DIGITAL ELEVATION MODEL GENERATION OF MOUNTAINOUS TERRAIN. M. Eineder

PROBLEMS AND SOLUTIONS FOR INSAR DIGITAL ELEVATION MODEL GENERATION OF MOUNTAINOUS TERRAIN. M. Eineder PROBLEMS AND SOLUTIONS FOR INSAR DIGITAL ELEVATION MODEL GENERATION OF MOUNTAINOUS TERRAIN M. Eineder German Aerospace Center (DLR), Oberpfaffenhofen, D-82234 Wessling, Germany, Email: Michael.Eineder@dlr.de

More information

Interferometric Evaluation of Sentinel-1A TOPS data

Interferometric Evaluation of Sentinel-1A TOPS data Interferometric Evaluation of Sentinel-1A TOPS data N. Yague-Martinez, F. Rodriguez Gonzalez, R. Brcic, R. Shau Remote Sensing Technology Institute. DLR, Germany ESTEC/Contract No. 4000111074/14/NL/MP/lf

More information

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens Terrain correction and ortho-rectification Terrain correction Rüdiger Gens Why geometric terrain correction? Backward geocoding remove effects of side looking geometry of SAR images necessary step to allow

More information

DIGITAL ELEVATION MODEL GENERATION FROM INTERFEROMETRIC SYNTHETIC APERTURE RADAR USING MULTI-SCALE METHOD

DIGITAL ELEVATION MODEL GENERATION FROM INTERFEROMETRIC SYNTHETIC APERTURE RADAR USING MULTI-SCALE METHOD DIGITAL ELEVATION MODEL GENERATION FROM INTERFEROMETRIC SYNTHETIC APERTURE RADAR USING MULTI-SCALE METHOD Jung Hum Yu 1, Linlin Ge, Chris Rizos School of Surveying and Spatial Information Systems University

More information

Synthetic Aperture Radar Interferometry (InSAR)

Synthetic Aperture Radar Interferometry (InSAR) CEE 6100 / CSS 6600 Remote Sensing Fundamentals 1 Synthetic Aperture Radar Interferometry (InSAR) Adapted from and the ESA Interferometric SAR overview by Rocca et al. http://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/

More information

INTEGRATED USE OF INTERFEROMETRIC SAR DATA AND LEVELLING MEASUREMENTS FOR MONITORING LAND SUBSIDENCE

INTEGRATED USE OF INTERFEROMETRIC SAR DATA AND LEVELLING MEASUREMENTS FOR MONITORING LAND SUBSIDENCE INTEGRATED USE OF INTERFEROMETRIC SAR DATA AND LEVELLING MEASUREMENTS FOR MONITORING LAND SUBSIDENCE Yueqin Zhou *, Martien Molenaar *, Deren Li ** * International Institute for Aerospace Survey and Earth

More information

Interferometry Module for Digital Elevation Model Generation

Interferometry Module for Digital Elevation Model Generation Interferometry Module for Digital Elevation Model Generation In order to fully exploit processes of the Interferometry Module for Digital Elevation Model generation, the European Space Agency (ESA) has

More information

Interferometric Synthetic-Aperture Radar (InSAR) Basics

Interferometric Synthetic-Aperture Radar (InSAR) Basics Interferometric Synthetic-Aperture Radar (InSAR) Basics 1 Outline SAR limitations Interferometry SAR interferometry (InSAR) Single-pass InSAR Multipass InSAR InSAR geometry InSAR processing steps Phase

More information

RADARGRAMMETRY AND INTERFEROMETRY SAR FOR DEM GENERATION

RADARGRAMMETRY AND INTERFEROMETRY SAR FOR DEM GENERATION RADARGRAMMETRY AND INTERFEROMETRY SAR FOR DEM GENERATION Jung Hum Yu 1, Xiaojing Li, Linlin Ge, and Hsing-Chung Chang School of Surveying and Spatial Information Systems University of New South Wales,

