Local Linearity (Tangent Plane) Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3

Size: px
Start display at page:

Download "Local Linearity (Tangent Plane) Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3"

Transcription

1 Local Linearity and the Tangent Plane - 1 Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3 Goals: To introduce tangent planes for functions of two variables. To consider functions of more than two variables and their level surfaces. To study the differential of a function and its interpretation as the linear approximation of measurement error. To learn about vectors. Local Linearity (Tangent Plane) Reading: Section Just as a graph of a function of a single variable looks like a straight line when you zoom in to a point, the graph of a function f of two variables looks flat when you zoom in to a point (a, b, f(a, b)) on it. Reading: Sections 12.5, 14.3, 13.1, and Let us write the equation of the tangent plane to z = f(x, y) in point/slope form: z = c + m(x a) + n(y b), What is the slope of f(x, y) in the x direction at (a, b)? Local Linearity and the Tangent Plane - 2 Local Linearity and the Tangent Plane - 3 Based on those calculations, if we are given f(x, y), and want the tangent plane at (a, b), what values should we pick for the slopes m and n in the tangent plane formula? What is the slope of the tangent plane in the x direction at (a, b)? If the tangent plane passes through (a, b, f(a, b)), what value do we need for c in z = c + m(x a) + n(y b)?

2 Local Linearity and the Tangent Plane - 4 Local Linearity and the Tangent Plane - 5 Tangent Plane The plane tangent to z = f(x, y) at the point (x, y) = (a, b) is defined by z = f(a, b) + f x (a, b)(x a) + f y (a, b)(y b) This can be used to define the local linear approximation to f(x, y) at points (x, y) near (a, b): An alternate form of this same relationship is f f x (a, b) x + f y (a, b) y We will revisit use these two forms interchangeably, depending on whether we want to calculate local changes in f(x, y), or the estimated values of f(x, y). f(x, y) f(a, b) + f x (a, b)(x a) + f y (a, b)(y b) Note the similarity of the right hand side of a tangent line formula for single variable functions. Tangent Plane Examples - 1 Tangent Plane Examples Example: What is the equation of the tangent plane to the graph of the function f(x, y) = 3xe y/2 at (1, 2, 3e)? Tangent Plane Examples - 2 Use your answer to the preceding question to find an approximate value for f(0.95, 2.03) and use a calculator to check the accuracy of your answer.

3 Tangent Plane Examples Example: Let f(x, y) = 2 + x 2 2x + y2. Find the points on the graph where the tangent plane is parallel to the (x, y)-plane (i.e. horizontal). Sketch what the surface might look like near this/these points. Tangent Plane Examples - 4 [See also examples 3, 4, 5 in Section 14.3.] Functions of More Than Two Variables - 1 Functions of More Than Two Variables - 2 Functions of More Than Two Variables Reading: Section Example: (Temperature in a Room) To specify a point in the room, you must specify three coordinates (x, y, z). So, the temperature is a function of three variables: T = T (x, y, z). What is another variable that we could potentially include in this function, that would make temperature a function of four variables? Pictures for a Function of Three Variables To picture f(x, y, z) by means of a graph is not very useful. The graph would have to have the following definition: {(x, y, z, w) : w = f(x, y, z)}. That is, it would be a set in 4 dimensional space, which is not something we can directly visualize. However, we can make use of the analogue of the contour diagram. Suppose we pick a constant C and collect all the points (x, y, z) for which f(x, y, z) = C. In general, this gives a surface called a level surface. By sketching a number of level surfaces, we can get a sense of the function f. [See also H-H, Examples 2-5 in Section 12.5.]

