Constructing 3D graph of function with GeoGebra(2D)

Size: px
Start display at page:

Download "Constructing 3D graph of function with GeoGebra(2D)"

Transcription

1 Constructing 3D graph of function with GeoGebra(2D) Jeong-Eun Park Gyeonggi-Buk Science High School Young-Hyun Son Gyeonggi-Buk Science High School O-Won Kwon Gyeonggi-Buk Science High School Hee-Chan Yang Gyeonggi-Buk Science High School Kyeong-Sik Choi Seoul National University Abstract In the secondary school of Korea, students study 3-dimensional figures in the textbook. Without proper model of 3-dimensional space, however, they have studied 3-dimensional figures. In this study, we constructed the environment of 3-dimensional space in which teachers and students can handle in perspective of algebra and geometry. As software of 2-dimensional space, GeoGebra is a dynamic mathematics software of integrating views of algebra and geometry. We expanded the functionality, manipulating mathematical objects in perspective of algebra and geometry simultaneously, into 3-dimensional space. We created basis of 3-dimensional space using transformation of rotation and projected the basis into the plane. Then we applied our 3-dimensional space into constructing polyhedron, curves and surfaces in 3-dimensional space. Key words: GeoGebra, 3-dimension, graphs, perspective of algebra and geometry 1. Introduction In Korea, many students in the secondary school studies figures in 3-dimensional space. In middle school, from 7 th grade to 9 th grade, students studies regular polyhedrons in the textbook. In high school, from 10 th grade to 12 th grade, students studies 3-dimensional cartesian space with vector and euclidean geometry. Especially, Korean students manipulate equations which represents points, curves and surfaces with algebraic equations or vector equations. In middle school, students sometimes experienced real polyhedrons for understanding properties of 3-dimensional figures. In high school of Korea, however, students have little chance of experiencing real or cyber 3-dimensional figures. Kang and Choi-Koh (1999) studied development of instructional materials for 3-dimensional figures using computer software. Especially, they proposed some examples of exploring 3-dimensional figures with GSP (Geometer s

2 Sketchpad). Their examples were suitable for curriculum of middle school in Korea. In their examples, however, regular polyhedrons couldn t be rotated and connected equations. In this study, we will construct a 3-dimensional space which is projected on 2-dimension space. In other words, we will define basis of 3-dimensional space and project them into 2-dimensional space. In this space, we can manipulate points, curves and some surfaces algebraically. Especially, we construct 3-dimensional basis on GeoGebra, which can manipulate a mathematical object on perspective of algebra and geometry simultaneously. 2. Functionality of GeoGebra GeoGebra is an educational software which can manipulate 2-dimensional mathematical objects with algebraic and geometric representation. For example, y = x, a linear function, is represented an equation in algebraic view and a line in geometric view. Figure 1. GeoGebra s algebraic view and geometric view GeoGebra also has command and slider. Slider is the visualization of variable in GeoGebra. For example, after making slider a, we can type (a, a) in input field in order to make a point in geometric view in GeoGebra.

3 Figure 2. Slider and command in GeoGebra 3. Constructing basis in 3-dimension We will construct 3-dimensional space. Firstly, we will define the set of standard basis in 3-dimensional space. Then, we will use linear transformation for rotating basis with manipulating matrices in GeoGebra. 3.1 Standard basis in 3-dimensional space in GeoGebra Generally, standard basis B in 3-dimensional space is B = { (1, 0, 0) t, (0, 1, 0) t, (0, 0, 1) t }. In GeoGebra, we define each column vectors as E_1, E_2 and E_3 respectively. The GeoGebra command is the following. E_1 = {{1},{0},{0}} E_2 = {{0},{1},{0}} E_3 = {{0},{0},{1}} Then, we make three variables for representing the angles of rotating around x-axis, y-axis and z-axis respectively. In GeoGebra, we make three sliders as a, b and c. The three basic rotation matrices are the followings.

4 1 0 0 R x ( a) 0 cos( a) sin( a), 0 sin( a) cos( a) cos( b) 0 sin( b) R y ( b) 0 1 0, sin( b) 0 cos( b) R z cos( c) sin( c) ( c) sin( c) cos( c) The GeoGebra command is the following. R_x = {{1,0,0},{0,cos(a),-sin(a)},{0,sin(a),cos(a)}} R_y = {{cos(b),0,-sin(b)},{0,1,0},{sin(b),0,cos(b)}} R_z = {{cos(c),-sin(c),0},{sin(c),cos(c),0},{0,0,1}} Multiplying three basic matrix, R x (a), R y (b) and R z (c), we can get the rotation matrix of a, b, and c. R ( a, b, c) R ( a) R ( b) R ( c) xyz x y z The GeoGebra command is the following. R_{xyz} = R_x * R_y * R_z Now, we multiply R xyz to each vectors in standard basis of 3-dimensional space. Then we can get e1, e2, e3 which are vectors rotated by angle a, b, and c. e1 Rxyz E 1, e2 Rxyz E2, e3 Rxyz E3 The GeoGebra command is the following. e1 = R_{xyz} * E_1 e2 = R_{xyz} * E_2 e3 = R_{xyz} * E_3 Then we can get basis B ROT = { e1, e2, e3 }, which is rotated by a, b and c. Next we have to remove an element (the first element) of each vectors of B ROT ; we cannot represent point which has 3 coordinates in geometric view of GeoGebra, so that we project each vectors to yz-plane. Finally, we construct a basis B 3D = { e 1, e 2, e 3 }, which represent 3-dimensional basis projected into 2-dimensional space. Each vectors of B 3D are the followings (The points, V 1, V 2 and V 3, correspond with the vectors, e 1, e 2 and e 3 ).

