Air Resistance Lab Discovery PSI Physics Dynamics

Size: px
Start display at page:

Download "Air Resistance Lab Discovery PSI Physics Dynamics"

Transcription

1 Air Resistance Lab Discovery PSI Physics Dynamics 1 Name Date Period Description In this lab coffee filters will be used along with Pasco Capstone Figure 1.1 software to determine the value of the air resistive constant of a coffee filter. Generally the equation for a small object that is not travelling at high velocities is represented by the equation Fair = kv. This equation means that the resistive force that air provides on an object depends on the velocity which it travels at along with a constant that is related to the surface area and volume of the exposed object. The general setup will involve a stand where a Pasco Motion Sensor II will be attached to the top of the stand while coffee filters are dropped below it to display graphs of position, velocity, and acceleration on the Pasco software. Materials Pasco Capstone Software Coffee Filters (4 minimum) Stand With Rod Through Center Metal Clamps Pasco Motion Sensor II Textbooks (Optional) Scale (To Measure Mass) Procedure 1. Start by setting up a firm heavy stand with a rod through it and place a clamp that can attach to two rods. After attaching the clamp on one side to the rod going through the stand, attach a rod of equal or shorter length to the other end of the clamp in a manner such that both rods make a 90 degree angle. A picture is provided to demonstrate exactly how it should appear in the end as well as a picture of the clamp itself.

2 2 2. Now grab the Motion Sensor II and there should be something to unscrew on the side of the sensor. Unscrew it but not all the way and notice that there is a hole through the lower part of the sensor so now push the rod attached perpendicularly in the previous step through the hole in the lower part of the sensor. Push the sensor just enough so it is exposed through the other side and screw the sensor into place in such a position that allows the sensor to face the ground as shown above. 3. After setting this station up open up the Pasco Capstone Software on the computer and click and drag graph and table onto the main screen. After doing so the Motion Sensor II must now be set up with the software to do so connect the two wires to the Pasco machine. It doesn t matter which two ports it is plugged into as long as they are next to each other and yellow is on the left and black on the right. Next right click on Hardware Setup in the software and on the diagram of the Pasco Machine click on the ports which were used to plug in the sensor. Go under add a sensor and scroll till reaching Motion Sensor II and click on it. 4. If step 3 was done correctly then in the Pasco Machine Diagram there should be lines pointing to ports in which sensor was plugged in that are green NOT orange. If the lines are orange retrace your steps and ask your teacher for assistance till they turn green as shown below. 5. Before beginning actual trials go to Data Collection and with your group make predictions for Graph 1.1 through Graph 1.6. Make sure that you discuss within

3 3 your group on a general unified idea of how the graphs should appear before continuing. 6. Now that the sensor has been connected properly the software trials may begin. To do a trial start off with desired number of coffee filters (First it is best to use one) and have one person hold it right below the sensor pointing to the ground as pictured in Figure 1.1 with the stand on the ground. Make sure that the person holding it is steady and ready for the signal of a person at the computer to begin recording data. 7. The person at the computer must make sure that in the table in Pasco Software is presenting velocity and time as well as the graph of velocity vs time to start off with. Once the person is ready press record and be aware of the starting velocity which should be 0. Give some kind of signal to let the person know who does the dropping that he or she can now drop it releasing grip of both hands at the same time ensuring for a straight steady downward fall. After reaching the ground the person at the computer should stop the recording and gather the group to make observations of the data. 8. Repeat step 7 a few times till a graph that is not too shaky is observed and one that everyone in the group feels comfortable with. Use the trial that seems the least shaky to sketch a graph of the actual observed data in Graph Now go onto the Pasco Capstone Software and change the data being observed from velocity to position and record the least shaky run from the velocity trials to record the actual data into Graph 1.4. Next change the data being observed to acceleration and record the least shaky run from the velocity trials to record the actual data into Graph Repeat steps 7 through 9 but now instead use two coffee filters and when recording data into graphs make sure to make each graph differentiable so it is known which is prediction, 1 filter, and 2 filters. Do you notice anything strange in the data? If so place stand on a table and let coffee filter drop all the way to the ground repeating steps 7 through Repeat step 10 but with 3 coffee filters and if data seems strange then place the stand on an even higher surface. Why does the height matter? 12. VT is the highest value of velocity that each of the trials should reach, and where the velocity graph is a near horizontal line. Keep this in mind for step After successfully completing steps 1 through 11 go into the Pasco Capstone Software and in the data table of your first non shaky trial used for the Graph of 1.5 add a calculation column by pressing the button at the top of table with a calculator symbol. Now a line will be prompted with Calc1 =, where the equation of LN(1-([Velocity m/s])/vt) will be entered. To enter the LN function right click in equation box and go under function, scientific, and choose LN. To input the Velocity data right click and go under Data and choose velocity. After being entered press enter on the keyboard and the column should display these calculations, but what do they represent? If you were told that the equation for velocity was v = vt(1-e -kt/m ), which can be easily solved for with Figure 1.1 would you be able to solve for the calculation. 14. After successfully having values in the new Calculation column of the table go to the graph portion and graph Calc1 vs. A portion of the graph should be a