More information

LAND SUBSIDENCE WITH SENTINEL-1 using SNAP

LAND SUBSIDENCE WITH SENTINEL-1 using SNAP _p TRAINING KIT HAZA03 LAND SUBSIDENCE WITH SENTINEL-1 using SNAP Table of Contents 1 Introduction... 2 2 Training... 2 2.1 Data used... 2 2.2 Software in RUS environment... 2 3 Step by step... 3 3.1 Data

More information

IMPROVING DEMS USING SAR INTERFEROMETRY. University of British Columbia. ABSTRACT

IMPROVING DEMS USING SAR INTERFEROMETRY. University of British Columbia.  ABSTRACT IMPROVING DEMS USING SAR INTERFEROMETRY Michael Seymour and Ian Cumming University of British Columbia 2356 Main Mall, Vancouver, B.C.,Canada V6T 1Z4 ph: +1-604-822-4988 fax: +1-604-822-5949 mseymour@mda.ca,

More information

fraction of Nyquist

fraction of Nyquist differentiator 4 2.1.2.3.4.5.6.7.8.9 1 1 1/integrator 5.1.2.3.4.5.6.7.8.9 1 1 gain.5.1.2.3.4.5.6.7.8.9 1 fraction of Nyquist Figure 1. (top) Transfer functions of differential operators (dotted ideal derivative,

More information

Concept and methodology of SAR Interferometry technique

Concept and methodology of SAR Interferometry technique Concept and methodology of SAR Interferometry technique March 2016 Differen;al SAR Interferometry Young s double slit experiment - Construc;ve interference (bright) - Destruc;ve interference (dark) http://media-2.web.britannica.com/eb-media/96/96596-004-1d8e9f0f.jpg

More information

INTERFEROMETRIC MULTI-CHROMATIC ANALYSIS OF HIGH RESOLUTION X-BAND DATA

INTERFEROMETRIC MULTI-CHROMATIC ANALYSIS OF HIGH RESOLUTION X-BAND DATA INTERFEROMETRIC MULTI-CHROMATIC ANALYSIS OF HIGH RESOLUTION X-BAND DATA F. Bovenga (1), V. M. Giacovazzo (1), A. Refice (1), D.O. Nitti (2), N. Veneziani (1) (1) CNR-ISSIA, via Amendola 122 D, 70126 Bari,

More information

AMBIGUOUS PSI MEASUREMENTS

AMBIGUOUS PSI MEASUREMENTS AMBIGUOUS PSI MEASUREMENTS J. Duro (1), N. Miranda (1), G. Cooksley (1), E. Biescas (1), A. Arnaud (1) (1). Altamira Information, C/ Còrcega 381 387, 2n 3a, E 8037 Barcelona, Spain, Email: javier.duro@altamira

More information

SBAS- InSAR SERVICE WITHIN THE G- POD PLATFORM

SBAS- InSAR SERVICE WITHIN THE G- POD PLATFORM SBAS- InSAR SERVICE WITHIN THE G- POD PLATFORM USER MANUAL Prepared by: Reference: Issue: 2 Revision: 0 Claudio De Luca (CNR- IREA) Francesco Casu (CNR- IREA) IREA- GPOD- UM- 14-003 Date of Issue: November

More information

MULTI-TEMPORAL SAR DATA FILTERING FOR LAND APPLICATIONS. I i is the estimate of the local mean backscattering

MULTI-TEMPORAL SAR DATA FILTERING FOR LAND APPLICATIONS. I i is the estimate of the local mean backscattering MULTI-TEMPORAL SAR DATA FILTERING FOR LAND APPLICATIONS Urs Wegmüller (1), Maurizio Santoro (1), and Charles Werner (1) (1) Gamma Remote Sensing AG, Worbstrasse 225, CH-3073 Gümligen, Switzerland http://www.gamma-rs.ch,