4 Functions of More Than Two Variables - 3 Functions of More Than Two Variables - 4 Example (Steam Heating) Queen s University is heated by steam which is distributed to the buildings via underground pipes. Depict the level surfaces for the temperature function near the steam pipe under Agnes Benidickson Field. Contour of fixed density in a CT scan A Simple and Flexible Volume Rendering Framework for Graphics-Hardware-based Raycasting, Stegmeier et. al. Material contours based on MRI of a head. isocaps from Mathworks/MATLAB. Schlumberger Water Services - Groundwater Modelling Software MT3D99 A program for generating electron density isosurfaces for presentation in protein crystallography. M. C. Lawrence 1, P. D. Bourke Partial Derivatives in Higher Dimensions - 1 Partial Derivatives in Higher Dimensions If g(x, y, z) = x2y + 3yezy g, find. 2x y In general, for a function of several variables f (x1,..., xn), the partial derivative f (x1,..., xn) xi is the derivative obtained by holding all other variables fixed. f. z GMU s EastFire Cluster - Real-time wind velocities for fire spread prediction. Xianjun Hao and John J. Qu Partial Derivatives in Higher Dimensions - 2 General Partial Derivatives If f (x, y, z) = xeyz + z 2 cos(x2y), find Visualization of Fluid Turbulence using AVS/Express, CEI/Ensight and Paraview. P.K. Yeung et. al. If h(x, y, z) = sin(xy) + xz 3, find h (0, 2, 3). x

5 Local Linearity for a Function of Three Variables Local Linearity for a Function of Three Variables - 1 The local linearity of f(x, y, z) for points (x, y, z) near (a, b, c) is described by an analogous formula to the one used for functions of two variables: Example: for Local Linearity for a Function of Three Variables - 2 Use local linearity around (6, 3, 1) to find an approximate value (6.02)2 + (2.96) 3 + (1.01) 4. f(x, y, z) f(a, b, c) + f x (a, b, c)(x a) + f y (a, b, c)(y b) + f z (a, b, c)(z c) The Differential - 1 The Differential - 2 The Differential Reading: Section Two forms of the two-variable local linearity we have seen are f(x, y) f(a, b) + f x (a, b) (x a) + f y (a, b) (y b) and f f x (a, b) x + f y (a, b) y If x and y are allowed to get smaller and smaller, this approximate inequality becomes more nearly accurate. In the limit, mathematicians change the values into d values and call them differentials. In the limit, we obtain an expression with an equality instead of an approximation: df = f x (a, b) dx + f y (a, b) dy Conceptually, most people think of this as a formula for change in f for very small changes in x and y.

6 The Differential - 3 For a function of three variables, f(x, y, z), the local linearity can be expressed in similar ways: f(x, y, z) f(a, b, c) + f x (a, b, c) (x a) + f y (a, b, c) (y b) + f z (a, b, c) (z c) Using Linearity/Differentials for Estimates of Error Bounds - 1 Using Linearity/Differentials for Estimates of Error Bounds In scientific experiments, it is important to be able to provide estimates of the accuracy of your measurements and to derive estimates of the accuracy of your conclusions. Differentials, or linear approximations, are the key to making this kind of calculation simple. f f x (a, b, c) x + f y (a, b, c) y + f z (a, b, c) z df = f x (a, b, c) dx + f y (a, b, c) dy + f z (a, b, c) dz Error Bounds For a 2-variable function, local linearity gives us f f x (a, b) x + f y (a, b) y Using Linearity/Differentials for Estimates of Error Bounds - 2 To avoid sign confusion, errors are often given in the form (measured value) ± (error). This means that, if we measured x, x < (max x error). In these cases we can estimate the maximum (positive) error in the function output using error bound f x (a, b) (max x) + f y (a, b) (max y) The same result applies to 3- and higher-variable functions, with an additional term for each variable. Example: radius 2.5 cm height 15.0 cm mass 330 g Using Linearity/Differentials for Estimates of Error Bounds - 3 Suppose we measure the following properties of a cylinder: Suppose further that the accuracy of our length measurements is estimated to be ±0.1 cm and the accuracy of our mass measurement to be ±2 g. Calculate the density of the cylinder.

7 Using Linearity/Differentials for Estimates of Error Bounds - 4 Now estimate the error bound in this calculation. Include units. Using Linearity/Differentials for Estimates of Error Bounds - 5 If a is the error made in a measurement (or calculation) of a quantity a, then the ratio a is often referred to as the relative error. If we multiply it by 100, as a in a 100, we get the percentage error. a Suppose f(x, y, z) = x m y n z p. Show that the following formula for relative error is correct. f f m x x + n y y + p z z (CAUTION: This relative error formula only holds for functions that have this special form!) Vectors Vectors - 1 Reading: Sections We have seen that partial derivatives of a multi-variate function let us compute the slope of a surface in the x and y directions. However, we can also define a slope or steepness if we choose to move in an arbitrary direction. To do that kind of computation, we will need to introduce notation for arbitrary (x, y) directions. We will find the vector representation very helpful in this regard. Vectors - 2 It is often convenient to use arrows to represent vector quantities. The length of the arrow corresponds to the magnitude of the vector and the direction of the arrow tells you the direction of the vector. A natural question to ask is does it matter where the vector is located? The answer to this question is that it does not matter. Two arrows that have the same direction and magnitude are two representations of the same vector. Vectors Scalars A vector is a quantity that has both magnitude and direction. Velocity and force are examples of vector quantities. Quantities that have magnitude only are called scalars. Length and volume are examples of scalar quantities.