4 4 straight line why is that? What does the slope represent use the equation in step 13 to figure it out? Find the slope using the slope tool and multiply the slope by the mass of one coffee filter measured by a scale. Record this value into Table 1.1 in Data Collection under the velocity column with 1 filter and with no unit of measurement. 15. Repeat step 14 except use the best non shaky trial with two coffee filters and then do the same with three coffee filters. 16. Now using the equation v = vt(1-e -kt/m ) can your group derive an equation for acceleration. Once derived find what LN([Acceleration m/s 2 ]) is equal to using derived equation is this value the same value as from what LN(1- ([Velocity m/s])/vt) equals. If you do see that they are the same values then repeat steps 13 through 14 with entering LN([Acceleration m/s 2 ]) into Calc1 and record the values into the column under acceleration. If at any times the graphs seem to be too shaky use of the smooth tool may help but use in moderation. Data Collection Graph 1.1 Position Resistance Prediction Without Air Position Graph 1.2 Velocity Resistance Prediction Without Air Velocity

5 5 Graph 1.3 Acceleration Prediction Without Air Resistance Acceleration Graph 1.4 Position (Prediction and With Air Resistance Actual Results) Position (Make Prediction & Data Lines Differentiable) Graph 1.5 Velocity With Air Resistance (Prediction and Actual Results)

6 6 Velocity (Make Prediction & Data Lines Differentiable) Graph 1.6 Acceleration With Air Resistance (Prediction and Actual Results) Acceleration (Make Prediction & Data Lines Differentiable) Table 1.1 Recording Unknown Calculated Values Velocity Acceleration 1 Filter(s) 2 Filter(s) 3 Filter(s) Analysis 1. What kind of functions each the graphs of the actual data you sketched in the Data Collection? (logarithmic, parabolic, hyperbolic, etc.)

7 7 2. Why if at all were your predictions different from the actual sketched data? Could you explain these differences? 3. How does the actual data graphs with air resistance compare to the predicted graphs without air resistance? How do they differ? 4. Even after many trials were there any noticeable shakes in the graph such as a strong upward then downward line that then returns to a normal state? If so discuss with groups and teacher as to why this might happen? 5. What are the values in Table 1.1 representing and if there is a similarity in the values explain why? What were LN(1-([Velocity m/s])/vt) and LN([Acceleration m/s 2 ]) equal to and why was mass divided to record values in Table 1.1? 6. Why should the smooth tool be used in moderation what happens when it is used in excess? Why is it that when a filter seems to drop directly straight down there may still be small spikes in the graph? 7. Could the same calculation that was solved for with acceleration and velocity that turned out to be the same value for both be made with an equation for position? If it can be done attempt to input this equation into the Calc1 Data Table in the Pasco Capstone Software? Explain your results with position and why they did or did not work?

