MULTID FOCUSING FOR ACCURATE TARGET LOCATION AND TRACKING OF SLOW MOVEMENTS: RESULTS AND VALIDATION

Size: px
Start display at page:

Download "MULTID FOCUSING FOR ACCURATE TARGET LOCATION AND TRACKING OF SLOW MOVEMENTS: RESULTS AND VALIDATION"

Transcription

1 MULTID FOCUSING FOR ACCURATE TARGET LOCATION AND TRACKING OF SLOW MOVEMENTS: RESULTS AND VALIDATION F. Serafino 1, G. Fornaro 1, A. Pauciullo 1, F. Lombardini 2, M. Costantini 3 1 IREA-CNR via Diocleziano Napoli Italy Fax (serafino.f, pauciullo.a, fornaro.g)@irea.cnr.it 2 Dipartimento di Ingegneria della Informazione, Università di Pisa Via G. Caruso, Pisa (Italy) Fax f.lombardini@iet.unipi.it 3 Telespazio S.p.A Via Tiburtina Roma (Italy) mario.costantini@telespazio.com Abstract Multi-Dimensional (MultiD) SAR imaging is a coherent data combination technique aimed to space (3D) and space-velocity (4D) focusing. It extends the concept of SAR interferometry and Differential SAR Interferometry and gives new options for the analysis and monitoring of ground scenes at high resolution. We present the results obtained by processing ERS real data. Atmospheric and low resolution deformation monitoring, used for the phase calibration of high resolution data, are obtained via the Enhanced Spatial Differences (ESD) technique. Ongoing work on 3D and 4D performances is also described. 1. INTRODUCTION In Earth Observation, unique capabilities are associated with the use of remote sensing via Synthetic Aperture Radars (SAR) and, particularly, with the extensions of SAR to interferometric modes and more generally to the joint use of coherent multiple acquisitions: the latter is a leading-edge research area usually referred to as coherent multichannel SAR data processing. By exploiting the phase interference between two (SAR Interferometry) or more (multibaseline SAR interferometry) views, accurate DEM can be generated. Furthermore, acquiring images at different time intervals (multitemporal or multipass SAR) precise tracking of the velocity of ground deformations at on accuracy of the order of mm/yr can be achieved [1]. Standard techniques essentially use only the phase information contained in the data, i.e.., they neglect the amplitude information. Moreover, to properly work, they assume the scattering mechanism to be of basic nature: i.e., dominated by a permanent (or better persistent) scatterer or distributed on the ground surface portion associated to the pixel. When the radiation penetrates under the surface, a situation that rarely occurs with existing ERS and ENVISAT sensors, operating at relatively high frequencies, or ground topography is as steep to generate critical projection of the scatterers in the slant imaging geometry (layover), or there is the presence of a high spatial density of strong scatterers, the signal received in a generic pixel may contain the superposition of responses coming from multiple scatterers. The latter two conditions are frequent when data are acquired over complex scenarios with an irregular surface profile such as urban areas or large infrastructures. Precise target height estimation, and thus precise target location, as well as the imization of the number of tracked scatterers are issues of primary importance, especially when imaging dense urban areas. SAR Tomography [2] is a way of overcoming limitations of standard interferometric based algorithms for target height determination by achieving fully 3D focused images. Differential SAR Tomography [3], i.e. the extension of 3D to 4D (space/velocity) SAR imaging not only makes proper use of amplitude information in dominant target monitoring but also allows separating and estimating possible relative deformations of targets interfering in the same resolution cell. Proc. Envisat Symposium 2007, Montreux, Switzerland April 2007 (ESA SP-636, July 2007)

2 2. BASICS OF MULTI-DIMENSIONAL IMAGING Let us refer to a SAR system acquiring data at temporal instants t n, n=1,,n and with a distribution along the elevation (baselines) b n n=1,,n referred to a master acquisition. Let us also assume the presence of a ground displacement, whose velocity component in the line of sight is equal to v. After accommodation of geometric phase factors and compensation of propagation delay due to the presence of the atmosphere (see the following section) the received signal at the n-th antenna in a given azimuth and range pixel at full resolution may be expressed as [4]: Core of the ESD, sketched in Figure 1 is the Spatial Differences (SD) step that allows achieving a quick preestimate of the Mean Deformation Velocity (MDV) and Residual Topography (RT) in a single and very simple step. The SD algorithm inherently provides APS mitigation via an analysis aimed at estimating the gradient of MDV and RT, and which involves a spatial filtering implemented by means of a spatial differentiation operation. SD step allows achieving only measures of the mean temporal evolution whereas no information is given time by time: this is necessary for the estimation of APS. g n = s s v v ( s, v) j2πξ n s+ j2πη v n γ e dvds (1) 2tn ζ n = 2b n ( λr) ηn = (2) λ where γ is the reflectivity 2D space-velocity distribution. 3D imaging can be considered as a particular case where γ ( s, v) = γ ( s) δ ( v), δ () v being the Dirac generalized function. Equation (1) shows that, but for proper phase-calibration pre-processing, the received data at different antennas correspond to the samples of the 2D Fourier Transform (FT) of the SV reflectivity density function at the frequencies described by (2). Our problem is to reconstruct the object function γ, that is to achieve a profiling of the scattering along the elevation and velocity, to identify dominant targets and separate interfering scatterers located at different elevation. It basically consists of an inversion of a linear problem with discrete data. Different techniques can be used, the simplest one being Beamforming, whereas another can be related to adaptive Beamforming [3]. In the processing of real data considered in this work we used a regularized approach based on the Singular Value Decomposition technique that shows advantages related to the robustness, simplicity, and provides also the possibility to directly work with full resolution data, see [2] for further details. 3. THE ESD TECHNIQUE To estimate the Atmospheric Phase Screen (APS) we used a low resolution Multipass DInSAR processing technique named Enhanced Spatial Differences (ESD). It allows separating APS and deformation components from a stack of interferograms formed by interferometric beatings of data acquired over multiple passes. ESD has been demonstrated [5] [6] to be a powerful technique for monitoring deformation at low resolution (small scale) over wide areas. Figure 1. Structure of the ESD technique To generate deformation time series, i.e., to track also possible non-linear time evolutions, the interferometric information must be accessed layer by layer on the multipass stack. To this end interferograms are spatially unwrapped: we use a procedure that enhances the solution starting form that achieved via the SD analysis, that conversely carries out a multibaseline unwrapping, by means of a phase subtraction and addition back. A system of linear equations between M knowns - the unwrapped interferometric phase - and N unknowns - the absolute phase values ϕ n ( i, j) for each acquisition - may be then written and inverted. APS is the result of a final spatial-temporal filtering on the resulting time series. 4. PERFORMANCE PREDICTION Work is in progress on developing analytical tools for performance prediction and characterization of precision limits in 3D Tomography and 4D Differential Tomography imaging, by extending the derivation of the

