International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

Size: px
Start display at page:

Download "International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)"

Transcription

1 International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) ISSN (Print): 79-7 ISSN (Online): 79- On a New Weighted Average Interpolation Vignesh Pai B H and Hamsapriye B.Tech. 7 th Semester Student, Department of Mechanical engineering, R V College of Engineering, R.V. Vidyaniketan post, Mysore Road, Bangalore- 9, INDIA. Professor, Department of Mathematics, R V College of Engineering, R.V. Vidyaniketan post, Mysore Road, Bangalore- 9, INDIA. Abstract: A new interpolation technique called the Weighted Average Interpolation (WAI) is discussed. A new concept named the effect is explained, for both even and odd number of points, along with associated correction factors. The procedure of deriving the formula is discussed in detail, under different cases. These ideas are also extended to extrapolation of data. The relation between the WAI and Lagrange s interpolation formula is analyzed. Further, the advantages and disadvantages of the WAI with reference to the Lagrange s formula are examined. Numerical examples are worked out for clarity. Keywords: Weighted Average Interpolation, Effect, Odd points, Even points, Correction factor, Pascal s triangle. I. Introduction Interpolation is a technique of constructing new data points, based on the existing data points obtained by sampling or experimentation. It is often required to estimate the values at intermediate points. The well-known Lagrange method of interpolation is such that, the number of arithmetic operations increase rapidly, whenever the number of data points is increased. This is a limitation and therefore there is a need to reduce the number or operations without compromising on the accuracy. The new method discussed herein overcomes this limitation and thus the number of operations are significantly reduced. Further, the formulae are derived based on logical reasoning. The method is simple compared to other methods. II. The Concept of Positive and Negative Effect in Interpolation Let (, ) be an intermediate point between two points (, ) and (, ). The Lagrange s interpolation formula [] is given by This formula can be rewritten in the form as. (). () We see that is the weighted average of and and the weights are observed to be ratios of distances. We set a reference distance as d(, ) = ( - ). The weight associated with is the ratio of the reference distance and d(, ). Similarly, the weight associated with is the ratio of the reference distance with itself. Refer Figure. Figure : The concept of Effect IJETCAS - 8;, IJETCAS All Rights Reserved Page 9

2 From figure we can rewrite equation () as. () The above expression can be recast into a different form, by using the concept of Effect. This effect is defined as the ratio of the reference distance with either d(, ) or d(, ). The effect of (, ) on (, ) is the ratio and the effect of (, ) on (, ) is. Thus, equation () takes the form () The reference distance can as well be d(, ). In fact, the reference distance can be taken to be unity. In this case the formula () can be written as () The concept of effect can be extended to many number of points. Taking the reference distance to be unity, we can similarly write the weighted average formula for n points (, ), (, ),, (, ) as () Initially, we have considered the effects of the n points on the interpolating point (, ) with positive signs, which may not be correct. Figure explains the possible negative effects clearly. Figure : Negative effect of even points. Sequence Sequence Sequence Sequence Sequence Sequence Sequence Sequence Consider the point (., ). The idea of interpolation is to fit a smooth curve passing through the given points. If the given data points are (, ), (, ), (, ), (, ) then = for.. Suppose the point (, ) is changed to (, ) then the point (., ) slides down below. Similarly, if the point (, ) is changed to (, ) then the point (., ) again slides below =. If simultaneously the two points (, ) and (, ) are varied to (, ) and IJETCAS - 8;, IJETCAS All Rights Reserved Page 7

3 (, ), then the effect piles-up and the effect is clearly visible, as shown in figure, as sequence. If (., ) is the reference point, then (, ) (on the right) and (, ) (on the left) are defined to be odd points. Also, (, ) (on the right) and (, ) (on the left) are defined to be even points. Therefore, the observation is that whenever the value of even points increases, the interpolated value decreases. For the same reference point (., ) and for the same data points, if the point (, ) is changed to (, ) then the point (., ) increases above. Similarly, if the point (, ) is changed to (, ) then the point (., ) again increases above. If simultaneously the two points (, ) and (, ) are changed to (, ) and (, ), then the effect piles-up and the effect is clearly visible, as shown in figure, as sequence. Therefore, the observation is that whenever the value of even points decreases, the interpolated value increases. In a nut-shell, we say that the even points ( odd points ) exert a negative effect ( positive effect ) on the point to be interpolated. It is to be noted from equation () that the immediate points or the first points or the odd points exert positive effect. With all these observations the formula for interpolation can be modified to be, (7) whenever four data points are given. Formula (7) is true when (, ) lies between (, ) and (, ). Extending these ideas we can obtain the formula for eight points to be (8) for < <. The formula for any general case would have alternate signs. III. Correction Factors At this stage we have only considered the effects, without their magnitudes. Incorporating these magnitudes leads us to the correction factors. As an illustration we consider the below data. Sl. no. Table I: Data Points Let the point of interpolation be (9, ). Equation (8) takes the form, (9) where =.87, =., =., =, =, =., =. and =.87 are the weights. The estimated y = 7.7, whereas the exact value is 8. The Lagrange s interpolation gives the exact value 8. We now compare with the coefficients of Lagrange s interpolation formula, written in the form as. () Here =., =.9, =.9, =.98, =.98, =.9, =.9 and =.. On comparing the weights with the above coefficients, we impose the following condition that any two weight ratios must equal the corresponding coefficient ratios. That is, IJETCAS - 8;, IJETCAS All Rights Reserved Page 7