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Abstract The objective of this first lab are to learn the use of the computerized Science Workshop interface for data acquisition and to study the simple harmonic motion of a mass-spring

More information

LAB 03: The Equations of Uniform Motion

LAB 03: The Equations of Uniform Motion LAB 03: The Equations of Uniform Motion This experiment uses a ramp and a low-friction cart. If you give the cart a gentle push up the ramp, the cart will roll upward, slow and stop, and then roll back

More information

Introduction to Motion

Introduction to Motion Date Partners Objectives: Introduction to Motion To investigate how motion appears on a position versus time graph To investigate how motion appears on a velocity versus time graph and the relationship

More information

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means.

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means. Ball Toss Experiment 34 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs.

More information

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET After reading through the Introduction, Purpose and Principles sections of the lab manual (and skimming through the procedures), answer the following

More information

Purpose of the experiment

Purpose of the experiment Projectile Motion PES 116 Advanced Physics Lab I Purpose of the experiment Measure the velocity of a ball using two photogates and Logger Pro. Apply the concepts of two-dimensional kinematics to predict

More information

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus How do you roll? Purpose: Observe and compare the motion of a cart rolling down hill versus a cart rolling up hill. Develop a mathematical model of the position versus time and velocity versus time for

More information

Stomp Rocket Lab Physics

Stomp Rocket Lab Physics Stomp Rocket Lab Physics Stomp Rockets are plastic projectiles that are launched when a bladder of air is hit or stomped with a foot. Typically the launch angle can be changed, but should be left at 90

More information

Use the slope of a graph of the cart s acceleration versus sin to determine the value of g, the acceleration due to gravity.

Use the slope of a graph of the cart s acceleration versus sin to determine the value of g, the acceleration due to gravity. Name Class Date Activity P03: Acceleration on an Incline (Acceleration Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Linear motion P03 Acceleration.ds (See end of activity) (See

More information

Velocity: A Bat s Eye View of Velocity

Velocity: A Bat s Eye View of Velocity Name School Date Purpose Velocity: A Bat s Eye View of Velocity There are a number of ways of representing motion that we ll find useful. Graphing position, velocity, and acceleration vs. time is often

More information

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate)

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate) Name Class Date Activity P37: Time of Flight versus Initial Speed (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Projectile motion P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS

More information

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

Barbie Bungee Teacher Pages

Barbie Bungee Teacher Pages 90 Minutes Objective Students will differentiate between speed, velocity and acceleration Students will compare and contrast Newton s three laws. TEKS 8.6A Demonstrate and calculate how unbalanced forces

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

Free Fall Adapter. Instruction Manual C ME-9207B. 1. Phone plug 5. Release plate. 2. Controller 6. Steel ball

Free Fall Adapter. Instruction Manual C ME-9207B. 1. Phone plug 5. Release plate. 2. Controller 6. Steel ball Instruction Manual 01-05760C Free Fall Adapter ME-907B 4 3 5 6 1 7 1. Phone plug 5. Release plate. Controller 6. Steel ball 3. Adapter support rod 7. Receptor pad 4. Ball release mechanism Included Equipment

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

To Measure a Constant Velocity. Enter.

To Measure a Constant Velocity. Enter. To Measure a Constant Velocity Apparatus calculator, black lead, calculator based ranger (cbr, shown), Physics application this text, the use of the program becomes second nature. At the Vernier Software

More information

6.3 Creating and Comparing Quadratics

6.3 Creating and Comparing Quadratics 6.3 Creating and Comparing Quadratics Just like with exponentials and linear functions, to be able to compare quadratics, we ll need to be able to create equation forms of the quadratic functions. Let

More information

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND?

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? You have watched a ball roll off a table and strike the floor. What determines where it will land? Could you predict where it will land?

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

SPH3U1 Lesson 12 Kinematics

SPH3U1 Lesson 12 Kinematics SPH3U1 Lesson 12 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the motion of an object thrown at arbitrary angles through the air. Describe the horizontal and vertical motions of

More information

Lab 1- Introduction to Motion

Lab 1- Introduction to Motion Partner : Purpose Partner 2: Lab - Section: The purpose of this lab is to learn via a motion detector the relationship between position and velocity. Remember that this device measures the position of

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Physics 1020 Experiment 3. Acceleration of Falling Objects

Physics 1020 Experiment 3. Acceleration of Falling Objects 1 2 Part I: Introduction In this experiment you will study the motion of a falling ball which experiences constant acceleration. You will use a Motion Detector to measure the position of the ball as a

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g Free Fall Objective Students will work in groups to investigate free fall acceleration on the Earth. Students will measure the fundamental physical constant, g, and evaluate the dependence of free fall

More information

Algebra I Notes Graphs of Functions OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. F.IF.A.2.