5 e_1 = (Element[Element[e1,2],1], Element[Element[e1,3],1]) e_2 = (Element[Element[e2,2],1], Element[Element[e2,3],1]) e_3 = (Element[Element[e3,2],1], Element[Element[e3,3],1]) V_1 = e_1 V_2 = e_2 V_3 = e_3 Figure 3. Constructing 3-dimensional basis on GeoGebra 3. Applications Before starting this section, we added some decorations in geometric view, x-axis, y-axis, z-axis and each planes, which can help the figures recognized well in 3-dimensional space. 3.1 Polyhedron We can start the simplest polyhedron, tetrahedron. The four vertices of tetrahedron are the followings P 1 (0,0,0), P 2 (2,0,0), P 3 (1, 3,0), P 4 (1,, ) 3 3 We can type the following in GeoGebra input field.

6 P_1 = 0 V_1 + 0 V_2 + 0 V_3 P_2 = 2 V_1 + 0 V_2 + 0 V_3 P_3 = 1 V_1 + sqrt(3) V_2 + 0 V_3 P_4 = 1 V_1 + sqrt(3)/3 V_2 + 2*sqrt(6)/3 V_3 Figure 4. Tetrahedron in 3-dimensional space 3.2 Curves Next we will draw helix and helix on cone. The coordinate of a point on helix is the following. (cos( 7t ),sin(7t), t), t R We can type the following command in GeoGebra input field. E = cos(7t) V_1 + sin(7t) V_2 + t V_3 In this time, we already defined the variable t as the value of x-coordinate of point A defined. We can draw the locus (graph) of the point using locus command/tool in GeoGebra. If we type the following command in input field in GeoGebra, the helix will appear in geometric view of GeoGebra. locus[e, A]

7 If we change the command as the following, we can get the graph of helix on a cone (Figure 6). E = 0.2t*cos(t) V_ t*sin(t) V_ t V_3 Figure 5. Helix in 3-dimensional space Figure 6. Helix on a cone in 3-dimensional space

8 3.3 Surfaces We can t draw surfaces directly in geometric view of GeoGebra; in geometric view, we can t fill colors in arbitrary jordan curves. We found some alternative solutions, drawing contours and mapping some lines from xyplane(domain) on the surface Drawing contours Firstly, we choose five points of same z-coordinate on a surface. Then, we define a quadratic curve(conic section) with five points, as we can make a curve with five points chosen using Conic through Five Points tool of GeoGebra. For example, we can draw surface of revolution of the following equation with axis z. 1 z y 20 2 GeoGebra command is the following(u is a slider name). P_1 = u^2 / 20 V_1 + 0 V_2 + u V_3 P_2 = 0 V_1 + u^2 / 20 V_2 + u V_3 P_3 = 0 V_1 - u^2 / 20 V_2 + u V_3 P_4 = -u^2 / 20 V_1 + 0 V_2 + u V_3 P_5 = (u^2 / 20 V_1 + u^2 / 20 V_2)/sqrt(2) + 0 V_2 + u V_3 Another surface is the revolution of the graph of z = (1+ 1/y). GeoGebra command is the following(u is a slider name). P_1 = sqrt(1 + 1/u) V_1 + 0 V_2 + u V_3 P_2 = sqrt(1 + 1/u) V_2 + 0 V_2 + u V_3 P_3 = -sqrt(1 + 1/u) V_2 + 0 V_2 + u V_3 P_4 = -sqrt(1 + 1/u) V_1 + 0 V_2 + u V_3 P_5 = (sqrt(1 + 1/u) V_1 + sqrt(1 + 1/u) V_2)/sqrt(2) + 0 V_2 + u V_3

9 Figure 7. Revolutions of function Mapping lines from domain to the surface In domain, xy-plane, we can make a point go through various paths, especially line paths. The followings are the lines we defined. x = - 2, -1.5, - 1, - 0.5, 0, 0.5, 1, 1.5, 2 y = - 2, -1.5, - 1, - 0.5, 0, 0.5, 1, 1.5, 2 We will mapping these lines through some functions into 3-dimensional space using locus command/tool and spreadsheet view in GeoGebra. Firstly, we will represent the graph of the following equation. z x y Figure 8. Graph of z = x + y