3 Cramér Rao Lower Bound (CRLB) for multibaseline estimation of multiple speckled signal components in [7][8]. A first extension for 3D Tomography accounts for residual phase miscalibration errors through the Hybrid CRLB tool, for the low resolution case [9]. A sample result is reported in Figure 2 for the used 58 tracks of next section, speckled signal from an elevationcompact source (baseline to critical baseline ratio 0.05), 10 looks, 1 mm standard deviation of residual atmospheric one-way path delay variations (0.02 in wavelength units) uncorrelated from track to track, compensated LOS velocity; the solid curve is the reference CRLB for no miscalibration. Derivation of CRLBs for 4D Differential Tomography has also started for the low resolution case in [10] also accounting for temporal decorrelation from a sample internal Brownian motion model [11][12], tackling both single and multiple acquisitions for each pass i.e. including the cooperative satellite formations case, or for the full resolution case. Such performance prediction tools, when further integrated together, may be used for judging estimator efficiency, characterizing potentials of the 3D and 4D imaging techniques, and as guidelines for designing multibaseline and multitemporal acquisitions patterns and systems. It is also worth noting that in the Differential Tomography framework, recent results give indication that impact of some temporal decorrelation sources on the elevation precision may be reduced (low resolution case) [13], as hinted in [3]. measures (stars) and the leveling network (squares) in the Campi Flegrei area. After compensation of APS, MultiD focusing is carried out. As far as 3D focusing and separation of different scatterers in height is concerned, the reader may refer to [14] where results for the same passes have shown the capability of the technique to separate double scatterers interfering within the same resolution cell. Figure 3. ESD Mean Deformation Velocity saturated in ±6mm/yr superimposed to a Landsat image ( Figure 2. Sample result of Hybrid Cramér Rao Lower Bound for 3D Tomography 5. RESULTS In our study we have used 58 images acquired over descending orbits track 36 - frame 2781 in the Campania area (temporal span is of about 10 years from 1992 to 2001). The MDV map for the whole frame is shown in Figure 3 whereas a particular of the deformations occurring in the urban area of Napoli is given in Figure 4. Measured radar deformations have been validated with classical geodetic data: see Figure 5 for the comparison between the vertical deformation radar Figure 4. Napoli Right: particular of the urban area of For what concerns 4D focusing, the processing has been carried out to achieve the profiling of the scattering distribution in the elevation-velocity domain. Subsequently data have been further processed to identify single (dominant) and double (dominant-weak pairs) scatterers via an automatic procedure that analysis

4 of the elevation-velocity pattern. Figure 6 shows the result of the full resolution analysis implemented, by the use, over a patch relative to the Campi Flegrei-Pozzuoli caldera at the West side of Napoli for single scatterers. In Figure 7 it is plotted the total large scale deformation time series for a pixel in the caldera. In Figure 8 it is shown the dominant scatterers distribution for the industrial area at the Eastern part of Napoli. Finally Figure 9 shows the results of 4D double scatterers separation (right) compared to the distribution of single scatterers (left). Double scatters lays at the same range and are located at different elevation; accordingly after geocoding the will appear as ground scatterers pairs aligned along the ground range direction that, for descending passes, points to West and is slightly rotated towards Nord. From Figure 9 it is evident the capability of 4D imaging to single out contributions of weaker scatterers (smaller full circles) from dominant scatters (larger full circles) Figure 5. Comparison between the ESD vertical radar deformation time series (stars) and leveling measures (squares). 6. CONCLUSIONS We have presented results of the multi-dimensional SAR imaging technique. They clearly show that such technique may be a valid alternative to the traditional Permanent Scatterers approach to monitor deformations at high resolution on dominant targets. Moreover, it allows extending the concept of Permanent Scatterers to separate multiple targets interfering in the same resolution cell. In particular, although current satellite technology provides only a single acquisition per time (i.e., multibaseline data are collected at different times, or conversely, only a single sample in the 2D spacevelocity spectral domain is present at each pass) we have shown that: a) 3D imaging can be performed and thus the separation of different scatterers interfering in the same resolution cell is possible, b) 4D imaging can be performed and thus the separation of different scatterers interfering in the same resolution cell as well as the estimation of their relative velocities is also possible. 7. ACKNOWLEDGMENTS The authors wish to thank the INGV-OV for providing the access to the raw data used in this study and the CRdC-AMRA for the use of the data processing-cluster. The authors are also grateful to Paolo Berardino and Giovanni Zeni for the support in data geocoding and GIS data integration, and to Gianni Ricciardi (INGV- OV) for providing the leveling measurements in the Campi Flegrei area. Special thanks are given to Dr. Matteo Pardini from University of Pisa, Department of Information Engineering, for his help with the Hybrid CRLB calculation. This work has been partially supported in the framework of the LIMES project, which has received research funding from the European Commission under FP SPACE-1/GMES SECURITY. 8. REFERENCES [1] A. Ferretti,, C. Prati, and F. Rocca, 2000, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. and Remote Sens., vol. 38 (5), pp , [2] G. Fornaro, F. Serafino, and F. Lombardini: 3D Multipass SAR Focusing: Experiments with Long-Term Spaceborne Data, IEEE Trans. Geosci. and Remote Sens., vol.43, pp , April [3] F. Lombardini, Differential Tomography: a New Framework for SAR Interferometry, IEEE Trans. Geosci. and Remote Sens., vol.43, pp , [4] G. Fornaro, F. Lombardini, F. Serafino, Multidimensional imaging with ERS data, Fringe 2005 Workshop, Frascati (Italy), 28 November 2 December 2005, ( programme.html). [5] G. Fornaro, A. Pauciullo and F. Serafino, Deformation Monitoring over large areas with Multipass Differential SAR Interferometry: a new approach based on the use of Spatial Differences, submitted to International Journal of Remote Sensing, January [6] G. Fornaro, A. Pauciullo and F. Serafino, Multipass SAR Processing for Urbanized Areas Imaging and Deformation Monitoring at Small and Large Scales, Proceeding of the IEEE Urban 2007 Conference, Paris [7] F. Gini, F. Lombardini, M. Montanari, Layover Solution in Multibaseline SAR Interferometry, IEEE Trans. on Aerospace and Electronic Systems, Vol. 38, No. 4, October 2002, pp [8] F. Lombardini, M. Montanari, F. Gini, Reflectivity Estimation for Multibaseline Interferometric Radar Imaging of Layover Extended Sources, IEEE Trans. on Signal Processing, Vol. 51, No. 6, June 2003, pp [9] M. Pardini, F. Lombardini, F. Gini, The Hybrid Cramér-Rao Bound for DOA Estimation of Extended Sources in Presence of Array Errors, submitted to IEEE Trans. on Signal Processing, Nov [10] F. Lombardini, M. Pardini, Sample Results on New Views on Temporal Decorrelation Effects, Internal Reports, University of Pisa, Dec. 2006, April [11] F. Lombardini, H.D. Griffiths, "Effect of Temporal Decorrelation on 3D SAR Imaging using Multiple Pass Beamforming," Proc. IEE-EUREL Meeting on Radar and Sonar Signal Processing, pp.34/1-34/4, Peebles, UK, July [12] F. Rocca, F. De Zan, A. Monti Guarnieri, S. Tebaldini, "Advantages of Sentinel-1 s Single Mode Short Revisit Time: Persistent Scatterer Quality Results with Distributed Scatterers," ESA ENVISAT Symposium, Montreux, Switzerland, April [13] F. Lombardini, New Potentials of Differential Tomography Robust DEM Generation, Internal Report, University of Pisa, April To be presented at IGARSS [14] G. Fornaro, and F. Serafino, Imaging Single and Double Scatterers in Urban Areas via SAR Tomography, IEEE Trans. Geosci. and Remote Sens, vol. 44 (12), pp , 2006.