More information

INSAR DEMS; ACHIEVEMENTS AND BENEFITS

INSAR DEMS; ACHIEVEMENTS AND BENEFITS INSAR DEMS; ACHIEVEMENTS AND BENEFITS Parviz TARIKHI, Iran Key words: remote sensing, InSAR, DEM, deformation measurement, Iran SUMMARY InSAR is a radar technique for combining synthetic aperture radar

More information

The STUN algorithm for Persistent Scatterer Interferometry

The STUN algorithm for Persistent Scatterer Interferometry [1/27] The STUN algorithm for Persistent Scatterer Interferometry Bert Kampes, Nico Adam 1. Theory 2. PSIC4 Processing 3. Conclusions [2/27] STUN Algorithm Spatio-Temporal Unwrapping Network (STUN) 4 1D

More information

DEFORMATION MONITORING USING INSAR AND ARTIFICIAL REFLECTORS

DEFORMATION MONITORING USING INSAR AND ARTIFICIAL REFLECTORS DEFORMATION MONITORING USING INSAR AND ARTIFICIAL REFLECTORS Ivana, HLAVÁČOVÁ 1, Lena, HALOUNOVÁ 1, Květoslava, SVOBODOVÁ 1 1 Department of Mapping and Cartography, Faculty of Civil Engineering, Czech

More information

TANDEM-X: DEM ACQUISITION IN THE THIRD YEAR ERA

TANDEM-X: DEM ACQUISITION IN THE THIRD YEAR ERA TANDEM-X: DEM ACQUISITION IN THE THIRD YEAR ERA D. Borla Tridon, M. Bachmann, D. Schulze, C. J. Ortega Miguez, M. D. Polimeni, M. Martone and TanDEM-X Team Microwaves and Radar Institute, DLR 5 th International

More information

ARTIFICIAL SCATTERERS FOR S.A.R. INTERFEROMETRY

ARTIFICIAL SCATTERERS FOR S.A.R. INTERFEROMETRY ARTIFICIAL SCATTERERS FOR S.A.R. INTERFEROMETRY Parizzi A. (1), Perissin D. (1), Prati C. (1), Rocca F. (1) (1) Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy ABSTRACT. The evaluation of land

More information

LANDSLIDE PHENOMENA IN SEVAN NATIONAL PARK - ARMENIA

LANDSLIDE PHENOMENA IN SEVAN NATIONAL PARK - ARMENIA LANDSLIDE PHENOMENA IN SEVAN NATIONAL PARK - ARMENIA Andon Dimitrov Lazarov (1), Dimitar Minchev (2), Gurgen Aleksanyan (3), (1) Bourgas Free University, 62 San Stefano Str., 8000 Bourgas, Bulgaria,Email:

More information

Ice surface velocities using SAR

Ice surface velocities using SAR Ice surface velocities using SAR Thomas Schellenberger, PhD ESA Cryosphere Remote Sensing Training Course 2018 UNIS Longyearbyen, Svalbard 12 th June 2018 thomas.schellenberger@geo.uio.no Outline Synthetic

More information

Progress In Electromagnetics Research M, Vol. 14, 15 32, 2010 RECONSTRUCTING HIGH-ACCURACY DEM WITH PRECISE ORBIT DATA AND EXTERNAL DEM

Progress In Electromagnetics Research M, Vol. 14, 15 32, 2010 RECONSTRUCTING HIGH-ACCURACY DEM WITH PRECISE ORBIT DATA AND EXTERNAL DEM Progress In Electromagnetics Research M, Vol. 14, 15 32, 2010 RECONSTRUCTING HIGH-ACCURACY DEM WITH PRECISE ORBIT DATA AND EXTERNAL DEM A. Bin School of Marine Sciences Sun Yat-sen University Guangzhou

More information

ALOS PALSAR SCANSAR INTERFEROMETRY AND ITS APPLICATION IN WENCHUAN EARTHQUAKE

ALOS PALSAR SCANSAR INTERFEROMETRY AND ITS APPLICATION IN WENCHUAN EARTHQUAKE ALOS PALSAR SCANSAR INTERFEROMETRY AND ITS APPLICATION IN WENCHUAN EARTHQUAKE Cunren Liang (1) (2), Qiming Zeng (1) (2), Jianying Jia (1) (2), Jian Jiao (1) (2), Xiai Cui (1) (2) (1) (2), Xiao Zhou (1)