4 Since the ratio is important and not their individual values, we may equate the numerators and denominators separately. Thus we obtain and. In the above example, =.7898, =.989, =.88879, =.98, =.98, =.88879, =.989 and = Now if we use the weights s we obtain y = 8.The advantage is that these correction factors can be computed just once, irrespective of the interval in which (, ) lies. Also these weights are independent of the function that is interpolated. These correction factors rectify the end result obtained from the formula (9), in such a way that the final result coincides with that of the Lagrange s. The weights are not actually the coefficients of the ordinates in WAI formula. For instance, the coefficient of in WAI formula is This is compared with c of Lagrange interpolation. It is to be remarked that in the weighted average interpolation, we are just interested in the relative importance of the given s with reference to each other. This simplifies the computations to a greater extent. It is found that these correction factors can be obtained from the Pascal s triangle. Since their ratios are of importance, dividing all of them by the smallest, we obtain the correction factors to be =, = 7, =, =, =, =, = 7 and =. Thus, the correction factors for n points are obtained from the n th line of the Pascal s triangle. The formula with correction factors for points: (, ), (, ), (, ), (, ) is tabulated below Table : List of formulae to be used for points. Interval Formula to be used to to to IV. Extrapolation Using Weighted Average Method We extend the idea of weighted average interpolation to extrapolation as well. Initially, few virtual intervals are created beyond the given range. Suppose that (, ), (, ) and (, ) are the given points. If < <, then the interpolation formula is () and if < < the interpolation formula is () Suppose < <. Then we are extrapolating on the right. We include a virtual interval (, ) and use the interpolation ideas, as explained in earlier sections. For instance, consider =, = and =. For < < 8, we include the virtual interval (, 8). Using the ideas discussed in the earlier sections, the extrapolation formula can be written in the form as () IJETCAS - 8;, IJETCAS All Rights Reserved Page 7

5 It is observed that (, ) is an odd point, which therefore exerts positive effect on (, ). Similarly, if 8 < <, then the extrapolation formula in the virtual interval (8, ) is () It is to be noted that (, ) is an even point, which now exerts a negative effect on (, ). This pattern continues for every additional virtual interval. It is also observed that there is absolutely no difference between the expressions () and (), except that the numerator and the denominator both are multiplied by. Therefore there is exactly one formula for extrapolation. Similar ideas are used while extrapolating on the left. V. A Comparative Study of Lagrange Interpolation and WAI In this section we shall confirm that the end results of WAI and Lagrange s interpolation coincide. Let us consider three data points. If (, ) lies between the first two data points, the WAI formula is () The Lagrange s interpolation formula is Suppose the points are equally spaced, then equation () simplifies to and formula (7) simplifies to () (7) Dividing equation (8) throughout by and multiplying by two we obtain (8) This is the numerator of the WAI formula. Also, it is easily proved that (9) Therefore equation (9) reduces to (). These ideas can be easily generalized to any number of points. VI. Unequally Spaced Points The above study is based on equally spaced points. The extension of these ideas to unequally spaced points is a tedious task. Nevertheless, unequally spaced points, following a pattern is of special interest. Therefore, we have considered three such cases, as stated below: ) Unequally spaced points, whose consecutive differences are in geometric progression (UGP) ) Unequally spaced points placed in harmonic progression (UHP) ) Unequally spaced points, whose consecutive differences are in arithmatic progression (UAP) ) UGP: As an illustration, we fix the common ratio r =. The correction factors can be computed on similar lines as in the case of equally spaced points. Let the data points be a + s, a + s r, a + s r. The correction factors are found to be =, = and =, which can be viewed as, and. Again, with four data points, the correction factors are,, and and with data points the correction factors are given to be,,, and. In general, for n points and for any r, we can compute,,, The p s follow the special pattern close to the Pascal s triangle as given below. () IJETCAS - 8;, IJETCAS All Rights Reserved Page 7