10 In spreadsheet view, we can create the rigid on xy-plane, then map them into 3-dimensional space (Figure 8). Now we can also create another surface, z = x 2 + y 2, using spreadsheet view and locus command/tool in GeoGebra (Figure 9). 4. Conclusion Figure 9. Graph of z = x 2 + y 2 We have examined constructing 3-dimensional space on GeoGebra, 2-dimensional dynamic mathematics software, which can manipulate both of the representations of algebra and geometry of mathematical object. Firstly, we construct basis of 3-dimensional space which can be rotated by angle variables(sliders in GeoGebra). Based on basis, we constructed polyhedron, curves and surfaces in 3-dimensional space. Especially, in this construction, we created the environment in which students and teacher can manipulate mathematical object in perspective of algebra, cartesian geometry and vector geometry. 5. Reference Kang, S., & Choi-Koh, S. (1999). Development of instructional materials using computer software, Geometer s Sketchpad for enhancing spatial ability in regular polyhedrons. The Mathematical Education, 38(2), Peterson, E. (2007). 3D Coordinate Axes in GeoGebra.

Properties of Rotations

Properties of Rotations Properties of Rotations Student Probe Find the image of a 50 o counterclockwise rotation about point P. A P B Lesson Description The lesson examines rotations as the transformation obtained by reflecting

More information

Properties of Rotations

Properties of Rotations Properties of Rotations Student Probe Find the image of a 50 counterclockwise rotation about point P. Lesson Description The lesson examines rotations as the transformation obtained by reflecting an object

More information

Isometries. 1 Identifying Isometries

Isometries. 1 Identifying Isometries Isometries 1 Identifying Isometries 1. Modeling isometries as dynamic maps. 2. GeoGebra files: isoguess1.ggb, isoguess2.ggb, isoguess3.ggb, isoguess4.ggb. 3. Guessing isometries. 4. What can you construct

More information

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations 3D Mathematics Co-ordinate systems, 3D primitives and affine transformations Coordinate Systems 2 3 Primitive Types and Topologies Primitives Primitive Types and Topologies 4 A primitive is the most basic

More information

Planes Intersecting Cones: Static Hypertext Version

Planes Intersecting Cones: Static Hypertext Version Page 1 of 12 Planes Intersecting Cones: Static Hypertext Version On this page, we develop some of the details of the plane-slicing-cone picture discussed in the introduction. The relationship between the

More information

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability 7 Fractions GRADE 7 FRACTIONS continue to develop proficiency by using fractions in mental strategies and in selecting and justifying use; develop proficiency in adding and subtracting simple fractions;

More information

Table of Contents. Introduction to the Math Practice Series...1

Table of Contents. Introduction to the Math Practice Series...1 Table of Contents Table of Contents Introduction to the Math Practice Series...1 Common Mathematics/Geometry Symbols and Terms...2 Chapter 1: Introduction To Geometry...13 Shapes, Congruence, Similarity,

More information

8.G Reflections, Rotations, and

8.G Reflections, Rotations, and 8.G Reflections, Rotations, and Translations Alignments to Content Standards: 8.G.A.1 Task In this task, using computer software, you will apply reflections, rotations, and translations to a triangle.

More information

Conic Sections and Locii

Conic Sections and Locii Lesson Summary: Students will investigate the ellipse and the hyperbola as a locus of points. Activity One addresses the ellipse and the hyperbola is covered in lesson two. Key Words: Locus, ellipse, hyperbola

More information

Exploring a Connection between Transformational Geometry and Matrices

Exploring a Connection between Transformational Geometry and Matrices Ithaca College Digital Commons @ IC Mathematics Honors Theses Mathematics Department 2014 Exploring a Connection between Transformational Geometry and Matrices Danielle Dobitsch Follow this and additional

More information

Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo

Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo 1 Name Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo Below you will find copies of the notes provided on

More information

6.5 Symmetries of Quadrilaterals A Develop Understanding Task

6.5 Symmetries of Quadrilaterals A Develop Understanding Task 6.5 Symmetries of Quadrilaterals A Develop Understanding Task A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto itself by a rotation is said to have

More information

Quickstart for Web and Tablet App

Quickstart for Web and Tablet App Quickstart for Web and Tablet App What is GeoGebra? Dynamic Mathematic Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

More information

How to Project Spherical Conics into the Plane

How to Project Spherical Conics into the Plane How to Project pherical Conics into the Plane Yoichi Maeda maeda@keyakiccu-tokaiacjp Department of Mathematics Tokai University Japan Abstract: In this paper, we will introduce a method how to draw the