More information

SENTINEL-1 PRECISE ORBIT CALIBRATION AND VALIDATION

SENTINEL-1 PRECISE ORBIT CALIBRATION AND VALIDATION SENTINEL-1 PRECISE ORBIT CALIBRATION AND VALIDATION Andrea Monti Guarnieri, Simone Mancon, and Stefano Tebaldini Politecnico di Milano, Italy ABSTRACT In this paper, we propose a model-based procedure

More information

Practical work on SAR Interferometry Data Processing using DORIS Software Y.S. Rao CSRE, IIT Bombay

Practical work on SAR Interferometry Data Processing using DORIS Software Y.S. Rao CSRE, IIT Bombay Practical work on SAR Interferometry Data Processing using DORIS Software Y.S. Rao CSRE, IIT Bombay ysrao@csre.iitb.ac.in Tools : DORIS (Delft Object-Oriented Radar Interferometric Software) is freely

More information

GMES TERRAFIRMA. Validation of existing processing chains in Terrafirma stage 2 LIST OF OSP DELIVERABLES EXTENDED

GMES TERRAFIRMA. Validation of existing processing chains in Terrafirma stage 2 LIST OF OSP DELIVERABLES EXTENDED GMES TERRAFIRMA ESRIN/Contract no. 19366/05/I-E Validation of existing processing chains in Terrafirma stage 2 LIST OF OSP DELIVERABLES EXTENDED 5 th July 2007 Final version - ERS M. Crosetto, M. Agudo

More information

AIRBORNE synthetic aperture radar (SAR) systems

AIRBORNE synthetic aperture radar (SAR) systems IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL 3, NO 1, JANUARY 2006 145 Refined Estimation of Time-Varying Baseline Errors in Airborne SAR Interferometry Andreas Reigber, Member, IEEE, Pau Prats, Student

More information

Ground Subsidence Monitored by L-band Satellite Radar. Interferometry

Ground Subsidence Monitored by L-band Satellite Radar. Interferometry Ground Subsidence Monitored by L-band Satellite Radar Interferometry Hsing-Chung Chang, Ming-han Chen, Lijiong Qin, Linlin Ge and Chris Rizos Satellite Navigation And Positioning Group School of Surveying

More information

SAR Interferogram Phase Filtering Using Wavelet Transform

SAR Interferogram Phase Filtering Using Wavelet Transform Formatted: Font: 16 pt, Nazanin, 16 pt, (Complex) Farsi, 12 pt SAR Interferogram Phase Filtering Using Wavelet Transform V. Akbari, M. Motagh and M. A. Rajabi 1 Dept. o Surveying Eng., University College

More information

COMPARISON OF DEMS DERIVED FROM INSAR AND OPTICAL STEREO TECHNIQUES

COMPARISON OF DEMS DERIVED FROM INSAR AND OPTICAL STEREO TECHNIQUES COMPARISON OF DEMS DERIVED FROM INSAR AND OPTICAL STEREO TECHNIQUES ABSTRACT Y.S. Rao and K.S. Rao Centre of Studies in Resources Engineering Indian Institute of Technology, Bombay Powai, Mumbai-400 076

More information

Scene Matching on Imagery

Scene Matching on Imagery Scene Matching on Imagery There are a plethora of algorithms in existence for automatic scene matching, each with particular strengths and weaknesses SAR scenic matching for interferometry applications

More information

SAOCOM 1A INTERFEROMETRIC ERROR MODEL AND ANALYSIS

SAOCOM 1A INTERFEROMETRIC ERROR MODEL AND ANALYSIS SAOCOM A INTERFEROMETRIC ERROR MODEL AND ANALYSIS Pablo Andrés Euillades (), Leonardo Daniel Euillades (), Mario Azcueta (), Gustavo Sosa () () Instituto CEDIAC FI UNCuyo & CONICET, Centro Universitario,