8 Vectors - 3 Which of the following arrows represent the same vector (i) the arrow from (0, 0) to (3, 4); (ii) the arrow from (2, 2) to (5, 2); (iii) the arrow from ( 1, 3) to (2, 7); (iv) the arrow from (1, 2) to ( 2, 2)? Vectors - 4 It is possible to combine vector quantities in much the same way as we combine numbers (by addition and subtraction). For the vectors v 1 and v 2 below v 1 v 2 sketch v 1 + v 2 v 1 v 2 v 2 v 1 Vectors - 5 Vector Components and Magnitudes - 1 Sketch the vectors ( v 1 v 1 ), and ( v 2 v 2 ). Vector Components and Magnitudes To manipulate vectors without needing to draw arrows, we need a symbolic representation for them. One of the most useful representations is the component form of a vector. The result of these last two differences is called the zero vector. It is a vector with zero length, and is the only vector for which we can assign no direction.

9 Component Unit Vectors We define i a vector of length 1 in the direction of the x axis j a vector of length 1 in the direction of the y axis k a vector of length 1 in the direction of the z axis Components of a vector If we expression a vector in the form v = v 1 i + v 2 j + v 3 k we call v 1 i, v 2 j, and v 3 k the components of v Alternate Component Form If v = v 1 i + v 2 j + v 3 k, a shorter form for the component representation is v = }{{} v 1, }{{} v 2, }{{} v 3 i j k Vector Components and Magnitudes - 2 Vector Components and Magnitudes - 3 Note: sometimes mathematicians and other scientists use different bracket shapes v = [v 1, v 2, v 3 ] or v = (v 1, v 2, v 3 ) to indicate that the set of values represents a vector, rather than a point. We will continue to use either the vector components, i, j and k, or angled parentheses, and. Vector Components and Magnitudes - 4 Vector Components and Magnitudes - 5 Example: Express the following vectors in both component forms: v 1 v 3 v 4 v 1 v 3 v 4 v 2 v 2 Question: Which of the following vectors represents v 1 + v 3? (a) 2, 3 (b) 3, 3 (c) 3, 2 (d) 3, 3 Question: Which of the following vectors represents v 4 v 3? (a) 3, 3 (b) 3, 5 (c) 1, 1 (d) 1, 1

10 Magnitude or Length From Components If v = v 1 i + v 2 j The length of a vector v = v1 2 + v2 2 In 3 dimensions, where v = v 1 i + v 2 j + v 3 k, v = v1 2 + v2 2 + v2 3 Vector Components and Magnitudes - 6 Parallel Vectors Parallel Vectors - 1 It is often important to know whether two vectors are parallel to each other, that is that they point along the same line, but might have different magnitudes. Example: Are the vectors v = 1, 2 and w = 2, 4 parallel? How long is the vector 2, 3? (a) -1 (b) 5 (c) 13 (d) 13 Why are the vectors v = 1, 2 and w = 2, 5 not parallel? Parallel Vectors - 2 Parallel Vectors Two vectors, v and u, are parallel to one another if there exists a scalar multiplier c such that v = c u. Parallel Vectors - 3 Example: Find the value(s) of t such that the vector u = 2, 3 t, 3 + t 2 is parallel to w = 4, t 2 9, 4t. Example: Show that the vector 3, 4, 5 is not parallel to 1, 2, 3.

11 Vector Applications Vector Applications - 1 Example: An airplane sets itself on a heading due east, at an air speed of 600 km/hr. It has a tail-wind of 80 km/h from the north-west. What is the plane s net velocity vector relative to the ground? Vector Applications - 2 Example: An airplane is flying at an airspeed of 800 km/hr, in winds that are blowing from the south at a speed of 50 km/hr. In what direction should the plane head to end up going due east, relative to the ground?

Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3

Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3 Unit #19 : Functions of Many Variables, and Vectors in R 2 and R 3 Goals: To introduce tangent planes for functions of two variables. To consider functions of more than two variables and their level surfaces.

More information

Unit #20 : Functions of Many Variables, and Vectors in R 2 and R 3

Unit #20 : Functions of Many Variables, and Vectors in R 2 and R 3 Unit #20 : Functions of Many Variables, and Vectors in R 2 and R 3 Goals: To introduce tangent planes for functions of two variables. To consider functions of more than two variables and their level surfaces.

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

Overview for Families

Overview for Families unit: Graphing Equations Mathematical strand: Algebra The following pages will help you to understand the mathematics that your child is currently studying as well as the type of problems (s)he will solve

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4 Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations Textbook: Section 14.4 Warm-Up: Graph the Cone & the Paraboloid paraboloid f (x, y) = x 2 + y 2 cone g(x, y) = x 2 + y 2 Do you notice

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

SPH3U1 Lesson 05 Kinematics

SPH3U1 Lesson 05 Kinematics VECTORS IN TWO-DIMENSIONS LEARNING GOALS Students will Draw vector scale diagrams to visualize and analyze the nature of motion in a plane. Analyze motion by using scale diagrams to add vectors. Solve

More information

SPH3U1 Lesson 09 Kinematics

SPH3U1 Lesson 09 Kinematics VECTORS IN TWO-DIMENSIONS LEARNING GOALS Students will Draw vector scale diagrams to visualize and analyze the nature of motion in a plane. Analyze motion by using scale diagrams to add vectors. Solve

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

Functions of Several Variables

Functions of Several Variables . Functions of Two Variables Functions of Several Variables Rectangular Coordinate System in -Space The rectangular coordinate system in R is formed by mutually perpendicular axes. It is a right handed

More information

AP Calculus AB Unit 2 Assessment

AP Calculus AB Unit 2 Assessment Class: Date: 203-204 AP Calculus AB Unit 2 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. A calculator may NOT be used on this part of the exam.

More information

GPS SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects.

GPS SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. GPS SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. b. Compare and contrast scalar and vector quantities. SCALARS AND VECTORS Scalars only have magnitude

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Unit #19 : Level Curves, Partial Derivatives

Unit #19 : Level Curves, Partial Derivatives Unit #19 : Level Curves, Partial Derivatives Goals: To learn how to use and interpret contour diagrams as a way of visualizing functions of two variables. To study linear functions of two variables. To

More information

Math 3 Coordinate Geometry part 1 Unit November 3, 2016

Math 3 Coordinate Geometry part 1 Unit November 3, 2016 Reviewing the basics The number line A number line is a visual representation of all real numbers. Each of the images below are examples of number lines. The top left one includes only positive whole numbers,

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions 6 Chapter 1 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations in order to explain or

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

3.9 LINEAR APPROXIMATION AND THE DERIVATIVE

3.9 LINEAR APPROXIMATION AND THE DERIVATIVE 158 Chapter Three SHORT-CUTS TO DIFFERENTIATION 39 LINEAR APPROXIMATION AND THE DERIVATIVE The Tangent Line Approximation When we zoom in on the graph of a differentiable function, it looks like a straight

More information

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly.

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly. MATH 11012 Intuitive Calculus Fall 2012 Name:. Exam 1 Review Show your reasoning. Use standard notation correctly. 1. Consider the function f depicted below. y 1 1 x (a) Find each of the following (or

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

CCNY Math Review Chapter 2: Functions

CCNY Math Review Chapter 2: Functions CCN Math Review Chapter : Functions Section.1: Functions.1.1: How functions are used.1.: Methods for defining functions.1.3: The graph of a function.1.: Domain and range.1.5: Relations, functions, and

More information

3.1. 3x 4y = 12 3(0) 4y = 12. 3x 4y = 12 3x 4(0) = y = x 0 = 12. 4y = 12 y = 3. 3x = 12 x = 4. The Rectangular Coordinate System

3.1. 3x 4y = 12 3(0) 4y = 12. 3x 4y = 12 3x 4(0) = y = x 0 = 12. 4y = 12 y = 3. 3x = 12 x = 4. The Rectangular Coordinate System 3. The Rectangular Coordinate System Interpret a line graph. Objectives Interpret a line graph. Plot ordered pairs. 3 Find ordered pairs that satisfy a given equation. 4 Graph lines. 5 Find x- and y-intercepts.