More information

6. 5 Symmetries of Quadrilaterals

6. 5 Symmetries of Quadrilaterals 25 CC BY fdecomite 6. 5 Symmetries of Quadrilaterals A Develop Understanding Task A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto itself by a rotation

More information

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space Basic Elements Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in three dimensions We want a minimum set

More information

Rational Numbers: Graphing: The Coordinate Plane

Rational Numbers: Graphing: The Coordinate Plane Rational Numbers: Graphing: The Coordinate Plane A special kind of plane used in mathematics is the coordinate plane, sometimes called the Cartesian plane after its inventor, René Descartes. It is one

More information

Maclaurin series. To create a simple version of this resource yourself using Geogebra:

Maclaurin series. To create a simple version of this resource yourself using Geogebra: Maclaurin series Maclaurin series (Geogebra) This resource is on the Integral website in the following sections: MEI FP2 Power series 1, AQA FP3 Series 1, Edexcel FP2 Maclaurin series 1, OCR FP2 Maclaurin

More information

String Graphs Part 1 + 2

String Graphs Part 1 + 2 String Graphs Part + Answers 7 8 9 TI-Nspire Investigation Student 45 min Aim Connect the outcomes of Advanced Strings Graphs Part and Advanced Strings Part using transformation matrices Visualising the

More information

Activity overview. Background. Concepts. Teacher preparation. Technical prerequisites

Activity overview. Background. Concepts. Teacher preparation. Technical prerequisites The impact of b in By Øystein Nordvik Grade level: secondary (Years 9-1) Subject: mathematics Time required: 90 minutes Activity overview In this activity you will examine the influence parameter b has

More information

Rigid Motion vs. Non-rigid Motion Transformations

Rigid Motion vs. Non-rigid Motion Transformations Rigid Motion vs. Non-rigid Motion Transformations What are some things you think of when we say going to a theme park. Have you ever been to a theme park? If so, when and where was it? What was your best

More information

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6 Critical Areas for Traditional Geometry Page 1 of 6 There are six critical areas (units) for Traditional Geometry: Critical Area 1: Congruence, Proof, and Constructions In previous grades, students were

More information

TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria

TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria Overview Introduction Using a 2D Plot Window in a CAS Perspective Plotting a circle and implicit differentiation Helping

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook)

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook) Geometry: Unit 1: Transformations Chapter 14 (In Textbook) Transformations Objective: Students will be able to do the following, regarding geometric transformations. Write Transformations Symbolically

More information

GeoGebra Workshop. (Short Version)

GeoGebra Workshop. (Short Version) GeoGebra Workshop (Short Version) Contents Introduction... 2 What is GeoGebra?... 2 Get GeoGebra... 2 Workshop Format... 2 GeoGebra Layout... 3 Examples... 5 The Incenter and Incircle... 5 The Sine Function

More information

Digging deeper using GeoGebra: An exploration of quadratics and more.

Digging deeper using GeoGebra: An exploration of quadratics and more. Digging deeper using GeoGebra: An exploration of quadratics and more. Abstract Using GeoGebra students can explore in far more depth topics that have until recently been given a standard treatment. One

More information

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane?

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? Intersecting Circles This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? This is a problem that a programmer might have to solve, for example,

More information

Quickstart for Desktop Version

Quickstart for Desktop Version Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

More information

Situation 1: Congruent Triangles vs. Similar Triangles

Situation 1: Congruent Triangles vs. Similar Triangles Situation 1: Congruent Triangles vs. Similar Triangles Prepared at the University of Georgia EMAT 6500 Date last revised: July 24 th, 2013 Nicolina Scarpelli Prompt: A teacher in a high school Analytic

More information

Triangles Ramps and Energy

Triangles Ramps and Energy The College at Brockport: State University of New York Digital Commons @Brockport Lesson Plans CMST Institute 8-12-2004 Triangles Ramps and Energy The College at Brockport Fayne Winter The College at Brockport

More information

Perspective projection and Transformations

Perspective projection and Transformations Perspective projection and Transformations The pinhole camera The pinhole camera P = (X,,) p = (x,y) O λ = 0 Q λ = O λ = 1 Q λ = P =-1 Q λ X = 0 + λ X 0, 0 + λ 0, 0 + λ 0 = (λx, λ, λ) The pinhole camera

More information

Maple Quick Start. Maplesoft, a division of Waterloo Maple Inc.