6 Table : s for points in UGP for. POINT POINTS POINTS POINTS 7 7 POINTS POINTS 7 POINTS 9 8 POINTS POINTS POINTS The pattern for the s is explained as follows. The fourth line consists of the numbers, 7, 7 and. The fifth line is computed as,,, and. So, in general, if the numbers in the th line is,,,,,, then the ( +) th line can be computed to be,,,,...,. The s for any in UGP is tabulated below: Table : s for points in UGP for any. POINT POINTS POINTS POINTS POINTS POINTS So, in general, if the numbers in the th line is,,,,,, then the ( +) th line can be computed to be,,,,...,. ) UHP: We consider a general harmonic progression in the form,,. The correction factors can be computed on similar lines as in the case of equally spaced points. The correction factors are computed in table. Table : List of Correction factors for points in UHP. POINT POINTS POINTS POINTS 7 POINTS POINTS POINTS POINTS POINTS POINTS The pattern for the corrections factors in the n th line is given to be ) UAP: The general form of the sequence in this case is considered to be a, a+d, a+ d, a+ d, a+ d, The correction factors for the above choice of values is tabulated below. Table : List of Correction factors for points in UAP. POINT POINTS POINTS POINTS 9 POINTS 8 7 POINTS POINTS POINTS POINTS 8 POINTS IJETCAS - 8;, IJETCAS All Rights Reserved Page 7

7 If the numbers in the th line are,,,, n =, then the corrections factors in the ( +) th line can be computed to be,,,...,. VII. Error Analysis In section V, we have shown that the end results of Lagrange interpolation and the WAI methods are equal. Hence the error estimate of WAI coincides with that of Lagrange s method. Thus the error term in the WAI is estimated to be []: is a polynomial of degree. VIII. Advantages and Disadvantages The major advantage of WAI over Lagrange interpolation is that fewer arithmetic operations are required. As an illustration, with eight data points, it can be easily verified that WAI and Lagrange interpolation requires 7 and 8 distinct arithmetic operations, respectively. In general, with n points WAI performs n distinct arithmetic operations, whereas Lagrange interpolation performs n n arithmetic operations. Remarkably, it is possible to obtain a polynomial approximation in Lagrange interpolation, whereas this is difficult in the case of WAI. This is a disadvantage. IX. Numerical Examples In this section, we have worked out an example under UGP. The following data points,,,,, and satisfy the function. The problem is to estimate at. For these four data points the correction factors are,,,,,, and or,,,,,, and. () Plugging in these correction factors in the WAI formula and for we arrive at () Thus.778which is the same value as Lagrange interpolation, whereas the actual value is.799. X. Conclusions A new interpolation technique called the Weighted Average Interpolation (WAI) has been discussed. A new concept called effect has been introduced, for both odd and even number of points, along with the respective correction factors. Also, the procedure of deriving the formula has been discussed in a greater detail, under different cases. Further, these ideas have been extended to extrapolation of data. Furthermore, the relation between the WAI and Lagrange interpolation formula has been studied. The merits and demerits of the WAI and the Lagrange s interpolation have also been explained. Finally, several illustrations and numerical examples are worked out for clarity. References [] Kendall E. Atkinson, An Introduction to Numerical Analysis, nd Edition, John Wiley & sons, 988. IJETCAS - 8;, IJETCAS All Rights Reserved Page 7

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations COURSE: NUMERICAL ANALYSIS LESSON: Methods for Solving Non-Linear Equations Lesson Developer: RAJNI ARORA COLLEGE/DEPARTMENT: Department of Mathematics, University of Delhi Page No. 1 Contents 1. LEARNING

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

specified or may be difficult to handle, we often have a tabulated data

specified or may be difficult to handle, we often have a tabulated data Interpolation Introduction In many practical situations, for a function which either may not be explicitly specified or may be difficult to handle, we often have a tabulated data where and for In such

More information

EC121 Mathematical Techniques A Revision Notes

EC121 Mathematical Techniques A Revision Notes EC Mathematical Techniques A Revision Notes EC Mathematical Techniques A Revision Notes Mathematical Techniques A begins with two weeks of intensive revision of basic arithmetic and algebra, to the level

More information

Numerical Integration

Numerical Integration Numerical Integration Numerical Integration is the process of computing the value of a definite integral, when the values of the integrand function, are given at some tabular points. As in the case of