Algebra I Notes Graphs of Functions OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. F.IF.A.2. OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1 Projectile Motion Purpose Apply concepts from two-dimensional kinematics to predict the impact point of a ball in projectile motion, and compare the result with direct measurement. Introduction and Theory

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

OCR Maths M2. Topic Questions from Papers. Projectiles

OCR Maths M2. Topic Questions from Papers. Projectiles OCR Maths M2 Topic Questions from Papers Projectiles PhysicsAndMathsTutor.com 21 Aparticleisprojectedhorizontallywithaspeedof6ms 1 from a point 10 m above horizontal ground. The particle moves freely under

More information

4.5 Conservative Forces

4.5 Conservative Forces 4 CONSERVATION LAWS 4.5 Conservative Forces Name: 4.5 Conservative Forces In the last activity, you looked at the case of a block sliding down a curved plane, and determined the work done by gravity as

More information

LAB 02: Graph Matching

LAB 02: Graph Matching LAB 02: Graph Matching One of the most effective methods of describing motion is to plot graphs of position/displacement, velocity, and acceleration vs. time. From such a graphical representation, it is

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives Learning Objectives Parametric Functions Lesson 2: Dude, Where s My Football? Level: Algebra 2 Time required: 60 minutes Many students expect a falling object graph to look just like the path of the falling

More information

Lab 3: Acceleration of Gravity

Lab 3: Acceleration of Gravity Lab 3: Acceleration of Gravity The objective of this lab exercise is to measure a value for g, the acceleration due to gravity for an object in freefall. For Lab 1 and Lab 2 we used data, from a fictional

More information

(40-455) Student Launcher

(40-455) Student Launcher 611-1415 (40-455) Student Launcher Congratulations on your purchase of the Science First student launcher. You will find Science First products in almost every school in the world. We have been making

More information

Physics 1050 Experiment 2. Acceleration Due to Gravity

Physics 1050 Experiment 2. Acceleration Due to Gravity Acceleration Due to Gravity Prelab uestions! These questions need to be completed before entering the lab. Show all workings. Prelab 1: For a falling ball which bounces, draw the expected shape of the

More information

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications Name Period Date QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications QUAD 4.1 Vertex Form of a Quadratic Function 1 Explore how changing the values of h and

More information

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values:

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values: II Functions Week 4 Functions: graphs, tables and formulas Problem of the Week: The Farmer s Fence A field bounded on one side by a river is to be fenced on three sides so as to form a rectangular enclosure

More information

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height.

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height. 1 Inthis question take g =10. A golf ball is hit from ground level over horizontal ground. The initial velocity of the ball is 40 m s 1 at an angle α to the horizontal, where sin α = 0.6 and cos α = 0.8.

More information

Investigation: How is motion recorded?

Investigation: How is motion recorded? Investigation: How is motion recorded? Introduction In this investigation you are going to discover a way to record your movement and find different ways to represent this recording with a graph. You will

More information

Apple PowerBook G4 17

Apple PowerBook G4 17 Apple PowerBook G4 17 PRAM Battery Installation Manual Your computer is a static-sensitive device. It is susceptible to invisible damage if not protected during installation. We recommend proper grounding

More information

Version 1.1. COPYRIGHT 1999 Tufts University and Vernier Software. ISBN (Windows) ISBN (Macintosh)

Version 1.1. COPYRIGHT 1999 Tufts University and Vernier Software. ISBN (Windows) ISBN (Macintosh) Logger Pro Tutorials Version 1.1 COPYRIGHT 1999 Tufts University and Vernier Software ISBN 0-918731-92-5 (Windows) ISBN 0-918731-91-7 (Macintosh) Distributed by Vernier Software 8565 S.W. Beaverton-Hillsdale