Maple Quick Start. Maplesoft, a division of Waterloo Maple Inc. Maple Quick Start Maplesoft, a division of Waterloo Maple Inc. This tutorial is designed to help you become familiar with the Maple environment and teach you the few fundamental concepts and tools you

More information

Second degree equations - quadratics. nonparametric: x 2 + y 2 + z 2 = r 2

Second degree equations - quadratics. nonparametric: x 2 + y 2 + z 2 = r 2 walters@buffalo.edu CSE 480/580 Lecture 20 Slide 1 Three Dimensional Representations Quadric Surfaces Superquadrics Sweep Representations Constructive Solid Geometry Octrees Quadric Surfaces Second degree

More information

Specifying Complex Scenes

Specifying Complex Scenes Transformations Specifying Complex Scenes (x,y,z) (r x,r y,r z ) 2 (,,) Specifying Complex Scenes Absolute position is not very natural Need a way to describe relative relationship: The lego is on top

More information

demonstrate an understanding of the exponent rules of multiplication and division, and apply them to simplify expressions Number Sense and Algebra

demonstrate an understanding of the exponent rules of multiplication and division, and apply them to simplify expressions Number Sense and Algebra MPM 1D - Grade Nine Academic Mathematics This guide has been organized in alignment with the 2005 Ontario Mathematics Curriculum. Each of the specific curriculum expectations are cross-referenced to the

More information

A GEOMETRIC INTERPRETATION OF COMPLEX ZEROS OF QUADRATIC FUNCTIONS

A GEOMETRIC INTERPRETATION OF COMPLEX ZEROS OF QUADRATIC FUNCTIONS A GEOMETRIC INTERPRETATION OF COMPLEX ZEROS OF QUADRATIC FUNCTIONS Joseph Pastore and Alan Sultan Queens College, City Univeristy of New Yor, Queens, NY 11367 Abstract: Most high school mathematics students

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations CHAPTER 10. PARAMETRIC AND POLAR 99 10.1 Curves Defined by Parametric Equations Example 1. Let x and y be given parametric equations below: x(t) =t cos(t) y(t) =t sin(t) (a) Calculate x and y for 11 values

More information

INDEPENDENT SCHOOL DISTRICT 196 Rosemount, Minnesota Educating our students to reach their full potential

INDEPENDENT SCHOOL DISTRICT 196 Rosemount, Minnesota Educating our students to reach their full potential INDEPENDENT SCHOOL DISTRICT 196 Rosemount, Minnesota Educating our students to reach their full potential MINNESOTA MATHEMATICS STANDARDS Grades 9, 10, 11 I. MATHEMATICAL REASONING Apply skills of mathematical

More information

Daily Warm-Ups GEOMETRY

Daily Warm-Ups GEOMETRY WALCH EDUCATION Daily Warm-Ups GEOMETRY NCTM Standards Jillian Gregory Table of Contents iii Introduction............................................ v About the CD-ROM....................................

More information

MIAMI-DADE COUNTY PUBLIC SCHOOLS District Pacing Guide GEOMETRY HONORS Course Code:

MIAMI-DADE COUNTY PUBLIC SCHOOLS District Pacing Guide GEOMETRY HONORS Course Code: Topic II: Transformations in the Plane Pacing Date(s) Traditional 14 09/15/14-10/03/14 Block 07 09/15/14-10/03/14 MATHEMATICS FLORIDA STANDARDS & MATHEMATICAL PRACTICE (MP) MATHEMATICAL PRACTICE (MP) ESSENTIAL

More information

Lesson 20: Exploiting the Connection to Cartesian Coordinates

Lesson 20: Exploiting the Connection to Cartesian Coordinates : Exploiting the Connection to Cartesian Coordinates Student Outcomes Students interpret complex multiplication as the corresponding function of two real variables. Students calculate the amount of rotation

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

Grade Level: 6-8 Sunshine State Standard: MA.A.1.3.3, MA.A.3.3.1, MA.B.1.3.2, MA.B.4.3.2, MA.C Time: 45 minutes

Grade Level: 6-8 Sunshine State Standard: MA.A.1.3.3, MA.A.3.3.1, MA.B.1.3.2, MA.B.4.3.2, MA.C Time: 45 minutes Rotations Grade Level: 6-8 Sunshine State Standard: MA.A.1.3.3, MA.A.3.3.1, MA.B.1.3.2, MA.B.4.3.2, MA.C.3.3.2 Time: 45 minutes Materials: Students: Paper, pencil, graph paper, computer with GeoGebra (if

More information

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS ALBA PEREZ Robotics and Automation Laboratory University of California, Irvine Irvine, CA 9697 email: maperez@uci.edu AND J. MICHAEL MCCARTHY Department of Mechanical

More information

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation Chapter 7 Introduction to Matrices This chapter introduces the theory and application of matrices. It is divided into two main sections. Section 7.1 discusses some of the basic properties and operations

More information

Unit 3: Congruence & Similarity

Unit 3: Congruence & Similarity Approximate Time Frame: 6 weeks Connections to Previous Learning: In previous grades, students made scale drawings of geometric figures and solved problems involving angle measure, surface area, and volume.