More information

Natasha S. Sharma, PhD

Natasha S. Sharma, PhD Revisiting the function evaluation problem Most functions cannot be evaluated exactly: 2 x, e x, ln x, trigonometric functions since by using a computer we are limited to the use of elementary arithmetic

More information

Polynomial Approximation and Interpolation Chapter 4

Polynomial Approximation and Interpolation Chapter 4 4.4 LAGRANGE POLYNOMIALS The direct fit polynomial presented in Section 4.3, while quite straightforward in principle, has several disadvantages. It requires a considerable amount of effort to solve the

More information

I. Recursive Descriptions A phrase like to get the next term you add 2, which tells how to obtain

I. Recursive Descriptions A phrase like to get the next term you add 2, which tells how to obtain Mathematics 45 Describing Patterns in s Mathematics has been characterized as the science of patterns. From an early age students see patterns in mathematics, including counting by twos, threes, etc.,

More information

Rational Numbers CHAPTER Introduction

Rational Numbers CHAPTER Introduction RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + () is solved when x, because this value of

More information

Voluntary State Curriculum Algebra II

Voluntary State Curriculum Algebra II Algebra II Goal 1: Integration into Broader Knowledge The student will develop, analyze, communicate, and apply models to real-world situations using the language of mathematics and appropriate technology.

More information

Markscheme May 2017 Mathematical studies Standard level Paper 1

Markscheme May 2017 Mathematical studies Standard level Paper 1 M17/5/MATSD/SP1/ENG/TZ/XX/M Markscheme May 017 Mathematical studies Standard level Paper 1 3 pages M17/5/MATSD/SP1/ENG/TZ/XX/M This markscheme is the property of the International Baccalaureate and must

More information

Quartile, Deciles, Percentile) Prof. YoginderVerma. Prof. Pankaj Madan Dean- FMS Gurukul Kangri Vishwavidyalaya, Haridwar

Quartile, Deciles, Percentile) Prof. YoginderVerma. Prof. Pankaj Madan Dean- FMS Gurukul Kangri Vishwavidyalaya, Haridwar Paper:5, Quantitative Techniques for Management Decisions Module:6 Measures of Central Tendency: Averages of Positions (Median, Mode, Quartile, Deciles, Percentile) Principal Investigator Co-Principal

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

99 International Journal of Engineering, Science and Mathematics

99 International Journal of Engineering, Science and Mathematics Journal Homepage: Applications of cubic splines in the numerical solution of polynomials Najmuddin Ahmad 1 and Khan Farah Deeba 2 Department of Mathematics Integral University Lucknow Abstract: In this

More information

Deficient Quartic Spline Interpolation

Deficient Quartic Spline Interpolation International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 2 (2011), pp. 227-236 International Research Publication House http://www.irphouse.com Deficient Quartic

More information

DCT SVD Based Hybrid Transform Coding for Image Compression

DCT SVD Based Hybrid Transform Coding for Image Compression DCT SVD Based Hybrid Coding for Image Compression Raghavendra.M.J 1, 1 Assistant Professor, Department of Telecommunication P.E.S. Institute of Technology Bangalore, India mjraghavendra@gmail.com Dr.Prasantha.H.S

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Midterm 2 Solutions. CS70 Discrete Mathematics for Computer Science, Fall 2007

Midterm 2 Solutions. CS70 Discrete Mathematics for Computer Science, Fall 2007 CS70 Discrete Mathematics for Computer Science, Fall 007 Midterm Solutions Note: These solutions are not necessarily model answers Rather, they are designed to be tutorial in nature, and sometimes contain

More information

1. To condense data in a single value. 2. To facilitate comparisons between data.

1. To condense data in a single value. 2. To facilitate comparisons between data. The main objectives 1. To condense data in a single value. 2. To facilitate comparisons between data. Measures :- Locational (positional ) average Partition values Median Quartiles Deciles Percentiles

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION f(x) MISN-0-349 NUMERICAL INTEGRATION by Robert Ehrlich George Mason University 1. Numerical Integration Algorithms a. Introduction.............................................1 b.