More information

Product Overview. Features

Product Overview. Features APCF1 Model Tripod Product Overview The Ravelli APCF1 is a Professional Quality Carbon Fiber Tripod providing a solid base for high-end photographic equipment. This model is a mix of carbon fiber and magnesium

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

Pre-Lab Excel Problem

Pre-Lab Excel Problem Pre-Lab Excel Problem Read and follow the instructions carefully! Below you are given a problem which you are to solve using Excel. If you have not used the Excel spreadsheet a limited tutorial is given

More information

PHY 221 Lab 1. Position, Displacement, and Average and Instantaneous Velocity

PHY 221 Lab 1. Position, Displacement, and Average and Instantaneous Velocity PHY 221 Lab 1 Position, Displacement, and Average and Instantaneous Velocity Name: Partner: Partner: Instructions Before lab, read section 0 in the Introduction, and answer the Pre-Lab Questions on the

More information

Don t Steal My BBC micro:bit Alarm!

Don t Steal My BBC micro:bit Alarm! Description This is a simple tutorial demonstrating how to use the output pins on the BBC micro:bit and use the built in accelerometer to control a buzzer when the BBC micro:bit is moved. Learn how to:

More information

MAGIXBOX TM. Quick Start Guide

MAGIXBOX TM. Quick Start Guide TM TM by TouchMagix MAGIXBOX TM Quick Start Guide What s in the box: Ankle Ceiling Plate Extendable Rod Connector Piece Middle Piece Universal Spider Super clamp with ball socket Safety Cable Projector

More information

Detailed instructions for video analysis using Logger Pro.

Detailed instructions for video analysis using Logger Pro. Detailed instructions for video analysis using Logger Pro. 1. Begin by locating or creating a video of a projectile (or any moving object). Save it to your computer. Most video file types are accepted,

More information

ASSIGNMENT BETA COVER SHEET

ASSIGNMENT BETA COVER SHEET Question Done Backpack Ready for test ASSIGNMENT BETA COVER SHEET Name Teacher Topic Teacher/student comment Drill A indices Drill B tangents Drill C differentiation Drill D normals Drill E gradient Section

More information

Visual Physics Introductory Lab [Lab 0]

Visual Physics Introductory Lab [Lab 0] Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Visual Physics - Introductory Lab Lab 0

Visual Physics - Introductory Lab Lab 0 Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Go! Motion (Order Code GO-MOT)

Go! Motion (Order Code GO-MOT) Go! Motion (Order Code GO-MOT) Go! Motion is used to collect position, velocity, and acceleration data of moving objects. Go! Motion s USB port allows for direct connection to a computer s USB port, which

More information

Position and Piecewise Velocity

Position and Piecewise Velocity Math Objectives Students will modify a piecewise linear graph of velocity to model a scenario. Students will make connections between a graph of an object s velocity and a corresponding graph of an object

More information

Introduction to Motion II

Introduction to Motion II Objectives Introduction to Motion II In this lab you will learn how to Equipment find the slope at any point along your position graph and to understand its physical meaning. fit your velocity data to

More information

LAB 1: INTRODUCTION TO DATA STUDIO AND ONE-DIMENSIONAL MOTION

LAB 1: INTRODUCTION TO DATA STUDIO AND ONE-DIMENSIONAL MOTION Lab 1 - Introduction to Data Studio and One-Dimensional Motion 5 Name Date Partners LAB 1: INTRODUCTION TO DATA STUDIO AND ONE-DIMENSIONAL MOTION Slow and steady wins the race. Aesop s fable: The Hare

More information

2.3 Projectile Motion

2.3 Projectile Motion Figure 1 An Olympic ski jumper uses his own body as a projectile. projectile an object that moves along a two-dimensional curved trajectory in response to gravity projectile motion the motion of a projectile

More information

Unit 6 Quadratic Functions

Unit 6 Quadratic Functions Unit 6 Quadratic Functions 12.1 & 12.2 Introduction to Quadratic Functions What is A Quadratic Function? How do I tell if a Function is Quadratic? From a Graph The shape of a quadratic function is called

More information

Graph Matching. walk back and forth in front of Motion Detector

Graph Matching. walk back and forth in front of Motion Detector Graph Matching Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible

More information

Two-Dimensional Motion

Two-Dimensional Motion Two-Dimensional Motion Objects don't always move in a straight line. When an object moves in two dimensions, we must look at vector components. The most common kind of two dimensional motion you will encounter

More information

Tactical Weather Station Set-Up Guide 1

Tactical Weather Station Set-Up Guide 1 Tactical Weather Station Set-Up Guide 1 This is a generic overview of a portable WEATHERPAK 3 meter tripod set-up. Your system may not include all of the components listed, or may have different components.