More information

Vector Algebra Transformations. Lecture 4

Vector Algebra Transformations. Lecture 4 Vector Algebra Transformations Lecture 4 Cornell CS4620 Fall 2008 Lecture 4 2008 Steve Marschner 1 Geometry A part of mathematics concerned with questions of size, shape, and relative positions of figures

More information

For more info and downloads go to: Gerrit Stols

For more info and downloads go to:   Gerrit Stols For more info and downloads go to: http://school-maths.com Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

Solving Wasan Problems with an Inversion Method - Development of teaching materials for approaching complex geometry -

Solving Wasan Problems with an Inversion Method - Development of teaching materials for approaching complex geometry - Solving Wasan Problems with an Inversion Method - Development of teaching materials for approaching complex geometry - Chieko FUKUDA pxm03664@nifty.com Teikyo University, JAPAN Kyoko KAKIHANA kakihana@tsukuba-g.ac.jp

More information

X On record with the USOE.

X On record with the USOE. Textbook Alignment to the Utah Core 5th Grade Mathematics This alignment has been completed using an Independent Alignment Vendor from the USOE approved list (www.schools.utah.gov/curr/imc/indvendor.html.)

More information

You may know these...

You may know these... You may know these... Chapter 1: Multivariables Functions 1.1 Functions of Two Variables 1.1.1 Function representations 1.1. 3-D Coordinate System 1.1.3 Graph of two variable functions 1.1.4 Sketching

More information

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator Inverse Kinematics of 6 DOF Serial Manipulator Robotics Inverse Kinematics of 6 DOF Serial Manipulator Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics

More information

Isometries: Teacher Notes

Isometries: Teacher Notes Isometries: Teacher Notes Henri Picciotto Acknowledgments Vinci Daro, Ann Shannon, and Celia Stevenson helped me with the original version of this document. Zalman Usiskin offered valuable feedback, some

More information

Algebra and Trigonometry, Second Edition By James Stewart, Lothar Redlin, & Saleem Watson 2007, Thompson Brooks / Cole

Algebra and Trigonometry, Second Edition By James Stewart, Lothar Redlin, & Saleem Watson 2007, Thompson Brooks / Cole GEOMETRY/TRIGONOMETRY Textbooks: Geometry, Integrated Mathematics, Second Edition, The University of Chicago School mathematics Project (UCSMP), Prentice Hall Algebra and Trigonometry, Second Edition By

More information

ALGEBRA IIA/GEOMETRY FORM II

ALGEBRA IIA/GEOMETRY FORM II ALGEBRA IIA/GEOMETRY FORM II Textbooks: Geometry, Integrated Mathematics, Second Edition, The University of Chicago School mathematics Project (UCSMP), Prentice Hall, Algebra and Trigonometry, Second Edition

More information

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review.

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. 1. The intersection of two non-parallel planes is a line. Find the equation of the line. Give

More information

Translations. Geometric Image Transformations. Two-Dimensional Geometric Transforms. Groups and Composition

Translations. Geometric Image Transformations. Two-Dimensional Geometric Transforms. Groups and Composition Geometric Image Transformations Algebraic Groups Euclidean Affine Projective Bovine Translations Translations are a simple family of two-dimensional transforms. Translations were at the heart of our Sprite

More information

Vocabulary for Student Discourse Pre-image Image Reflect Symmetry Transformation Rigid transformation Congruent Mapping Line of symmetry

Vocabulary for Student Discourse Pre-image Image Reflect Symmetry Transformation Rigid transformation Congruent Mapping Line of symmetry Lesson 3 - page 1 Title: Reflections and Symmetry I. Before Engagement Duration: 2 days Knowledge & Skills Understand transformations as operations that map a figure onto an image Understand characteristics

More information

3D Modeling in Teaching and Learning Geometry

3D Modeling in Teaching and Learning Geometry 3D Modeling in Teaching and Learning Geometry Petra Surynková Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic This article addresses the

More information

Chapter 5. Projections and Rendering

Chapter 5. Projections and Rendering Chapter 5 Projections and Rendering Topics: Perspective Projections The rendering pipeline In order to view manipulate and view a graphics object we must find ways of storing it a computer-compatible way.

More information

EM225 Projective Geometry Part 2

EM225 Projective Geometry Part 2 EM225 Projective Geometry Part 2 eview In projective geometry, we regard figures as being the same if they can be made to appear the same as in the diagram below. In projective geometry: a projective point

More information

Carnegie LearningÒ Middle School Math Solution Correlations Course 3 NCSCoS: Grade 8

Carnegie LearningÒ Middle School Math Solution Correlations Course 3 NCSCoS: Grade 8 MATHEMATICAL PRACTICES - 1 - Make sense of problems and persevere in solving them. Explain the meaning of a problem and look for entry points to its solution. Analyze givens, constraints, relationships,

More information

Textbook Alignment to the Utah Core 5th Grade Mathematics

Textbook Alignment to the Utah Core 5th Grade Mathematics Textbook Alignment to the Utah Core 5th Grade Mathematics This alignment has been completed using an Independent Alignment Vendor from the USOE approved list (www.schools.utah.gov/curr/imc/indvendor.html.)