More information

Natural Numbers and Integers. Big Ideas in Numerical Methods. Overflow. Real Numbers 29/07/2011. Taking some ideas from NM course a little further

Natural Numbers and Integers. Big Ideas in Numerical Methods. Overflow. Real Numbers 29/07/2011. Taking some ideas from NM course a little further Natural Numbers and Integers Big Ideas in Numerical Methods MEI Conference 2011 Natural numbers can be in the range [0, 2 32 1]. These are known in computing as unsigned int. Numbers in the range [ (2

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school. Albertson AP Calculus AB Name AP CALCULUS AB SUMMER PACKET 2017 DUE DATE: The beginning of class on the last class day of the first week of school. This assignment is to be done at you leisure during the

More information

K.S.E.E.B., Malleshwaram, Bangalore SSLC Model Question Paper-2 (2015) MATHEMATICS

K.S.E.E.B., Malleshwaram, Bangalore SSLC Model Question Paper-2 (2015) MATHEMATICS Max Marks: 80 No. of Questions: 40 K.S.E.E.B., Malleshwaram, Bangalore SSLC Model Question Paper- (015) MATHEMATICS 81E Time: Hours 45 minutes Code No. : 81E Four alternatives are given for the each question.

More information

Positivity Preserving Interpolation of Positive Data by Rational Quadratic Trigonometric Spline

Positivity Preserving Interpolation of Positive Data by Rational Quadratic Trigonometric Spline IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 10, Issue 2 Ver. IV (Mar-Apr. 2014), PP 42-47 Positivity Preserving Interpolation of Positive Data by Rational Quadratic

More information

UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS

UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS KEY FEATURES OF POLYNOMIALS Intercepts of a function o x-intercepts - a point on the graph where y is zero {Also called the zeros of the function.} o y-intercepts

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Simulation of rotation and scaling algorithm for numerically modelled structures

Simulation of rotation and scaling algorithm for numerically modelled structures IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Simulation of rotation and scaling algorithm for numerically modelled structures To cite this article: S K Ruhit et al 2018 IOP

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

Mathematical preliminaries and error analysis

Mathematical preliminaries and error analysis Mathematical preliminaries and error analysis Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan August 28, 2011 Outline 1 Round-off errors and computer arithmetic IEEE

More information

Chapter 2: Frequency Distributions

Chapter 2: Frequency Distributions Chapter 2: Frequency Distributions Chapter Outline 2.1 Introduction to Frequency Distributions 2.2 Frequency Distribution Tables Obtaining ΣX from a Frequency Distribution Table Proportions and Percentages

More information

UNIT 15 GRAPHICAL PRESENTATION OF DATA-I

UNIT 15 GRAPHICAL PRESENTATION OF DATA-I UNIT 15 GRAPHICAL PRESENTATION OF DATA-I Graphical Presentation of Data-I Structure 15.1 Introduction Objectives 15.2 Graphical Presentation 15.3 Types of Graphs Histogram Frequency Polygon Frequency Curve

More information

Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs).

Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs). Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs). D.I. Lanlege, Ph.D. * ; U.M. Garba, B.Sc.; and A. Aluebho, B.Sc. Department

More information

Guide to Planning Functions and Applications, Grade 11, University/College Preparation (MCF3M)

Guide to Planning Functions and Applications, Grade 11, University/College Preparation (MCF3M) Guide to Planning Functions and Applications, Grade 11, University/College Preparation (MCF3M) 006 007 Targeted Implementation and Planning Supports for Revised Mathematics This is intended to provide

More information

Generalized Finite Sequence of Fuzzy Topographic Topological Mapping

Generalized Finite Sequence of Fuzzy Topographic Topological Mapping Journal of Mathematics and Statistics 6 (2): 151-156, 2010 ISSN 1549-3644 2010 Science Publications Generalized Finite Sequence of Fuzzy Topographic Topological Mapping 1,2 Tahir Ahmad, 2 Siti Suhana Jamian

More information

NUMERICAL ANALYSIS USING SCILAB: NUMERICAL STABILITY AND CONDITIONING

NUMERICAL ANALYSIS USING SCILAB: NUMERICAL STABILITY AND CONDITIONING powered by NUMERICAL ANALYSIS USING SCILAB: NUMERICAL STABILITY AND CONDITIONING In this Scilab tutorial we provide a collection of implemented examples on numerical stability and conditioning. Level This

More information

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

More information

Writing and Graphing Linear Equations. Linear equations can be used to represent relationships.