5 Figure 6. Large scale results obtained via the use of the 4D (Differential Tomography) procedure: highlight on the dominant scatterers in the Campi Flegrei area close to Napoli overlaid to an ortophoto. Figure 7. Large scale deformation time series related to a dominant target with the high deformation rate located on the Campi Flegrei Caldera in the area.

6 Figure 8. Results obtained via the use of the 4D technique: highlight on dominant targets in the industrial area at East of Napoli overlaid to an ortophoto. Figure 9. Separation between scatterers interfering in the same azimuth-range pixel in the area of Vomero overlaid to an ortophoto. Left: dominant scatterers; right: double scatterers.

LINEAR AND NON-LINEAR LONG-TERM TERRAIN DEFORMATION WITH DINSAR (CPT: COHERENT PIXELS TECHNIQUE)

LINEAR AND NON-LINEAR LONG-TERM TERRAIN DEFORMATION WITH DINSAR (CPT: COHERENT PIXELS TECHNIQUE) LINEAR AND NON-LINEAR LONG-TERM TERRAIN DEFORMATION WITH DINSAR (CPT: COHERENT PIXELS TECHNIQUE) Jordi J. Mallorquí (1), Oscar Mora (1,2), Pablo Blanco (1), Antoni Broquetas (1) (1) Universitat Politècnica

More information

THREE DIMENSIONAL SAR TOMOGRAPHY IN SHANGHAI USING HIGH RESOLU- TION SPACE-BORNE SAR DATA

THREE DIMENSIONAL SAR TOMOGRAPHY IN SHANGHAI USING HIGH RESOLU- TION SPACE-BORNE SAR DATA THREE DIMENSIONAL SAR TOMOGRAPHY IN SHANGHAI USING HIGH RESOLU- TION SPACE-BORNE SAR DATA Lianhuan Wei, Timo Balz, Kang Liu, Mingsheng Liao LIESMARS, Wuhan University, 129 Luoyu Road, 430079 Wuhan, China,

More information

NEW IMPROVEMENTS OF THE EMCF PHASE UNWRAPPING ALGORITHM FOR SURFACE DEFORMATION ANALYSIS AT FULL SPATIAL RESOLUTION SCALE

NEW IMPROVEMENTS OF THE EMCF PHASE UNWRAPPING ALGORITHM FOR SURFACE DEFORMATION ANALYSIS AT FULL SPATIAL RESOLUTION SCALE NEW IMPROVEMENTS OF THE EMCF PHASE UNWRAPPING ALGORITHM FOR SURFACE DEFORMATION ANALYSIS AT FULL SPATIAL RESOLUTION SCALE Pepe A 1, Manunta M 1, Euillades L 2, Paglia L 1, Yang Y 1,3, and Lanari R 1 (1).

More information

Lateral Ground Movement Estimation from Space borne Radar by Differential Interferometry.

Lateral Ground Movement Estimation from Space borne Radar by Differential Interferometry. Lateral Ground Movement Estimation from Space borne Radar by Differential Interferometry. Abstract S.Sircar 1, 2, C.Randell 1, D.Power 1, J.Youden 1, E.Gill 2 and P.Han 1 Remote Sensing Group C-CORE 1

More information

WIDE BASELINE INTERFEROMETRY WITH VERY LOW RESOLUTION SAR SYSTEMS

WIDE BASELINE INTERFEROMETRY WITH VERY LOW RESOLUTION SAR SYSTEMS 1 of 25 26/03/2008 22.35 ne previo WIDE BASELINE INTERFEROMETRY WITH VERY LOW RESOLUTION SAR SYSTEMS Abstract: A. Monti Guarnieri, C. Prati, F. Rocca and Y-L. Desnos (*) Dipartimento di Elettronica e Informazione

More information

MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS

MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS MULTI-TEMPORAL INTERFEROMETRIC POINT TARGET ANALYSIS U. WEGMÜLLER, C. WERNER, T. STROZZI, AND A. WIESMANN Gamma Remote Sensing AG. Thunstrasse 130, CH-3074 Muri (BE), Switzerland wegmuller@gamma-rs.ch,

More information

AMBIGUOUS PSI MEASUREMENTS

AMBIGUOUS PSI MEASUREMENTS AMBIGUOUS PSI MEASUREMENTS J. Duro (1), N. Miranda (1), G. Cooksley (1), E. Biescas (1), A. Arnaud (1) (1). Altamira Information, C/ Còrcega 381 387, 2n 3a, E 8037 Barcelona, Spain, Email: javier.duro@altamira

More information

Coherence Based Polarimetric SAR Tomography

Coherence Based Polarimetric SAR Tomography I J C T A, 9(3), 2016, pp. 133-141 International Science Press Coherence Based Polarimetric SAR Tomography P. Saranya*, and K. Vani** Abstract: Synthetic Aperture Radar (SAR) three dimensional image provides

More information

A STATISTICAL-COST APPROACH TO UNWRAPPING THE PHASE OF INSAR TIME SERIES

A STATISTICAL-COST APPROACH TO UNWRAPPING THE PHASE OF INSAR TIME SERIES A STATISTICAL-COST APPROACH TO UNWRAPPING THE PHASE OF INSAR TIME SERIES Andrew Hooper Delft Institute of Earth Observation and Space Systems, Delft University of Technology, Delft, Netherlands, Email:

More information

Multi Baseline Interferometric Techniques and

Multi Baseline Interferometric Techniques and Pagina 1 di 11 FRINGE 96 Multi Baseline Interferometric Techniques and Applications A.Ferretti, A. Monti Guarnieri, C.Prati and F.Rocca Dipartimento di Elettronica e Informazione (DEI) Politecnico di Milano

More information

In addition, the image registration and geocoding functionality is also available as a separate GEO package.

In addition, the image registration and geocoding functionality is also available as a separate GEO package. GAMMA Software information: GAMMA Software supports the entire processing from SAR raw data to products such as digital elevation models, displacement maps and landuse maps. The software is grouped into

More information

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014 Sentinel-1 Toolbox TOPS Interferometry Tutorial Issued May 2014 Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ https://sentinel.esa.int/web/sentinel/toolboxes Interferometry Tutorial

More information

RESOLUTION enhancement is achieved by combining two

RESOLUTION enhancement is achieved by combining two IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 1, JANUARY 2006 135 Range Resolution Improvement of Airborne SAR Images Stéphane Guillaso, Member, IEEE, Andreas Reigber, Member, IEEE, Laurent Ferro-Famil,

More information

IDENTIFICATION OF THE LOCATION PHASE SCREEN OF ERS-ENVISAT PERMANENT SCATTERERS

IDENTIFICATION OF THE LOCATION PHASE SCREEN OF ERS-ENVISAT PERMANENT SCATTERERS IDENTIFICATION OF THE LOCATION PHASE SCREEN OF ERS-ENVISAT PERMANENT SCATTERERS M. Arrigoni (1), C. Colesanti (1), A. Ferretti (2), D. Perissin (1), C. Prati (1), F. Rocca (1) (1) Dipartimento di Elettronica