More information

THREE DIMENSIONAL SAR TOMOGRAPHY IN SHANGHAI USING HIGH RESOLU- TION SPACE-BORNE SAR DATA

THREE DIMENSIONAL SAR TOMOGRAPHY IN SHANGHAI USING HIGH RESOLU- TION SPACE-BORNE SAR DATA THREE DIMENSIONAL SAR TOMOGRAPHY IN SHANGHAI USING HIGH RESOLU- TION SPACE-BORNE SAR DATA Lianhuan Wei, Timo Balz, Kang Liu, Mingsheng Liao LIESMARS, Wuhan University, 129 Luoyu Road, 430079 Wuhan, China,

More information

Playa del Rey, California InSAR Ground Deformation Monitoring

Playa del Rey, California InSAR Ground Deformation Monitoring Playa del Rey, California InSAR Ground Deformation Monitoring Master Document Ref.: RV-14524 July 13, 2009 SUBMITTED TO: ATTN: Mr. Rick Gailing Southern California Gas Company 555 W. Fifth Street (Mail

More information

NEW IMPROVEMENTS OF THE EMCF PHASE UNWRAPPING ALGORITHM FOR SURFACE DEFORMATION ANALYSIS AT FULL SPATIAL RESOLUTION SCALE

NEW IMPROVEMENTS OF THE EMCF PHASE UNWRAPPING ALGORITHM FOR SURFACE DEFORMATION ANALYSIS AT FULL SPATIAL RESOLUTION SCALE NEW IMPROVEMENTS OF THE EMCF PHASE UNWRAPPING ALGORITHM FOR SURFACE DEFORMATION ANALYSIS AT FULL SPATIAL RESOLUTION SCALE Pepe A 1, Manunta M 1, Euillades L 2, Paglia L 1, Yang Y 1,3, and Lanari R 1 (1).

More information

Signal Processing Laboratory

Signal Processing Laboratory C.S.L Liege Science Park Avenue du Pré-Aily B-4031 ANGLEUR Belgium Tel: +32.4.382.46.00 Fax: +32.4.367.56.13 Signal Processing Laboratory Anne Orban VITO June 16, 2011 C. Barbier : the team Remote Sensing

More information

2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes

2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

IDENTIFICATION OF THE LOCATION PHASE SCREEN OF ERS-ENVISAT PERMANENT SCATTERERS

IDENTIFICATION OF THE LOCATION PHASE SCREEN OF ERS-ENVISAT PERMANENT SCATTERERS IDENTIFICATION OF THE LOCATION PHASE SCREEN OF ERS-ENVISAT PERMANENT SCATTERERS M. Arrigoni (1), C. Colesanti (1), A. Ferretti (2), D. Perissin (1), C. Prati (1), F. Rocca (1) (1) Dipartimento di Elettronica

More information

Sentinel-1 Toolbox. Offset Tracking Tutorial Issued August Jun Lu Luis Veci

Sentinel-1 Toolbox. Offset Tracking Tutorial Issued August Jun Lu Luis Veci Sentinel-1 Toolbox Offset Tracking Tutorial Issued August 2016 Jun Lu Luis Veci Copyright 2016 Array Systems Computing Inc. http://www.array.ca/ http://step.esa.int Offset Tracking Tutorial The goal of

More information

DEM RETRIEVAL AND GROUND MOTION MONITORING IN CHINA

DEM RETRIEVAL AND GROUND MOTION MONITORING IN CHINA DEM RETRIEVAL AND GROUND MOTION MONITORING IN CHINA Guido Gatti ¹, Daniele Perissin ², Teng Wang ¹ ³ and Fabio Rocca ¹ (1) Dipartimento di Elettronica e Informazione, Politecnico di Milano, via Ponzio