More information

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems EECE 478 Linear Algebra and 3D Geometry Learning Objectives Linear algebra in 3D Define scalars, points, vectors, lines, planes Manipulate to test geometric properties Coordinate systems Use homogeneous

More information

Number Sense and Operations Curriculum Framework Learning Standard

Number Sense and Operations Curriculum Framework Learning Standard Grade 5 Expectations in Mathematics Learning Standards from the MA Mathematics Curriculum Framework for the end of Grade 6 are numbered and printed in bold. The Franklin Public School System s grade level

More information

SOUTHERN UNIVERSITY AND A&M COLLEGE DEPARTMENT OF MATHEMATICS MATH 250 TOPICS IN GEOMETRY

SOUTHERN UNIVERSITY AND A&M COLLEGE DEPARTMENT OF MATHEMATICS MATH 250 TOPICS IN GEOMETRY SOUTHERN UNIVERSITY AND A&M COLLEGE DEPARTMENT OF MATHEMATICS MATH 250 TOPICS IN GEOMETRY I. DESCRIPTIVE INFORMATION A. Course Number: MATH 250 B. Course Title: TOPICS IN GEOMETRY C. Catalog Description:

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

Content. Coordinate systems Orthographic projection. (Engineering Drawings)

Content. Coordinate systems Orthographic projection. (Engineering Drawings) Projection Views Content Coordinate systems Orthographic projection (Engineering Drawings) Graphical Coordinator Systems A coordinate system is needed to input, store and display model geometry and graphics.

More information

QUADRATIC AND CUBIC GRAPHS

QUADRATIC AND CUBIC GRAPHS NAME SCHOOL INDEX NUMBER DATE QUADRATIC AND CUBIC GRAPHS KCSE 1989 2012 Form 3 Mathematics Working Space 1. 1989 Q22 P1 (a) Using the grid provided below draw the graph of y = -2x 2 + x + 8 for values

More information

3D Computer Graphics. Jared Kirschner. November 8, 2010

3D Computer Graphics. Jared Kirschner. November 8, 2010 3D Computer Graphics Jared Kirschner November 8, 2010 1 Abstract We are surrounded by graphical displays video games, cell phones, television sets, computer-aided design software, interactive touch screens,

More information

Functions and Transformations

Functions and Transformations Using Parametric Representations to Make Connections Richard Parr T 3 Regional, Stephenville, Texas November 7, 009 Rice University School Mathematics Project rparr@rice.edu If you look up parametric equations

More information

Sixth Grade SOL Tracker Name:

Sixth Grade SOL Tracker Name: Sixth Grade SOL Tracker Name: % https://i.ytimg.com/vihttps://i.ytimg.com/vi/rinaa-jx0u8/maxresdefault.jpg/rinaajx0u8/maxresdefault.jpg g x A COLONIAL HEIGHTS PUBLIC SCHOOLS Mathematics Department I Can

More information

An experienced mathematics teacher guides students through the use of a number of very important skills in coordinate geometry.

An experienced mathematics teacher guides students through the use of a number of very important skills in coordinate geometry. Mathematics Stills from our new series Coordinates An experienced mathematics teacher guides students through the use of a number of very important skills in coordinate geometry. Distance between Two Points

More information

Last week. Machiraju/Zhang/Möller/Fuhrmann

Last week. Machiraju/Zhang/Möller/Fuhrmann Last week Machiraju/Zhang/Möller/Fuhrmann 1 Geometry basics Scalar, point, and vector Vector space and affine space Basic point and vector operations Sided-ness test Lines, planes, and triangles Linear

More information

Shadows in Computer Graphics

Shadows in Computer Graphics Shadows in Computer Graphics Steven Janke November 2014 Steven Janke (Seminar) Shadows in Computer Graphics November 2014 1 / 49 Shadows (from Doom) Steven Janke (Seminar) Shadows in Computer Graphics

More information

GeoGebra. 10 Lessons. maths.com. Gerrit Stols. For more info and downloads go to:

GeoGebra. 10 Lessons.   maths.com. Gerrit Stols. For more info and downloads go to: GeoGebra in 10 Lessons For more info and downloads go to: http://school maths.com Gerrit Stols Acknowledgements Download GeoGebra from http://www.geogebra.org GeoGebra is dynamic mathematics open source

More information

Introduction to Transformations. In Geometry

Introduction to Transformations. In Geometry + Introduction to Transformations In Geometry + What is a transformation? A transformation is a copy of a geometric figure, where the copy holds certain properties. Example: copy/paste a picture on your