More information

Operational process interferometric for the generation of a digital model of ground Applied to the couple of images ERS-1 ERS-2 to the area of Algiers

Operational process interferometric for the generation of a digital model of ground Applied to the couple of images ERS-1 ERS-2 to the area of Algiers Operational process interferometric for the generation of a digital model of ground Applied to the couple of images ERS-1 ERS-2 to the area of Algiers F. Hocine, M.Ouarzeddine, A. elhadj-aissa,, M. elhadj-aissa,,

More information

Target recognition by means of spaceborne C-band SAR data

Target recognition by means of spaceborne C-band SAR data Target recognition by means of spaceborne C-band SAR data Daniele Perissin, Claudio Prati Dipartimento di Elettronica e Informazione POLIMI - Politecnico di Milano Milano, Italy daniele.perissin@polimi.it

More information

PSI Precision, accuracy and validation aspects

PSI Precision, accuracy and validation aspects PSI Precision, accuracy and validation aspects Urs Wegmüller Charles Werner Gamma Remote Sensing AG, Gümligen, Switzerland, wegmuller@gamma-rs.ch Contents Aim is to obtain a deeper understanding of what

More information

The 2017 InSAR package also provides support for the generation of interferograms for: PALSAR-2, TanDEM-X

The 2017 InSAR package also provides support for the generation of interferograms for: PALSAR-2, TanDEM-X Technical Specifications InSAR The Interferometric SAR (InSAR) package can be used to generate topographic products to characterize digital surface models (DSMs) or deformation products which identify

More information

SBAS- InSAR SERVICE WITHIN THE G- POD PLATFORM

SBAS- InSAR SERVICE WITHIN THE G- POD PLATFORM SBAS- InSAR SERVICE WITHIN THE G- POD PLATFORM USER MANUAL Prepared by: Reference: Issue: 2 Revision: 0 Claudio De Luca (CNR- IREA) Francesco Casu (CNR- IREA) IREA- GPOD- UM- 14-003 Date of Issue: November

More information

DEFORMATION MEASUREMENT USING INTERFEROMETRIC SAR DATA

DEFORMATION MEASUREMENT USING INTERFEROMETRIC SAR DATA DEFORMATION MEASUREMENT USING INTERFEROMETRIC SAR DATA M. Crosetto Institute of Geomatics, Campus de Castelldefels, 08860 Castelldefels (Barcelona), Spain - michele.crosetto@ideg.es Commission II, WG II/2

More information

Repeat-pass SAR Interferometry Experiments with Gaofen-3: A Case Study of Ningbo Area

Repeat-pass SAR Interferometry Experiments with Gaofen-3: A Case Study of Ningbo Area Repeat-pass SAR Interferometry Experiments with Gaofen-3: A Case Study of Ningbo Area Tao Zhang, Xiaolei Lv, Bing Han, Bin Lei and Jun Hong Key Laboratory of Technology in Geo-spatial Information Processing

More information

DINSAR: Differential SAR Interferometry

DINSAR: Differential SAR Interferometry DINSAR: Differential SAR Interferometry Fabio Rocca 1 SAR interferometric phase: ground motion contribution If a scatterer on the ground slightly changes its relative position in the time interval between

More information

Three-dimensional digital elevation model of Mt. Vesuvius from NASA/JPL TOPSAR

Three-dimensional digital elevation model of Mt. Vesuvius from NASA/JPL TOPSAR Cover Three-dimensional digital elevation model of Mt. Vesuvius from NASA/JPL TOPSAR G.ALBERTI, S. ESPOSITO CO.RI.S.T.A., Piazzale V. Tecchio, 80, I-80125 Napoli, Italy and S. PONTE Department of Aerospace

More information

SENTINEL-1 SUPPORT IN THE GAMMA SOFTWARE

SENTINEL-1 SUPPORT IN THE GAMMA SOFTWARE SENTINEL-1 SUPPORT IN THE GAMMA SOFTWARE Urs Wegmüller, Charles Werner, Tazio Strozzi, Andreas Wiesmann, Othmar Frey, and Maurizio Santoro Gamma Remote Sensing, Worbstrasse 225, 3073 Gümligen BE, Switzerland

More information

Interferometric processing. Rüdiger Gens

Interferometric processing. Rüdiger Gens Rüdiger Gens Why InSAR processing? extracting three-dimensional information out of a radar image pair covering the same area digital elevation model change detection 2 Processing chain 3 Processing chain

More information

ALOS-PALSAR performances on a multiple sensor DInSAR scenario for deformation monitoring

ALOS-PALSAR performances on a multiple sensor DInSAR scenario for deformation monitoring ALOS-PALSAR performances on a multiple sensor DInSAR scenario for deformation monitoring Pablo Blanco, Roman Arbiol and Vicenç Palà Remote Sensing Department Institut Cartogràfic de Catalunya (ICC) Parc

More information

A Correlation Test: What were the interferometric observation conditions?

A Correlation Test: What were the interferometric observation conditions? A Correlation Test: What were the interferometric observation conditions? Correlation in Practical Systems For Single-Pass Two-Aperture Interferometer Systems System noise and baseline/volumetric decorrelation

More information

DETECTION AND QUANTIFICATION OF ROCK GLACIER. DEFORMATION USING ERS D-InSAR DATA

DETECTION AND QUANTIFICATION OF ROCK GLACIER. DEFORMATION USING ERS D-InSAR DATA DETECTION AND QUANTIFICATION OF ROCK GLACIER DEFORMATION USING ERS D-InSAR DATA Lado W. Kenyi 1 and Viktor Kaufmann 2 1 Institute of Digital Image Processing, Joanneum Research Wastiangasse 6, A-8010 Graz,

More information

Tomographic SAR ABSTRACT 1.0 INTRODUCTION

Tomographic SAR ABSTRACT 1.0 INTRODUCTION Gianfranco Fornaro ational Research Council (CR) Institute for Electromagnetic Sensing of the Environment (IREA) Via Diocleziano, 38 I-8014 apoli ITALY fornaro.g@irea.cnr.it ABSTRACT Synthetic Aperture

More information

Multipass/Multiview Interferometric SAR

Multipass/Multiview Interferometric SAR Gianfranco Fornaro National Research Council (CNR) Institute for Electromagnetic Sensing of the Environment (IREA) Via Diocleziano, 328 I-80124 Napoli ITALY fornaro.g@irea.cnr.it ABSTRACT Synthetic Aperture

More information

Letter. Wide Band SAR Sub-Band Splitting and Inter-Band Coherence Measurements

Letter. Wide Band SAR Sub-Band Splitting and Inter-Band Coherence Measurements International Journal of Remote Sensing Vol. 00, No. 00, DD Month 200x, 1 8 Letter Wide Band SAR Sub-Band Splitting and Inter-Band Coherence Measurements D. DERAUW, A. ORBAN and Ch. BARBIER Centre Spatial