More information

RESOLUTION enhancement is achieved by combining two

RESOLUTION enhancement is achieved by combining two IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 1, JANUARY 2006 135 Range Resolution Improvement of Airborne SAR Images Stéphane Guillaso, Member, IEEE, Andreas Reigber, Member, IEEE, Laurent Ferro-Famil,

More information

PolSARpro v4.03 Forest Applications

PolSARpro v4.03 Forest Applications PolSARpro v4.03 Forest Applications Laurent Ferro-Famil Lecture on polarimetric SAR Theory and applications to agriculture & vegetation Thursday 19 April, morning Pol-InSAR Tutorial Forest Application

More information

Precise coregistration of Sentinel-1A TOPS data. Heresh Fattahi, Piyush Agram, Mark Simons

Precise coregistration of Sentinel-1A TOPS data. Heresh Fattahi, Piyush Agram, Mark Simons Precise coregistration of Sentinel-1A TOPS data Heresh Fattahi, Piyush Agram, Mark Simons Sentinel-1A TOPS Burst N Burst 3 Burst 2 Burst 1 [Prats-Iraola et al, 212] Swath1 Swath2 Swath3 [Sakar et al, 215]

More information

A Correlation Test: What were the interferometric observation conditions?

A Correlation Test: What were the interferometric observation conditions? A Correlation Test: What were the interferometric observation conditions? Correlation in Practical Systems For Single-Pass Two-Aperture Interferometer Systems System noise and baseline/volumetric decorrelation

More information

Improved SAR Image Coregistration Using Pixel-Offset Series

Improved SAR Image Coregistration Using Pixel-Offset Series Improved SAR Image Coregistration Using Pixel-Offset Series Item Type Article Authors Wang, Teng; Jonsson, Sigurjon; Hanssen, Ramon F. Citation Improved SAR Image Coregistration Using Pixel-Offset Series

More information

GROUND VERTICAL MOVEMENTS IN URBAN AREAS OF THE VENETO REGION (ITALY) DETECTED BY DInSAR

GROUND VERTICAL MOVEMENTS IN URBAN AREAS OF THE VENETO REGION (ITALY) DETECTED BY DInSAR GROUND VERTICAL MOVEMENTS IN URBAN AREAS OF THE VENETO REGION (ITALY) DETECTED BY DInSAR Tazio Strozzi 1, Laura Carbognin 2, Roberto Rosselli 3, Pietro Teatini 4, Luigi Tosi 2, Urs Wegmüller 1 1 Gamme

More information

Ground deformation monitoring at the Phlegrean Fields (Naples, Italy) from the exploitation of SAR data in the framework of CAT-1 and DUP activities

Ground deformation monitoring at the Phlegrean Fields (Naples, Italy) from the exploitation of SAR data in the framework of CAT-1 and DUP activities S. Borgström, I. Aquino, C. Del Gaudio, C. Ricco, V. Siniscalchi, G. Solaro, P. Tizzani & G.P. Ricciardi I.N.G.V. Osservatorio Vesuviano - Via Diocleziano 328, 80124 Naples, Italy INTRODUCTION CAT-1 1065

More information

Interferometric SAR Processing

Interferometric SAR Processing Documentation - Theory Interferometric SAR Processing Version 1.0 November 2007 GAMMA Remote Sensing AG, Worbstrasse 225, CH-3073 Gümligen, Switzerland tel: +41-31-951 70 05, fax: +41-31-951 70 08, email:

More information

Playa del Rey, California InSAR Ground Deformation Monitoring

Playa del Rey, California InSAR Ground Deformation Monitoring Document Title Playa del Rey, California InSAR Ground Deformation Monitoring Prepared By: (signature / date) Ref.: RV-14524 Project Manager: xxxxxx July 13, 2009 SUBMITTED TO: ATTN: Mr. Rick Gailing Southern

More information

A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers

A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L23611, doi:10.1029/2004gl021737, 2004 A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers Andrew Hooper,

More information

SUBSIDENCE MONITORING USING CONTIGUOUS AND PS-INSAR: QUALITY ASSESSMENT BASED ON PRECISION AND RELIABILITY

SUBSIDENCE MONITORING USING CONTIGUOUS AND PS-INSAR: QUALITY ASSESSMENT BASED ON PRECISION AND RELIABILITY Proceedings, 11 th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003. SUBSIDENCE MONITORING USING CONTIGUOUS AND PS-INSAR: QUALITY ASSESSMENT BASED ON PRECISION AND RELIABILITY Ramon F.