More information

Grade 8 Unit 1 Congruence and Similarity (4 Weeks)

Grade 8 Unit 1 Congruence and Similarity (4 Weeks) Grade 8 Unit Congruence and Similarity (4 Weeks) Stage Desired Results Established Goals Unit Description In this unit, students will explore and describe the effects of translations, rotations, reflections

More information

3. Preprocessing of ABAQUS/CAE

3. Preprocessing of ABAQUS/CAE 3.1 Create new model database 3. Preprocessing of ABAQUS/CAE A finite element analysis in ABAQUS/CAE starts from create new model database in the toolbar. Then save it with a name user defined. To build

More information

A brief note on the approach to the conic sections of a right circular cone from dynamic geometry

A brief note on the approach to the conic sections of a right circular cone from dynamic geometry A brief note on the approach to the conic sections of a right circular cone from dynamic geometry Eugenio Roanes Lozano Abstract. Nowadays there are different powerful 3D dynamic geometry systems (DGS)

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

Computer Graphics Hands-on

Computer Graphics Hands-on Computer Graphics Hands-on Two-Dimensional Transformations Objectives Visualize the fundamental 2D geometric operations translation, rotation about the origin, and scale about the origin Learn how to compose

More information

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry Pre AP Geometry Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry 1 The content of the mathematics standards is intended to support the following five goals for students: becoming

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

CS 428: Fall Introduction to. Transformations in OpenGL + hierarchical modeling. Andrew Nealen, Rutgers, /21/2009 1

CS 428: Fall Introduction to. Transformations in OpenGL + hierarchical modeling. Andrew Nealen, Rutgers, /21/2009 1 CS 428: Fall 2009 Introduction to Computer Graphics Transformations in OpenGL + hierarchical modeling 9/21/2009 1 Review of affine transformations Use projective geometry staple of CG Euclidean (x,z) (x,y,z)

More information

Lecture 4: Transformations and Matrices. CSE Computer Graphics (Fall 2010)

Lecture 4: Transformations and Matrices. CSE Computer Graphics (Fall 2010) Lecture 4: Transformations and Matrices CSE 40166 Computer Graphics (Fall 2010) Overall Objective Define object in object frame Move object to world/scene frame Bring object into camera/eye frame Instancing!

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Junior Year: Geometry/Trigonometry

Junior Year: Geometry/Trigonometry Junior Year: Geometry/Trigonometry Textbooks: Larson Geometry, Common Core Edition Houghton Mifflin Harcourt Publishing Company. ISBN:978-0-547-64708-1 Course Description: The purpose of this course is

More information

Kuta Software Infinite Geometry All Transformations Answers

Kuta Software Infinite Geometry All Transformations Answers Infinite All Answers Free PDF ebook Download: Infinite All Answers Download or Read Online ebook kuta software infinite geometry all transformations answers in PDF Format From The Best User Guide Database

More information

Students are not expected to work formally with properties of dilations until high school.

Students are not expected to work formally with properties of dilations until high school. Domain: Geometry (G) Cluster: Understand congruence and similarity using physical models, transparencies, or geometry software. Standard: 8.G.1. Verify experimentally the properties of rotations, reflections,

More information

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

Geometry. Instructional Activities:

Geometry. Instructional Activities: GEOMETRY Instructional Activities: Geometry Assessment: A. Direct Instruction A. Quizzes B. Cooperative Learning B. Skill Reviews C. Technology Integration C. Test Prep Questions D. Study Guides D. Chapter

More information

DIOCESE OF HARRISBURG MATHEMATICS CURRICULUM GRADE 8

DIOCESE OF HARRISBURG MATHEMATICS CURRICULUM GRADE 8 MATHEMATICS CURRICULUM GRADE 8 8A Numbers and Operations 1. Demonstrate an numbers, ways of representing numbers, relationships among numbers and number systems. 2. Compute accurately and fluently. a.

More information

Geometry Critical Areas of Focus

Geometry Critical Areas of Focus Ohio s Learning Standards for Mathematics include descriptions of the Conceptual Categories. These descriptions have been used to develop critical areas for each of the courses in both the Traditional

More information

In the first part of the lesson, students plot. Abridged

In the first part of the lesson, students plot. Abridged NATIONAL MATH + SCIENCE INITIATIVE Mathematics Using Linear Equations to Define Geometric Solids LEVEL Geometry within a unit on volume applications MODULE/CONNECTION TO AP* Area and Volume *Advanced Placement

More information

Math 7 Elementary Linear Algebra PLOTS and ROTATIONS

Math 7 Elementary Linear Algebra PLOTS and ROTATIONS Spring 2007 PLOTTING LINE SEGMENTS Math 7 Elementary Linear Algebra PLOTS and ROTATIONS Example 1: Suppose you wish to use MatLab to plot a line segment connecting two points in the xy-plane. Recall that

More information