More information

Vector Integration : Surface Integrals

Vector Integration : Surface Integrals Vector Integration : Surface Integrals P. Sam Johnson April 10, 2017 P. Sam Johnson Vector Integration : Surface Integrals April 10, 2017 1/35 Overview : Surface Area and Surface Integrals You know how

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section 1.5 Transformation of Functions 61 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved.

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with a Graphing Calculator Graphing Piecewise Defined Functions

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 2.1 Derivatives and Rates of Change In this chapter we study a special type of limit, called a derivative, that occurs when we want to find a slope of a tangent line, or a velocity, or any instantaneous

More information

Experimental Design and Graphical Analysis of Data

Experimental Design and Graphical Analysis of Data Experimental Design and Graphical Analysis of Data A. Designing a controlled experiment When scientists set up experiments they often attempt to determine how a given variable affects another variable.

More information

Functions. Copyright Cengage Learning. All rights reserved.

Functions. Copyright Cengage Learning. All rights reserved. Functions Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with

More information

Vocabulary Unit 2-3: Linear Functions & Healthy Lifestyles. Scale model a three dimensional model that is similar to a three dimensional object.

Vocabulary Unit 2-3: Linear Functions & Healthy Lifestyles. Scale model a three dimensional model that is similar to a three dimensional object. Scale a scale is the ratio of any length in a scale drawing to the corresponding actual length. The lengths may be in different units. Scale drawing a drawing that is similar to an actual object or place.

More information

DIOCESE OF HARRISBURG MATHEMATICS CURRICULUM GRADE 8

DIOCESE OF HARRISBURG MATHEMATICS CURRICULUM GRADE 8 MATHEMATICS CURRICULUM GRADE 8 8A Numbers and Operations 1. Demonstrate an numbers, ways of representing numbers, relationships among numbers and number systems. 2. Compute accurately and fluently. a.

More information

Math 5BI: Problem Set 2 The Chain Rule

Math 5BI: Problem Set 2 The Chain Rule Math 5BI: Problem Set 2 The Chain Rule April 5, 2010 A Functions of two variables Suppose that γ(t) = (x(t), y(t), z(t)) is a differentiable parametrized curve in R 3 which lies on the surface S defined

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

Math 2 Coordinate Geometry Part 1 Slope & Transformations

Math 2 Coordinate Geometry Part 1 Slope & Transformations Math 2 Coordinate Geometry Part 1 Slope & Transformations 1 MATH 1 REVIEW: THE NUMBER LINE A number line is a visual representation of all real numbers. Each of the images below are examples of number

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

MA 113 Calculus I Fall 2015 Exam 2 Tuesday, 20 October Multiple Choice Answers. Question

MA 113 Calculus I Fall 2015 Exam 2 Tuesday, 20 October Multiple Choice Answers. Question MA 113 Calculus I Fall 2015 Exam 2 Tuesday, 20 October 2015 Name: Section: Last digits of student ID #: This exam has ten multiple choice questions (five points each) and five free response questions (ten

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Functions of Several Variables module: - Section 3: Limits and Continuity - Section 4: Partial Derivatives - Section 5: Tangent Plane, Linearization, and Differentiability

More information

Section 7.2 Volume: The Disk Method

Section 7.2 Volume: The Disk Method Section 7. Volume: The Disk Method White Board Challenge Find the volume of the following cylinder: No Calculator 6 ft 1 ft V 3 1 108 339.9 ft 3 White Board Challenge Calculate the volume V of the solid

More information

Section 2.2 Graphs of Linear Functions

Section 2.2 Graphs of Linear Functions Section. Graphs of Linear Functions Section. Graphs of Linear Functions When we are working with a new function, it is useful to know as much as we can about the function: its graph, where the function

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

Section 1.1 The Distance and Midpoint Formulas

Section 1.1 The Distance and Midpoint Formulas Section 1.1 The Distance and Midpoint Formulas 1 y axis origin x axis 2 Plot the points: ( 3, 5), (0,7), ( 6,0), (6,4) 3 Distance Formula y x 4 Finding the Distance Between Two Points Find the distance