Writing and Graphing Linear Equations. Linear equations can be used to represent relationships. Writing and Graphing Linear Equations Linear equations can be used to represent relationships. Linear equation An equation whose solutions form a straight line on a coordinate plane. Collinear Points that

More information

Algebraically Speaking Chalkdust Algebra 1 Fall Semester

Algebraically Speaking Chalkdust Algebra 1 Fall Semester Algebraically Speaking Chalkdust Algebra 1 Fall Semester Homework Assignments: Chapter 1 The Real Number System: Lesson 1.1 - Real Numbers: Order and Absolute Value Do the following problems: # 1 9 Odd,

More information

Keywords: Algorithm, Sieve, Prime Number Mathematics Subject Classification (MSC) 2010 : 11Y11, 11Y16, 65Y04, 65Y20, 68Q25

Keywords: Algorithm, Sieve, Prime Number Mathematics Subject Classification (MSC) 2010 : 11Y11, 11Y16, 65Y04, 65Y20, 68Q25 American International Journal of Research in Formal, Applied & Natural Sciences Available online at http://www.iasir.net ISSN (Print): 2328-3777, ISSN (Online): 2328-3785, ISSN (CD-ROM): 2328-3793 AIJRFANS

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS.1 Introduction A mathematician knows how to solve a problem, he can not solve it. MILNE The word trigonometry is derived from the Greek words trigon and metron and it means

More information

College Algebra Exam File - Fall Test #1

College Algebra Exam File - Fall Test #1 College Algebra Exam File - Fall 010 Test #1 1.) For each of the following graphs, indicate (/) whether it is the graph of a function and if so, whether it the graph of one-to one function. Circle your

More information

Ganado Unified School District Pre-Calculus 11 th /12 th Grade

Ganado Unified School District Pre-Calculus 11 th /12 th Grade Ganado Unified School District Pre-Calculus 11 th /12 th Grade PACING Guide SY 2016-2017 Timeline & Resources Quarter 1 AZ College and Career Readiness Standard HS.A-CED.4. Rearrange formulas to highlight

More information

Natural Quartic Spline

Natural Quartic Spline Natural Quartic Spline Rafael E Banchs INTRODUCTION This report describes the natural quartic spline algorithm developed for the enhanced solution of the Time Harmonic Field Electric Logging problem As

More information

Mar. 20 Math 2335 sec 001 Spring 2014

Mar. 20 Math 2335 sec 001 Spring 2014 Mar. 20 Math 2335 sec 001 Spring 2014 Chebyshev Polynomials Definition: For an integer n 0 define the function ( ) T n (x) = cos n cos 1 (x), 1 x 1. It can be shown that T n is a polynomial of degree n.

More information

Ganado Unified School District #20 (Pre-Calculus 11th/12th Grade)

Ganado Unified School District #20 (Pre-Calculus 11th/12th Grade) Ganado Unified School District #20 (Pre-Calculus 11th/12th Grade) PACING Guide SY 2018-2019 Timeline & Quarter 1 AZ College and Career Readiness Standard HS.A-CED.4. Rearrange formulas to highlight a quantity

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Exercise 1.1. Page 1 of 22. Website: Mobile:

Exercise 1.1. Page 1 of 22. Website:    Mobile: Question 1: Exercise 1.1 Use Euclid s division algorithm to find the HCF of: (i) 135 and 225 Since 225 > 135, we apply the division lemma to 225 and 135 to obtain 225 = 135 1 + 90 Since remainder 90 0,

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Algebra II Radical Equations

Algebra II Radical Equations 1 Algebra II Radical Equations 2016-04-21 www.njctl.org 2 Table of Contents: Graphing Square Root Functions Working with Square Roots Irrational Roots Adding and Subtracting Radicals Multiplying Radicals

More information

Adaptive Filtering using Steepest Descent and LMS Algorithm

Adaptive Filtering using Steepest Descent and LMS Algorithm IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 4 October 2015 ISSN (online): 2349-784X Adaptive Filtering using Steepest Descent and LMS Algorithm Akash Sawant Mukesh

More information

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry IMporTAnT TErMs, definitions And results l In geometry, we take a point, a line and a plane as undefined terms. l An axiom

More information

Friday, 11 January 13. Interpolation

Friday, 11 January 13. Interpolation Interpolation Interpolation Interpolation is not a branch of mathematic but a collection of techniques useful for solving computer graphics problems Basically an interpolant is a way of changing one number

More information

Econ 172A - Slides from Lecture 8

Econ 172A - Slides from Lecture 8 1 Econ 172A - Slides from Lecture 8 Joel Sobel October 23, 2012 2 Announcements Important: Midterm seating assignments. Posted tonight. Corrected Answers to Quiz 1 posted. Quiz 2 on Thursday at end of

More information

Ms Nurazrin Jupri. Frequency Distributions

Ms Nurazrin Jupri. Frequency Distributions Frequency Distributions Frequency Distributions After collecting data, the first task for a researcher is to organize and simplify the data so that it is possible to get a general overview of the results.