More information

Ground deformation monitoring at the Phlegrean Fields (Naples, Italy) from the exploitation of SAR data in the framework of CAT-1 and DUP activities

Ground deformation monitoring at the Phlegrean Fields (Naples, Italy) from the exploitation of SAR data in the framework of CAT-1 and DUP activities S. Borgström, I. Aquino, C. Del Gaudio, C. Ricco, V. Siniscalchi, G. Solaro, P. Tizzani & G.P. Ricciardi I.N.G.V. Osservatorio Vesuviano - Via Diocleziano 328, 80124 Naples, Italy INTRODUCTION CAT-1 1065

More information

Sentinel-1 Toolbox. Interferometry Tutorial Issued March 2015 Updated August Luis Veci

Sentinel-1 Toolbox. Interferometry Tutorial Issued March 2015 Updated August Luis Veci Sentinel-1 Toolbox Interferometry Tutorial Issued March 2015 Updated August 2016 Luis Veci Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ http://step.esa.int Interferometry Tutorial The

More information

Interferometric Synthetic-Aperture Radar (InSAR) Basics

Interferometric Synthetic-Aperture Radar (InSAR) Basics Interferometric Synthetic-Aperture Radar (InSAR) Basics 1 Outline SAR limitations Interferometry SAR interferometry (InSAR) Single-pass InSAR Multipass InSAR InSAR geometry InSAR processing steps Phase

More information

ARTIFICIAL SCATTERERS FOR S.A.R. INTERFEROMETRY

ARTIFICIAL SCATTERERS FOR S.A.R. INTERFEROMETRY ARTIFICIAL SCATTERERS FOR S.A.R. INTERFEROMETRY Parizzi A. (1), Perissin D. (1), Prati C. (1), Rocca F. (1) (1) Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy ABSTRACT. The evaluation of land

More information

DETECTING REGULAR PATTERNS IN URBAN PS SETS

DETECTING REGULAR PATTERNS IN URBAN PS SETS DETECTING REGULAR PATTERNS IN URBAN PS SETS Alexander Schunert, Uwe Soergel Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany ABSTRACT The analysis of SAR data stacks

More information

SAR Interferometry. Dr. Rudi Gens. Alaska SAR Facility

SAR Interferometry. Dr. Rudi Gens. Alaska SAR Facility SAR Interferometry Dr. Rudi Gens Alaska SAR Facility 2 Outline! Relevant terms! Geometry! What does InSAR do?! Why does InSAR work?! Processing chain " Data sets " Coregistration " Interferogram generation

More information

FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR

FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR FIRST RESULTS OF THE ALOS PALSAR VERIFICATION PROCESSOR P. Pasquali (1), A. Monti Guarnieri (2), D. D Aria (3), L. Costa (3), D. Small (4), M. Jehle (4) and B. Rosich (5) (1) sarmap s.a., Cascine di Barico,

More information

AIRBORNE synthetic aperture radar (SAR) systems

AIRBORNE synthetic aperture radar (SAR) systems IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL 3, NO 1, JANUARY 2006 145 Refined Estimation of Time-Varying Baseline Errors in Airborne SAR Interferometry Andreas Reigber, Member, IEEE, Pau Prats, Student

More information

GAMMA Interferometric Point Target Analysis Software (IPTA): Users Guide

GAMMA Interferometric Point Target Analysis Software (IPTA): Users Guide GAMMA Interferometric Point Target Analysis Software (IPTA): Users Guide Contents User Handbook Introduction IPTA overview Input data Point list generation SLC point data Differential interferogram point

More information

INTERFEROMETRIC MULTI-CHROMATIC ANALYSIS OF HIGH RESOLUTION X-BAND DATA

INTERFEROMETRIC MULTI-CHROMATIC ANALYSIS OF HIGH RESOLUTION X-BAND DATA INTERFEROMETRIC MULTI-CHROMATIC ANALYSIS OF HIGH RESOLUTION X-BAND DATA F. Bovenga (1), V. M. Giacovazzo (1), A. Refice (1), D.O. Nitti (2), N. Veneziani (1) (1) CNR-ISSIA, via Amendola 122 D, 70126 Bari,

More information

InSAR Operational and Processing Steps for DEM Generation

InSAR Operational and Processing Steps for DEM Generation InSAR Operational and Processing Steps for DEM Generation By F. I. Okeke Department of Geoinformatics and Surveying, University of Nigeria, Enugu Campus Tel: 2-80-5627286 Email:francisokeke@yahoo.com Promoting

More information

Scene Matching on Imagery

Scene Matching on Imagery Scene Matching on Imagery There are a plethora of algorithms in existence for automatic scene matching, each with particular strengths and weaknesses SAR scenic matching for interferometry applications

More information

Interferometry Tutorial with RADARSAT-2 Issued March 2014 Last Update November 2017

Interferometry Tutorial with RADARSAT-2 Issued March 2014 Last Update November 2017 Sentinel-1 Toolbox with RADARSAT-2 Issued March 2014 Last Update November 2017 Luis Veci Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ http://step.esa.int with RADARSAT-2 The goal of

More information

ALOS PALSAR VERIFICATION PROCESSOR

ALOS PALSAR VERIFICATION PROCESSOR ALOS PALSAR VERIFICATION PROCESSOR P. Pasquali (1), A. Monti Guarnieri (2), D. D Aria (3), L. Costa (3), D. Small (4), M. Jehle (4) and B. Rosich (5) (1) sarmap s.a., Cascine di Barico, 6989 Purasca, Switzerland,

More information

Synthetic Aperture Radar Interferometry (InSAR)

Synthetic Aperture Radar Interferometry (InSAR) CEE 6100 / CSS 6600 Remote Sensing Fundamentals 1 Synthetic Aperture Radar Interferometry (InSAR) Adapted from and the ESA Interferometric SAR overview by Rocca et al. http://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/

More information

fraction of Nyquist

fraction of Nyquist differentiator 4 2.1.2.3.4.5.6.7.8.9 1 1 1/integrator 5.1.2.3.4.5.6.7.8.9 1 1 gain.5.1.2.3.4.5.6.7.8.9 1 fraction of Nyquist Figure 1. (top) Transfer functions of differential operators (dotted ideal derivative,

More information

DEM RETRIEVAL AND GROUND MOTION MONITORING IN CHINA

DEM RETRIEVAL AND GROUND MOTION MONITORING IN CHINA DEM RETRIEVAL AND GROUND MOTION MONITORING IN CHINA Guido Gatti ¹, Daniele Perissin ², Teng Wang ¹ ³ and Fabio Rocca ¹ (1) Dipartimento di Elettronica e Informazione, Politecnico di Milano, via Ponzio

More information

Playa del Rey, California InSAR Ground Deformation Monitoring

Playa del Rey, California InSAR Ground Deformation Monitoring Playa del Rey, California InSAR Ground Deformation Monitoring Master Document Ref.: RV-14524 July 13, 2009 SUBMITTED TO: ATTN: Mr. Rick Gailing Southern California Gas Company 555 W. Fifth Street (Mail