More information

Unit 2: Linear Functions

Unit 2: Linear Functions Unit 2: Linear Functions 2.1 Functions in General Functions Algebra is the discipline of mathematics that deals with functions. DEF. A function is, essentially, a pattern. This course deals with patterns

More information

Chapter 4: Linear Relations

Chapter 4: Linear Relations Chapter 4: Linear Relations How many people can sit around 1 table? If you put two tables together, how many will the new arrangement seat? What if there are 10 tables? What if there are 378 tables in

More information

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values:

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values: II Functions Week 4 Functions: graphs, tables and formulas Problem of the Week: The Farmer s Fence A field bounded on one side by a river is to be fenced on three sides so as to form a rectangular enclosure

More information

Section 1: Section 2: Section 3: Section 4:

Section 1: Section 2: Section 3: Section 4: Announcements Topics: In the Functions of Several Variables module: - Section 1: Introduction to Functions of Several Variables (Basic Definitions and Notation) - Section 2: Graphs, Level Curves + Contour

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Barrhead High School Mathematics Department. National 4 Mathematics. Learning Intentions & Success Criteria: Assessing My Progress

Barrhead High School Mathematics Department. National 4 Mathematics. Learning Intentions & Success Criteria: Assessing My Progress Barrhead High School Mathematics Department National 4 Mathematics Learning Intentions & Success Criteria: Assessing My Progress Expressions and Formulae Topic Learning Intention Success Criteria I understand

More information

7.1 INVERSE FUNCTIONS

7.1 INVERSE FUNCTIONS 1 7.1 INVERSE FUNCTIONS One to one functions are important because their equations, f(x) = k, have (at most) a single solution. One to one functions are also important because they are the functions that

More information

MEI Desmos Tasks for AS Pure

MEI Desmos Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x² 4x + 1 2. Add a line, e.g. y = x 3 3. Select the points of intersection of the line and the curve. What

More information

16.7 Surface Integrals

16.7 Surface Integrals 16 Vector Calculus 16.7 Surface Integrals Copyright Cengage Learning. All rights reserved. 1 Copyright Cengage Learning. All rights reserved. Surface Integrals The relationship between surface integrals

More information

(Refer Slide Time: 00:03:51)

(Refer Slide Time: 00:03:51) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 17 Scan Converting Lines, Circles and Ellipses Hello and welcome everybody

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal Distance; Circles; Equations of the form Lecture 5 y = ax + bx + c In this lecture we shall derive a formula for the distance between two points in a coordinate plane, and we shall use that formula to

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Y. Butterworth Lehmann & 9.2 Page 1 of 11

Y. Butterworth Lehmann & 9.2 Page 1 of 11 Pre Chapter 9 Coverage Quadratic (2 nd Degree) Form a type of graph called a parabola Form of equation we'll be dealing with in this chapter: y = ax 2 + c Sign of a determines opens up or down "+" opens

More information

Acute Angles and Right Triangles. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Acute Angles and Right Triangles. Copyright 2017, 2013, 2009 Pearson Education, Inc. 2 Acute Angles and Right Triangles Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 2.5 Further Applications of Right Triangles Historical Background Bearing Further Applications Copyright 2017, 2013,

More information

Year Nine Scheme of Work. Overview

Year Nine Scheme of Work. Overview Year Nine Scheme of Work Overview Unit Topic 1 Angles 2 Manipulating Algebra and Rules of Negatives 3 Place Value and Decimals 4 Sequences 5 Data 6 Fractions 7 Perimeter and Area of Polygons and Circles

More information

Vertical Line Test a relationship is a function, if NO vertical line intersects the graph more than once

Vertical Line Test a relationship is a function, if NO vertical line intersects the graph more than once Algebra 2 Chapter 2 Domain input values, X (x, y) Range output values, Y (x, y) Function For each input, there is exactly one output Example: Vertical Line Test a relationship is a function, if NO vertical

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition ection 17.7: urface Integrals 1 Objectives 1. Compute surface integrals of function of three variables. Assignments 1. Read ection 17.7. Problems: 5,7,11,1 3. Challenge: 17,3 4. Read ection 17.4 3 Maple