More information

Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade

Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade PACING Guide SY 2014-2015 Timeline & Resources Quarter 1 AZ College and Career Readiness Standard HS.A-CED.4. Rearrange formulas to

More information

Metric Dimension in Fuzzy Graphs. A Novel Approach

Metric Dimension in Fuzzy Graphs. A Novel Approach Applied Mathematical Sciences, Vol. 6, 2012, no. 106, 5273-5283 Metric Dimension in Fuzzy Graphs A Novel Approach B. Praba 1, P. Venugopal 1 and * N. Padmapriya 1 1 Department of Mathematics SSN College

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

An Introduction to B-Spline Curves

An Introduction to B-Spline Curves An Introduction to B-Spline Curves Thomas W. Sederberg March 14, 2005 1 B-Spline Curves Most shapes are simply too complicated to define using a single Bézier curve. A spline curve is a sequence of curve

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

AP Calculus AB Summer Review Packet

AP Calculus AB Summer Review Packet AP Calculus AB Summer Review Packet Mr. Burrows Mrs. Deatherage 1. This packet is to be handed in to your Calculus teacher on the first day of the school year. 2. All work must be shown on separate paper

More information

(Part - 1) P. Sam Johnson. April 14, Numerical Solution of. Ordinary Differential Equations. (Part - 1) Sam Johnson. NIT Karnataka.

(Part - 1) P. Sam Johnson. April 14, Numerical Solution of. Ordinary Differential Equations. (Part - 1) Sam Johnson. NIT Karnataka. P. April 14, 2015 1/51 Overview We discuss the following important methods of solving ordinary differential equations of first / second order. Picard s method of successive approximations (Method of successive

More information

OBJECT SORTING IN MANUFACTURING INDUSTRIES USING IMAGE PROCESSING

OBJECT SORTING IN MANUFACTURING INDUSTRIES USING IMAGE PROCESSING OBJECT SORTING IN MANUFACTURING INDUSTRIES USING IMAGE PROCESSING Manoj Sabnis 1, Vinita Thakur 2, Rujuta Thorat 2, Gayatri Yeole 2, Chirag Tank 2 1 Assistant Professor, 2 Student, Department of Information

More information

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

1. Let n be a positive number. a. When we divide a decimal number, n, by 10, how are the numeral and the quotient related?

1. Let n be a positive number. a. When we divide a decimal number, n, by 10, how are the numeral and the quotient related? Black Converting between Fractions and Decimals Unit Number Patterns and Fractions. Let n be a positive number. When we divide a decimal number, n, by 0, how are the numeral and the quotient related?.

More information

Supplemental Material Deep Fluids: A Generative Network for Parameterized Fluid Simulations

Supplemental Material Deep Fluids: A Generative Network for Parameterized Fluid Simulations Supplemental Material Deep Fluids: A Generative Network for Parameterized Fluid Simulations 1. Extended Results 1.1. 2-D Smoke Plume Additional results for the 2-D smoke plume example are shown in Figures

More information

A close look towards Modified Booth s algorithm with BKS Process

A close look towards Modified Booth s algorithm with BKS Process IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 6 (June 2012), PP 33-40 www.iosrjen.org A close look towards Modified Booth s algorithm with BKS Process Barun Biswas*, Krishnendu

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Curriculum Map: Mathematics

Curriculum Map: Mathematics Curriculum Map: Mathematics Course: Honors Advanced Precalculus and Trigonometry Grade(s): 11-12 Unit 1: Functions and Their Graphs This chapter will develop a more complete, thorough understanding of

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Trig Functions, Equations & Identities May a. [2 marks] Let. For what values of x does Markscheme (M1)

Trig Functions, Equations & Identities May a. [2 marks] Let. For what values of x does Markscheme (M1) Trig Functions, Equations & Identities May 2008-2014 1a. Let. For what values of x does () 1b. [5 marks] not exist? Simplify the expression. EITHER OR [5 marks] 2a. 1 In the triangle ABC,, AB = BC + 1.