More information

SAOCOM 1A INTERFEROMETRIC ERROR MODEL AND ANALYSIS

SAOCOM 1A INTERFEROMETRIC ERROR MODEL AND ANALYSIS SAOCOM A INTERFEROMETRIC ERROR MODEL AND ANALYSIS Pablo Andrés Euillades (), Leonardo Daniel Euillades (), Mario Azcueta (), Gustavo Sosa () () Instituto CEDIAC FI UNCuyo & CONICET, Centro Universitario,

More information

Multipass/Multiview Interferometric SAR

Multipass/Multiview Interferometric SAR Gianfranco Fornaro National Research Council (CNR) Institute for Electromagnetic Sensing of the Environment (IREA) Via Diocleziano, 328 I-80124 Napoli ITALY fornaro.g@irea.cnr.it ABSTRACT Synthetic Aperture

More information

Deformation Monitoring Using Sentinel-1 SAR Data

Deformation Monitoring Using Sentinel-1 SAR Data Proceedings Deformation Monitoring Using Sentinel-1 SAR Data Núria Devanthéry 1, *, Michele Crosetto 1, Oriol Monserrat 1, María Cuevas-González 1 and Bruno Crippa 2 1 Centre Tecnològic de Telecomunicacions

More information

Playa del Rey, California InSAR Ground Deformation Monitoring

Playa del Rey, California InSAR Ground Deformation Monitoring Document Title Playa del Rey, California InSAR Ground Deformation Monitoring Prepared By: (signature / date) Ref.: RV-14524 Project Manager: xxxxxx July 13, 2009 SUBMITTED TO: ATTN: Mr. Rick Gailing Southern

More information

Airborne Differential SAR Interferometry: First Results at L-Band

Airborne Differential SAR Interferometry: First Results at L-Band 1516 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 6, JUNE 2003 Airborne Differential SAR Interferometry: First Results at L-Band Andreas Reigber, Member, IEEE, and Rolf Scheiber Abstract

More information

First TOPSAR image and interferometry results with TerraSAR-X

First TOPSAR image and interferometry results with TerraSAR-X First TOPSAR image and interferometry results with TerraSAR-X A. Meta, P. Prats, U. Steinbrecher, R. Scheiber, J. Mittermayer DLR Folie 1 A. Meta - 29.11.2007 Introduction Outline TOPSAR acquisition mode

More information

ERS AND ENVISAT DIFFERENTIAL SAR INTERFEROMETRY FOR SUBSIDENCE MONITORING

ERS AND ENVISAT DIFFERENTIAL SAR INTERFEROMETRY FOR SUBSIDENCE MONITORING ERS AND ENVISAT DIFFERENTIAL SAR INTERFEROMETRY FOR SUBSIDENCE MONITORING Urs Wegmüller 1, Tazio Strozzi 1, and Luigi Tosi 2 1 Gamma Remote Sensing, Thunstrasse 130, CH-3074 Muri b. Bern, Switzerland Tel:

More information

Terrafirma: a Pan-European Terrain motion hazard information service.

Terrafirma: a Pan-European Terrain motion hazard information service. Terrafirma: a Pan-European Terrain motion hazard information service www.terrafirma.eu.com The Future of Terrafirma - Wide Area Product Nico Adam and Alessandro Parizzi DLR Oberpfaffenhofen Terrafirma

More information

SENTINEL-1 PRECISE ORBIT CALIBRATION AND VALIDATION

SENTINEL-1 PRECISE ORBIT CALIBRATION AND VALIDATION SENTINEL-1 PRECISE ORBIT CALIBRATION AND VALIDATION Andrea Monti Guarnieri, Simone Mancon, and Stefano Tebaldini Politecnico di Milano, Italy ABSTRACT In this paper, we propose a model-based procedure

More information

Ice surface velocities using SAR

Ice surface velocities using SAR Ice surface velocities using SAR Thomas Schellenberger, PhD ESA Cryosphere Remote Sensing Training Course 2018 UNIS Longyearbyen, Svalbard 12 th June 2018 thomas.schellenberger@geo.uio.no Outline Synthetic

More information

Compressive Sensing and Generalized Likelihood Ratio Test in SAR Tomography

Compressive Sensing and Generalized Likelihood Ratio Test in SAR Tomography Comressive Sensing and Generalized Likelihood Ratio Test in SAR Tomograhy G. Fornaro,, A. Pauciullo, D. Reale, M. Weiss 3, A. Budillon, G. Schirinzi - Institute for Electromagnetic Sensing of the Environment

More information

LONG-TERM SUBSIDENCE MONITORING OF CITY AREAS AT NORDIC LATITUDES USING ERS SAR DATA

LONG-TERM SUBSIDENCE MONITORING OF CITY AREAS AT NORDIC LATITUDES USING ERS SAR DATA LONG-TERM SUBSIDENCE MONITORING OF CITY AREAS AT NORDIC LATITUDES USING ERS SAR DATA Tom R. Lauknes (1,2), Geir Engen (1), Kjell A. Høgda (1), Inge Lauknes (1), Torbjørn Eltoft (2), Dan J. Weydahl (3)

More information

SEA SURFACE SPEED FROM TERRASAR-X ATI DATA

SEA SURFACE SPEED FROM TERRASAR-X ATI DATA SEA SURFACE SPEED FROM TERRASAR-X ATI DATA Matteo Soccorsi (1) and Susanne Lehner (1) (1) German Aerospace Center, Remote Sensing Technology Institute, 82234 Weßling, Germany, Email: matteo.soccorsi@dlr.de

More information

Inversion Algorithms and PS Detection in SAR Tomography, Case Study of Bucharest City

Inversion Algorithms and PS Detection in SAR Tomography, Case Study of Bucharest City 20 Telfor Journal, Vol. 8, o., 206. Inversion Algorithms and PS Detection in SAR Tomography, Case Study of Bucharest City Cosmin Dănişor, Student Member, IEEE, Gianfranco Fornaro, Senior Member, IEEE,

More information

DEFORMATION MONITORING OF URBAN INFRASTRUCTURE BY TOMOGRAPHIC SAR USING MULTI-VIEW TERRASAR-X DATA STACKS

DEFORMATION MONITORING OF URBAN INFRASTRUCTURE BY TOMOGRAPHIC SAR USING MULTI-VIEW TERRASAR-X DATA STACKS DEFORMATION MONITORING OF URBAN INFRASTRUCTURE BY TOMOGRAPHIC SAR USING MULTI-VIEW TERRASAR-X DATA STACKS Sina Montazeri (1), Xiao Xiang Zhu (1,2), Michael Eineder (1,2), Ramon F. Hanssen (3), Richard

More information

APPLICATION OF SAR INTERFEROMETRIC TECHNIQUES FOR SURFACE DEFORMATION MONITORING

APPLICATION OF SAR INTERFEROMETRIC TECHNIQUES FOR SURFACE DEFORMATION MONITORING APPLICATION OF SAR INTERFEROMETRIC TECHNIQUES FOR SURFACE DEFORMATION MONITORING Urs Wegmüller, Charles Werner, Tazio Strozzi, and Andreas Wiesmann Gamma Remote Sensing, Worbstrasse 225, 3073 Gümligen,

More information

GMES TERRAFIRMA. Validation of existing processing chains in Terrafirma stage 2 LIST OF OSP DELIVERABLES EXTENDED