More information

Unit Maps: Grade 8 Math

Unit Maps: Grade 8 Math Real Number Relationships 8.3 Number and operations. The student represents and use real numbers in a variety of forms. Representation of Real Numbers 8.3A extend previous knowledge of sets and subsets

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Prentice Hall Mathematics: Course Correlated to: Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8)

Prentice Hall Mathematics: Course Correlated to: Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8) Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8) NUMBER SENSE AND OPERATIONS 8.N.1 8.N.2 8.N.3 8.N.4 8.N.5 8.N.6 8.N.7 8.N.8 Compare, order, estimate, and translate among integers,

More information

NOTES Linear Equations

NOTES Linear Equations NOTES Linear Equations Linear Parent Function Linear Parent Function the equation that all other linear equations are based upon (y = x) Horizontal and Vertical Lines (HOYY VUXX) V vertical line H horizontal

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121/124 - APR 2014 A. Ableson, T. Day, A. Hoefel

DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121/124 - APR 2014 A. Ableson, T. Day, A. Hoefel Page 1 of 18 DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121/124 - APR 2014 A. Ableson, T. Day, A. Hoefel INSTRUCTIONS: Answer all questions, writing clearly in the space

More information

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. Math 106/108 Final Exam Page 1 Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. 1. Factor completely. Do not solve. a) 2x

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables)

Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables) BSU Math 275 Notes Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables) Textbook Section: 14.1 From the Toolbox (what you need from previous classes): Know the meaning

More information

Section 4: Extreme Values & Lagrange Multipliers.

Section 4: Extreme Values & Lagrange Multipliers. Section 4: Extreme Values & Lagrange Multipliers. Compiled by Chris Tisdell S1: Motivation S2: What are local maxima & minima? S3: What is a critical point? S4: Second derivative test S5: Maxima and Minima

More information

SNAP Centre Workshop. Graphing Lines

SNAP Centre Workshop. Graphing Lines SNAP Centre Workshop Graphing Lines 45 Graphing a Line Using Test Values A simple way to linear equation involves finding test values, plotting the points on a coordinate plane, and connecting the points.

More information

Patterning Math Lab 4a

Patterning Math Lab 4a Patterning Math Lab 4a This lab is an exploration of transformations of functions, a topic covered in your Precalculus textbook in Section 1.5. As you do the exercises in this lab you will be closely reading

More information

Supplemental 1.5. Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient

Supplemental 1.5. Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient Supplemental 1.5 Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient Interval Notation Many times in this class we will only want to talk about what

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

2009 GCSE Maths Tutor All Rights Reserved

2009 GCSE Maths Tutor All Rights Reserved 2 This book is under copyright to GCSE Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents angles 3 bearings 8 triangle similarity 9 triangle congruency 11 Pythagoras

More information

Birkdale High School - Higher Scheme of Work

Birkdale High School - Higher Scheme of Work Birkdale High School - Higher Scheme of Work Module 1 - Integers and Decimals Understand and order integers (assumed) Use brackets and hierarchy of operations (BODMAS) Add, subtract, multiply and divide

More information

Algebra 2 Chapter Relations and Functions

Algebra 2 Chapter Relations and Functions Algebra 2 Chapter 2 2.1 Relations and Functions 2.1 Relations and Functions / 2.2 Direct Variation A: Relations What is a relation? A of items from two sets: A set of values and a set of values. What does

More information

Tangent Planes and Linear Approximations

Tangent Planes and Linear Approximations February 21, 2007 Tangent Planes Tangent Planes Let S be a surface with equation z = f (x, y). Tangent Planes Let S be a surface with equation z = f (x, y). Let P(x 0, y 0, z 0 ) be a point on S. Tangent

More information

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics 1 DISTANCE BETWEEN TWO POINTS - REVIEW To find the distance between two points, use the Pythagorean theorem. The difference between x 1 and x

More information

Mathematics Department Inverclyde Academy

Mathematics Department Inverclyde Academy Common Factors I can gather like terms together correctly. I can substitute letters for values and evaluate expressions. I can multiply a bracket by a number. I can use common factor to factorise a sum

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters.

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters. Math 55 - Vector Calculus II Notes 14.6 urface Integrals Let s develop some surface integrals. First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). urfaces

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information