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim MATH A MIDTERM (8 AM VERSION) SOLUTION (Last edited October 8, 03 at 5:06pm.) Problem. (i) State the Squeeze Theorem. (ii) Prove the Squeeze Theorem. (iii) Using a carefully justified application of the

More information

An Efficient Elliptic Curve Cryptography Arithmetic Using Nikhilam Multiplication

An Efficient Elliptic Curve Cryptography Arithmetic Using Nikhilam Multiplication The International Journal Of Engineering And Science (IJES) Volume 4 Issue 4 Pages PP.45-50 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 An Efficient Elliptic Curve Cryptography Arithmetic Using Nikhilam

More information

so f can now be rewritten as a product of g(x) = x 2 and the previous piecewisedefined

so f can now be rewritten as a product of g(x) = x 2 and the previous piecewisedefined Version PREVIEW HW 01 hoffman 575) 1 This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. FuncPcwise01a 001 10.0

More information

Building Concepts: Moving from Proportional Relationships to Linear Equations

Building Concepts: Moving from Proportional Relationships to Linear Equations Lesson Overview In this TI-Nspire lesson, students use previous experience with proportional relationships of the form y = kx to consider relationships of the form y = mx and eventually y = mx + b. Proportional

More information

A Different Content and Scope for School Arithmetic

A Different Content and Scope for School Arithmetic Journal of Mathematics Education July 207, Vol. 0, No., pp. 09-22 Education for All DOI: https://doi.org/0.267/00757752790008 A Different Content and Scope for School Arithmetic Patricia Baggett New Mexico

More information

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates OpenStax-CNX module: m53852 1 Polar Coordinates OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 Abstract Locate points

More information

The transition: Each student passes half his store of candies to the right. students with an odd number of candies eat one.

The transition: Each student passes half his store of candies to the right. students with an odd number of candies eat one. Kate s problem: The students are distributed around a circular table The teacher distributes candies to all the students, so that each student has an even number of candies The transition: Each student

More information

Things to Know for the Algebra I Regents

Things to Know for the Algebra I Regents Types of Numbers: Real Number: any number you can think of (integers, rational, irrational) Imaginary Number: square root of a negative number Integers: whole numbers (positive, negative, zero) Things

More information

APPM/MATH Problem Set 4 Solutions

APPM/MATH Problem Set 4 Solutions APPM/MATH 465 Problem Set 4 Solutions This assignment is due by 4pm on Wednesday, October 16th. You may either turn it in to me in class on Monday or in the box outside my office door (ECOT 35). Minimal

More information

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( )

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( ) Calculating exact values of without using recurrence relations This note describes an algorithm for calculating exact values of, the number of partitions of into distinct positive integers each less than

More information

Mathematical Analysis of Tetrahedron (solid angle subtended by any tetrahedron at its vertex)

Mathematical Analysis of Tetrahedron (solid angle subtended by any tetrahedron at its vertex) From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Winter March 29, 2015 Mathematical Analysis of Tetrahedron solid angle subtended by any tetrahedron at its vertex) Harish Chandra Rajpoot Rajpoot,

More information

Lagrange Multipliers and Problem Formulation

Lagrange Multipliers and Problem Formulation Lagrange Multipliers and Problem Formulation Steven J. Miller Department of Mathematics and Statistics Williams College Williamstown, MA 01267 Abstract The method of Lagrange Multipliers (and its generalizations)

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

Numerical Analysis Fall. Numerical Differentiation

Numerical Analysis Fall. Numerical Differentiation Numerical Analysis 5 Fall Numerical Differentiation Differentiation The mathematical definition of a derivative begins with a difference approimation: and as is allowed to approach zero, the difference

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

In math, the rate of change is called the slope and is often described by the ratio rise

In math, the rate of change is called the slope and is often described by the ratio rise Chapter 3 Equations of Lines Sec. Slope The idea of slope is used quite often in our lives, however outside of school, it goes by different names. People involved in home construction might talk about

More information

THE STUDY OF NEW APPROACHES IN CUBIC SPLINE INTERPOLATION FOR AUTO MOBILE DATA

THE STUDY OF NEW APPROACHES IN CUBIC SPLINE INTERPOLATION FOR AUTO MOBILE DATA Journal of Science and Arts Year 17, No. 3(4), pp. 41-46, 217 ORIGINAL PAPER THE STUDY OF NEW APPROACHES IN CUBIC SPLINE INTERPOLATION FOR AUTO MOBILE DATA NAJMUDDIN AHMAD 1, KHAN FARAH DEEBA 1 Manuscript

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

Downloaded from

Downloaded from UNIT 2 WHAT IS STATISTICS? Researchers deal with a large amount of data and have to draw dependable conclusions on the basis of data collected for the purpose. Statistics help the researchers in making

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

ME 261: Numerical Analysis. ME 261: Numerical Analysis

ME 261: Numerical Analysis. ME 261: Numerical Analysis ME 261: Numerical Analysis 3. credit hours Prereq.: ME 163/ME 171 Course content Approximations and error types Roots of polynomials and transcendental equations Determinants and matrices Solution of linear

More information