GMES TERRAFIRMA. Validation of existing processing chains in Terrafirma stage 2 LIST OF OSP DELIVERABLES EXTENDED GMES TERRAFIRMA ESRIN/Contract no. 19366/05/I-E Validation of existing processing chains in Terrafirma stage 2 LIST OF OSP DELIVERABLES EXTENDED 5 th July 2007 Final version - ERS M. Crosetto, M. Agudo

More information

Progress In Electromagnetics Research M, Vol. 14, 15 32, 2010 RECONSTRUCTING HIGH-ACCURACY DEM WITH PRECISE ORBIT DATA AND EXTERNAL DEM

Progress In Electromagnetics Research M, Vol. 14, 15 32, 2010 RECONSTRUCTING HIGH-ACCURACY DEM WITH PRECISE ORBIT DATA AND EXTERNAL DEM Progress In Electromagnetics Research M, Vol. 14, 15 32, 2010 RECONSTRUCTING HIGH-ACCURACY DEM WITH PRECISE ORBIT DATA AND EXTERNAL DEM A. Bin School of Marine Sciences Sun Yat-sen University Guangzhou

More information

ON THE PHYSICAL NATURE OF URBAN SAR PERMANENT SCATTERERS

ON THE PHYSICAL NATURE OF URBAN SAR PERMANENT SCATTERERS ON THE PHYSICAL NATURE OF URBAN SAR PERMANENT SCATTERERS Daniele Perissin (1), Claudio Prati (1) (1) Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy, Email: perissin@elet.polimi.it KEY

More information

COREGISTRATION BETWEEN SAR IMAGE SUBSETS USING POINTWISE TARGETS

COREGISTRATION BETWEEN SAR IMAGE SUBSETS USING POINTWISE TARGETS COREGISTRATION BETWEEN SAR IMAGE SUBSETS USING POINTWISE TARGETS Teng Wang (1), Sigurjón Jónsson (1), Ramon Hanssen (2) (1) Division of Physical Sciences and Engineering, King Abdullah University of Science

More information

WIDE AREA DEFORMATION MAP GENERATION WITH TERRASAR-X DATA: THE TOHOKU-OKI EARTHQUAKE 2011 CASE

WIDE AREA DEFORMATION MAP GENERATION WITH TERRASAR-X DATA: THE TOHOKU-OKI EARTHQUAKE 2011 CASE WIDE AREA DEFORMATION MAP GENERATION WITH TERRASAR-X DATA: THE TOHOKU-OKI EARTHQUAKE 2011 CASE Nestor Yague-Martinez (1), Michael Eineder (2), Christian Minet (2), Birgitt Schättler (2) (1) Starlab Barcelona

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION The PSIG procedure to Persistent Scatterer Interferometry (PSI) using X-band and C-band Sentinel-1 data María Cuevas-González* a, Núria Devanthéry a, Michele Crosetto a, Oriol Monserrat a, Bruno Crippa

More information

A simple solution to mitigate noise effects in timeredundant sequences of small baseline multi-look DInSAR interferograms

A simple solution to mitigate noise effects in timeredundant sequences of small baseline multi-look DInSAR interferograms Remote Sensing Letters ISSN: 2150-704X (Print) 2150-7058 (Online) Journal homepage: https://www.tandfonline.com/loi/trsl20 A simple solution to mitigate noise effects in timeredundant sequences of small

More information

ICE VELOCITY measurements are fundamentally important

ICE VELOCITY measurements are fundamentally important 102 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 4, NO. 1, JANUARY 2007 Synergistic Fusion of Interferometric and Speckle-Tracking Methods for Deriving Surface Velocity From Interferometric SAR Data

More information

INTEGRATED USE OF INTERFEROMETRIC SAR DATA AND LEVELLING MEASUREMENTS FOR MONITORING LAND SUBSIDENCE

INTEGRATED USE OF INTERFEROMETRIC SAR DATA AND LEVELLING MEASUREMENTS FOR MONITORING LAND SUBSIDENCE INTEGRATED USE OF INTERFEROMETRIC SAR DATA AND LEVELLING MEASUREMENTS FOR MONITORING LAND SUBSIDENCE Yueqin Zhou *, Martien Molenaar *, Deren Li ** * International Institute for Aerospace Survey and Earth

More information

RADARGRAMMETRY AND INTERFEROMETRY SAR FOR DEM GENERATION

RADARGRAMMETRY AND INTERFEROMETRY SAR FOR DEM GENERATION RADARGRAMMETRY AND INTERFEROMETRY SAR FOR DEM GENERATION Jung Hum Yu 1, Xiaojing Li, Linlin Ge, and Hsing-Chung Chang School of Surveying and Spatial Information Systems University of New South Wales,

More information

An empirical model for interferometric coherence

An empirical model for interferometric coherence An empirical model for interferometric coherence Chaabane F. a, Tupin F. b and Maître H. b a URISA-SUP COM, 3.5 route de Raoued, 283 Ariana, Tunisie b GET-Télécom-Paris - CNRS URA 82, 46 rue Barrault,

More information

Filtering, unwrapping, and geocoding R. Mellors

Filtering, unwrapping, and geocoding R. Mellors Filtering, unwrapping, and geocoding R. Mellors or what to do when your interferogram looks like this correlation Haiti ALOS L-band (23 cm) ascend T447, F249 3/9/09-1/25/10 azimuth phase Bperp = 780 (gmtsar)

More information

DEFORMATION MONITORING USING REMOTELY SENSED RADAR INTERFEROMETRIC DATA

DEFORMATION MONITORING USING REMOTELY SENSED RADAR INTERFEROMETRIC DATA Proceedings, 11 th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003. DEFORMATION MONITORING USING REMOTELY SENSED RADAR INTERFEROMETRIC DATA Michele Crosetto 1, Alain Arnaud 2, Javier

More information

2-PASS DIFFERENTIAL INTERFEROMETRY IN THE AREA OF THE SLATINICE ABOVE- LEVEL DUMP. Milan BOŘÍK 1

2-PASS DIFFERENTIAL INTERFEROMETRY IN THE AREA OF THE SLATINICE ABOVE- LEVEL DUMP. Milan BOŘÍK 1 2-PASS DIFFERENTIAL INTERFEROMETRY IN THE AREA OF THE SLATINICE ABOVE- LEVEL DUMP Milan BOŘÍK 1 1 Department of Mathematics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova

More information

Ground Subsidence Monitored by L-band Satellite Radar. Interferometry

Ground Subsidence Monitored by L-band Satellite Radar. Interferometry Ground Subsidence Monitored by L-band Satellite Radar Interferometry Hsing-Chung Chang, Ming-han Chen, Lijiong Qin, Linlin Ge and Chris Rizos Satellite Navigation And Positioning Group School of Surveying

More information

Interferometry Module for Digital Elevation Model Generation

Interferometry Module for Digital Elevation Model Generation Interferometry Module for Digital Elevation Model Generation In order to fully exploit processes of the Interferometry Module for Digital Elevation Model generation, the European Space Agency (ESA) has

More information

TEXTURE FREE RADARGRAMMETRIC PROCESSING OF OPPOSITE-VIEW TOMOSAR DATA FOR DEM ESTIMATION

TEXTURE FREE RADARGRAMMETRIC PROCESSING OF OPPOSITE-VIEW TOMOSAR DATA FOR DEM ESTIMATION TEXTURE FREE RADARGRAMMETRIC PROCESSING OF OPPOSITE-VIEW TOMOSAR DATA FOR DEM ESTIMATION Francesco Banda, Stefano Tebaldini Politecnico di Milano, DEIB ABSTRACT In this paper we propose a new methodology

More information

Individual Interferograms to Stacks!