More information

Appendix 1: DataStudio with ScienceWorkshop Sensors Tech Tips

Appendix 1: DataStudio with ScienceWorkshop Sensors Tech Tips Appendix 1: DataStudio with ScienceWorkshop Sensors Tech Tips Section 1: Starting an experiment 1.1 Opening a file 1. Open the File menu and select Open Activity. 2. In the Open dialog box, navigate to

More information

Docking station. Technical Documentation

Docking station. Technical Documentation Docking station Technical Documentation Version 1.1 Release date: 01.09.2015 Table of contents 1 Introduction...3 2 Layout and dimensions...4 3 What s included in the box...4 4 Connecting devices...5 4.1

More information

Physics 2374 Lab 2: Graph Matching

Physics 2374 Lab 2: Graph Matching Physics 2374 Lab 2: Graph Matching One of the most effective methods of describing motion is to plot graphs of position, velocity, and acceleration vs. time. From such a graphical representation, it is

More information

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). Quadratics Vertex Form 1. Part of the graph of the function y = d (x m) + p is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, ). (a) Write down the value of (i)

More information

AVT Model Tripod.

AVT Model Tripod. AVT Model Tripod www.ravelliphoto.com Product Overview: The Ravelli AVT professional tripod is a high performance, fluid drag tripod that provides smooth continuous drag control and operates on both pan

More information

Motions and Forces Collision II

Motions and Forces Collision II Motions and Forces Collision II Discovery Question When two objects hit, is the force on one the same as the force on the other? Introduction Thinking About the Question Materials Safety Trial I: Action

More information

Millenium Transformer Bundle. Instruction Manual

Millenium Transformer Bundle. Instruction Manual Millenium Transformer Bundle Instruction Manual 1 Taking Care of Your Digital Drum Set Thank you for purchasing this digital drum module. The drum module has been developed to act and play like a drum

More information

Advanced Curve Fitting. Eric Haller, Secondary Occasional Teacher, Peel District School Board

Advanced Curve Fitting. Eric Haller, Secondary Occasional Teacher, Peel District School Board Advanced Curve Fitting Eric Haller, Secondary Occasional Teacher, Peel District School Board rickyhaller@hotmail.com In many experiments students collect two-variable data, make scatter plots, and then

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section 1.5 Transformation of Functions 61 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

Reflowing Xbox 360 Motherboard

Reflowing Xbox 360 Motherboard Reflowing Xbox 360 Motherboard Reflow the solder on your Xbox 360's motherboard. Written By: Andrew Bookholt ifixit CC BY-NC-SA www.ifixit.com Page 1 of 31 INTRODUCTION Use this guide to reflow the solder

More information

FlowPod Stabilizer / MonoPod / Low Mode

FlowPod Stabilizer / MonoPod / Low Mode FlowPod Stabilizer / MonoPod / Low Mode FlowPod Operating Manual Thank you for purchasing the versatile FlowPod, our patented stabilizer/support. The FlowPod offers several shooting options that will help

More information

Motion Graphs. Plotting position against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting position against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

Graph Matching OBJECTIVES MATERIALS. Lab Activity #3(50 pts)

Graph Matching OBJECTIVES MATERIALS. Lab Activity #3(50 pts) Name Physics Period Partners: Date Lab Activity #3(50 pts) Mrs. Nadworny Due Date Graph Matching One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

More information

Chapter 23. Linear Motion Motion of a Bug

Chapter 23. Linear Motion Motion of a Bug Chapter 23 Linear Motion The simplest example of a parametrized curve arises when studying the motion of an object along a straight line in the plane We will start by studying this kind of motion when