More information

ISPRS Journal of Photogrammetry and Remote Sensing. Ground settlement monitoring based on temporarily coherent points between

ISPRS Journal of Photogrammetry and Remote Sensing. Ground settlement monitoring based on temporarily coherent points between ISPRS Journal of Photogrammetry and Remote Sensing 66 (211) 146 152 Contents lists available at ScienceDirect ISPRS Journal of Photogrammetry and Remote Sensing journal homepage: www.elsevier.com/locate/isprsjprs

More information

MULTID FOCUSING FOR ACCURATE TARGET LOCATION AND TRACKING OF SLOW MOVEMENTS: RESULTS AND VALIDATION

MULTID FOCUSING FOR ACCURATE TARGET LOCATION AND TRACKING OF SLOW MOVEMENTS: RESULTS AND VALIDATION MULTID FOCUSING FOR ACCURATE TARGET LOCATION AND TRACKING OF SLOW MOVEMENTS: RESULTS AND VALIDATION F. Serafino 1, G. Fornaro 1, A. Pauciullo 1, F. Lombardini 2, M. Costantini 3 1 IREA-CNR via Diocleziano

More information

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course Do It Yourself 8 Polarization Coherence Tomography (P.C.T) Training Course 1 Objectives To provide a self taught introduction to Polarization Coherence Tomography (PCT) processing techniques to enable

More information

Target recognition by means of spaceborne C-band SAR data

Target recognition by means of spaceborne C-band SAR data Target recognition by means of spaceborne C-band SAR data Daniele Perissin, Claudio Prati Dipartimento di Elettronica e Informazione POLIMI - Politecnico di Milano Milano, Italy daniele.perissin@polimi.it

More information

ON THE PHYSICAL NATURE OF URBAN SAR PERMANENT SCATTERERS

ON THE PHYSICAL NATURE OF URBAN SAR PERMANENT SCATTERERS ON THE PHYSICAL NATURE OF URBAN SAR PERMANENT SCATTERERS Daniele Perissin (1), Claudio Prati (1) (1) Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy, Email: perissin@elet.polimi.it KEY

More information

ALOS PALSAR VERIFICATION PROCESSOR

ALOS PALSAR VERIFICATION PROCESSOR ALOS PALSAR VERIFICATION PROCESSOR P. Pasquali (1), A. Monti Guarnieri (2), D. D Aria (3), L. Costa (3), D. Small (4), M. Jehle (4) and B. Rosich (5) (1) sarmap s.a., Cascine di Barico, 6989 Purasca, Switzerland,

More information

FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR

FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR P. Pasquali (1), A. Monti Guarnieri (2), D. D Aria (3), L. Costa (3), D. Small (4), M. Jehle (4) and B. Rosich (5) (1) sarmap s.a., Cascine di Barico,

More information

Efficient Simulation of SAR Interferograms of Large Areas and of Rugged Terrain

Efficient Simulation of SAR Interferograms of Large Areas and of Rugged Terrain IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 6, JUNE 2003 1415 Efficient Simulation of SAR Interferograms of Large Areas and of Rugged Terrain Michael Eineder, Member, IEEE Abstract

More information

Terrafirma: a Pan-European Terrain motion hazard information service.

Terrafirma: a Pan-European Terrain motion hazard information service. Terrafirma: a Pan-European Terrain motion hazard information service www.terrafirma.eu.com The Future of Terrafirma - Wide Area Product Nico Adam and Alessandro Parizzi DLR Oberpfaffenhofen Terrafirma

More information