Individual Interferograms to Stacks! Individual Interferograms to Stacks! Piyush Agram! Jet Propulsion Laboratory!! Jun 29, 2015! @UNAVCO! Thanks to my colleagues from JPL, Caltech, Stanford University and from all over the world for providing

More information

Combination of GNSS and InSAR for Future Australian Datums

Combination of GNSS and InSAR for Future Australian Datums Combination of GNSS and InSAR for Future Australian Datums Thomas Fuhrmann, Matt Garthwaite, Sarah Lawrie, Nick Brown Interferometric Synthetic Aperture Radar Motivation Current situation Static Datum:

More information

SAR Interferometry: a Quick and Dirty Coherence Estimator for Data Browsing

SAR Interferometry: a Quick and Dirty Coherence Estimator for Data Browsing SAR Interferometry: a Quick and Dirty Coherence Estimator for Data Browsing A. Monti Guarnieri, C. Prati Dipartimento di Elettronica - Politecnico di Milano Piazza. da Vinci, 3-0133 Milano - Italy Ph.:

More information

Individual Interferograms to Stacks

Individual Interferograms to Stacks Individual Interferograms to Stacks Piyush Agram Jet Propulsion Laboratory Aug 1, 2016 @UNAVCO Thanks to my colleagues from JPL, Caltech, Stanford University and from all over the world for providing images

More information

GROUND VERTICAL MOVEMENTS IN URBAN AREAS OF THE VENETO REGION (ITALY) DETECTED BY DInSAR

GROUND VERTICAL MOVEMENTS IN URBAN AREAS OF THE VENETO REGION (ITALY) DETECTED BY DInSAR GROUND VERTICAL MOVEMENTS IN URBAN AREAS OF THE VENETO REGION (ITALY) DETECTED BY DInSAR Tazio Strozzi 1, Laura Carbognin 2, Roberto Rosselli 3, Pietro Teatini 4, Luigi Tosi 2, Urs Wegmüller 1 1 Gamme

More information

InSAR DEM; why it is better?

InSAR DEM; why it is better? InSAR DEM; why it is better? What is a DEM? Digital Elevation Model (DEM) refers to the process of demonstrating terrain elevation characteristics in 3-D space, but very often it specifically means the

More information

Interferometric SAR Processing

Interferometric SAR Processing Documentation - Theory Interferometric SAR Processing Version 1.0 November 2007 GAMMA Remote Sensing AG, Worbstrasse 225, CH-3073 Gümligen, Switzerland tel: +41-31-951 70 05, fax: +41-31-951 70 08, email:

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

NOISE SUSCEPTIBILITY OF PHASE UNWRAPPING ALGORITHMS FOR INTERFEROMETRIC SYNTHETIC APERTURE SONAR

NOISE SUSCEPTIBILITY OF PHASE UNWRAPPING ALGORITHMS FOR INTERFEROMETRIC SYNTHETIC APERTURE SONAR Proceedings of the Fifth European Conference on Underwater Acoustics, ECUA 000 Edited by P. Chevret and M.E. Zakharia Lyon, France, 000 NOISE SUSCEPTIBILITY OF PHASE UNWRAPPING ALGORITHMS FOR INTERFEROMETRIC

More information

SUBSIDENCE MONITORING USING CONTIGUOUS AND PS-INSAR: QUALITY ASSESSMENT BASED ON PRECISION AND RELIABILITY

SUBSIDENCE MONITORING USING CONTIGUOUS AND PS-INSAR: QUALITY ASSESSMENT BASED ON PRECISION AND RELIABILITY Proceedings, 11 th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003. SUBSIDENCE MONITORING USING CONTIGUOUS AND PS-INSAR: QUALITY ASSESSMENT BASED ON PRECISION AND RELIABILITY Ramon F.

More information

The Staggered SAR Concept: Imaging a Wide Continuous Swath with High Resolution

The Staggered SAR Concept: Imaging a Wide Continuous Swath with High Resolution The Staggered SAR Concept: Imaging a Wide Continuous Swath with High Resolution Michelangelo Villano *, Gerhard Krieger *, Alberto Moreira * * German Aerospace Center (DLR), Microwaves and Radar Institute

More information

A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms

A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 11, NOVEMBER 2002 2375 A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms Paolo

More information

MIMO-SAR Tomography. Abstract. 1 Introduction

MIMO-SAR Tomography. Abstract. 1 Introduction MIMO-SAR Tomography Gerhard Krieger, DLR, Microwaves and Radar Institute, gerhard.krieger@dlr.de, Germany Tobias Rommel, DLR, Microwaves and Radar Institute, tobias.rommel@dlr.de, Germany Alberto Moreira,

More information

A SPECTRAL ANALYSIS OF SINGLE ANTENNA INTERFEROMETRY. Craig Stringham

A SPECTRAL ANALYSIS OF SINGLE ANTENNA INTERFEROMETRY. Craig Stringham A SPECTRAL ANALYSIS OF SINGLE ANTENNA INTERFEROMETRY Craig Stringham Microwave Earth Remote Sensing Laboratory Brigham Young University 459 CB, Provo, UT 84602 March 18, 2013 ABSTRACT This paper analyzes

More information

SAR time series. JM Nicolas F. Tupin

SAR time series. JM Nicolas F. Tupin SAR time series JM Nicolas F. Tupin Context Golden age of SAR sensors: improved spatial, polarimetric and temporal resolutions CSK TerraSAR-X Sentinel I RadarSAT-2 page 1 SAR sensors resolutions Polarimetric

More information

Mission Status and Data Availability: TanDEM-X

Mission Status and Data Availability: TanDEM-X Mission Status and Data Availability: TanDEM-X Irena Hajnsek, Thomas Busche, Alberto Moreira & TanDEM-X Team Microwaves and Radar Institute, German Aerospace Center irena.hajnsek@dlr.de 26-Jan-2009 Outline

More information

VALIDATION OF PERSISTENT SCATTERERS INTERFEROMETRY OVER A MINING TEST SITE: RESULTS OF THE PSIC4 PROJECT

VALIDATION OF PERSISTENT SCATTERERS INTERFEROMETRY OVER A MINING TEST SITE: RESULTS OF THE PSIC4 PROJECT VALIDATION OF PERSISTENT SCATTERERS INTERFEROMETRY OVER A MINING TEST SITE: RESULTS OF THE PSIC4 PROJECT Crosetto M. (1), Agudo M. (1), Raucoules D. (2), Bourgine B. (2), de Michele M. (2), Le Cozannet

More information

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 7, JULY

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 7, JULY IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 7, JULY 2004 1377 A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms Ricardo Lanari,

More information