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section.5 Transformation of Functions 6 Section.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

2 Ranking Task: complete this section and submit it to your instructor before you begin the lab.

2 Ranking Task: complete this section and submit it to your instructor before you begin the lab. Experiment 2 Ranking Task: complete this section and submit it to your instructor before you begin the lab. The position vs. time graph below was made by a moving object. During certain times, the object

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

Displacement-time and Velocity-time Graphs

Displacement-time and Velocity-time Graphs PhysicsFactsheet April Number Displacement- and Velocity- Graphs This Factsheet explains how motion can be described using graphs, in particular how - graphs and - graphs can be used. Displacement- graphs

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions 6 Chapter 1 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations in order to explain or

More information

Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3

Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3 Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3 Goals: To introduce tangent planes for functions of two variables. To consider functions of more than two variables and their level surfaces.

More information

Capstone Software Download and Installation

Capstone Software Download and Installation Capstone Software Download and Installation Go to the Pasco homepage (http://pasco.com) and click on the Downloads tab at the top of the page. Find the PASCO Capstone box and click on the Free Trial box.

More information

GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING EQUIPMENT/MATERIALS GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

More information

Projectile Motion. Honors Physics

Projectile Motion. Honors Physics Projectile Motion Honors Physics What is projectile? Projectile -Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile

More information

(40-405) Projectile Launcher

(40-405) Projectile Launcher 611-1410 (40-405) Projectile Launcher Replacement Parts: 24-0405 Instructions 40-030 Aluminum ball with hole 40-069 Steel ball with hole Congratulations on your purchase of a Science First product You

More information

Instruction Manuall. Flowcam Series. Professional dual-arm Camera Stabilizer System 5-15 lbs

Instruction Manuall. Flowcam Series. Professional dual-arm Camera Stabilizer System 5-15 lbs Flowcam Series Professional dual-arm Camera Stabilizer System 5-15 lbs Instruction Manuall Please read the instruction manual thoroughly before operating your aviator stabilizer for the first time to avoid

More information

Local Linearity (Tangent Plane) Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3

Local Linearity (Tangent Plane) Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3 Local Linearity and the Tangent Plane - 1 Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3 Goals: To introduce tangent planes for functions of two variables. To consider functions of

More information

LinReg 2.06 Manual. DePauw University: Physics Department 120 Physics I and 130 Physics II

LinReg 2.06 Manual. DePauw University: Physics Department 120 Physics I and 130 Physics II LinReg 2.06 Manual DePauw University: Physics Department 120 Physics I and 130 Physics II Updated March 23 rd, 2011 1 About LinReg: LinReg is a program used extensively in DePauw s physics laboratory classes.

More information

Falling Balls. Names: Date: About this Laboratory

Falling Balls. Names: Date: About this Laboratory Falling Balls Names: Date: About this Laboratory In this laboratory,1 we will explore quadratic functions and how they relate to the motion of an object that is dropped from a specified height above ground

More information

Super Gelatin. Explore Your challenge is to find the index of refraction for your gelatin sample.

Super Gelatin. Explore Your challenge is to find the index of refraction for your gelatin sample. Super Gelatin Activity: Materials Checklist: q Gelatin sample (red, yellow, or clear) q Laser pointer and binder clip q One sheet of graph paper q Protractor q Pencil q Scientific calculator Explore Your

More information

Physics 1020 Experiment 2. Motion in One Dimension

Physics 1020 Experiment 2. Motion in One Dimension 1 2 Introduction to Motion in 1D Three types of graphs can be used to represent the motion of an object in one dimension. Those are: position vs. time (x vs. t), velocity vs. time (v vs. t) and acceleration

More information

South County Secondary School AP Calculus BC

South County Secondary School AP Calculus BC South County Secondary School AP Calculus BC Summer Assignment For students entering Calculus BC in the Fall of 8 This packet will be collected for a grade at your first class. The material covered in

More information

Capstone Appendix. A guide to your lab computer software

Capstone Appendix. A guide to your lab computer software Capstone Appendix A guide to your lab computer software Important Notes Many of the Images will look slightly different from what you will see in lab. This is because each lab setup is different and so

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

More information