Polynomial Approximation and Interpolation Chapter 4

Size: px
Start display at page:

Download "Polynomial Approximation and Interpolation Chapter 4"

Transcription

1 4.4 LAGRANGE POLYNOMIALS The direct fit polynomial presented in Section 4.3, while quite straightforward in principle, has several disadvantages. It requires a considerable amount of effort to solve the system of equations for the coefficients. For a high-degree polynomial (n greater than about 4), the system of equations can be ill-conditioned, which causes large errors in the values of the coefficients. A simpler, more direct procedure is desired. One such procedure is the Lagrange polynomial, which can be fit to unequally spaced data or equally spaced data. The Lagrange polynomial is presented in Section A variation of the Lagrange polynomial, called Neville s algorithm, which has some computational advantages over the Lagrange polynomial, is presented in Section Nizar Salim 1 lecture 2

2 Lagrange Polynomials Consider two points, [a,f(a)] and [b,f(b)]. The linear Lagrange polynomial P 1 (x) which passes through these two points is given by The Lagrange polynomial can be used for both unequally spaced data and equally spaced data. No system of equations must be solved to evaluate the polynomial. However, a considerable amount of computational effort is involved, especially for higher-degree polynomials. The form of the Lagrange polynomial is quite different in appearance from the form of the direct fit polynomial, Eq. (4.34). However, by the Nizar Salim 2 lecture 2

3 uniqueness theorem, the two forms both represent the unique polynomial that passes exactly through a set of points. Nizar Salim 3 lecture 2

4 The results are summarized below, where the results of linear, quadratic, and cubic interpolation, and the errors, Error(3.44) = P(3.44) = , are tabulated. The advantages of higher-degree interpolation are obvious. P(3.44) = linear interpolation Error = = quadratic interpolation = = cubic interpolation = These results are identical to the results obtained in Example 4.2 by direct fit polynomials, as they should be, since the same data points are used in both examples. The main advantage of the Lagrange polynomial is that the data may be unequally spaced. There are several disadvantages. All of the work must be redone for each degree polynomial. All the work must be redone for each value of x. The first disadvantage is eliminated by Neville's algorithm, which is presented in the next subsection. Both disadvantages are eliminated by using divided differences, which are presented in Section Neville's Algorithm Neville's algorithm is equivalent to a Lagrange polynomial. It is based on a series of linear interpolations. The data do not have to be in monotonic order, or in any structured order. However, the most accurate results are obtained if the data are arranged in order of closeness to the point to be interpolated. Consider the following set of data: Nizar Salim 4 lecture 2

5 where the subscript i denotes the base point of the value (e.g., i,i+ 1, etc.) and the superscript (n) denotes the degree of the interpolation (e.g., zeroth, first, second, etc.). A table of linearly interpolated values is constructed for the original data, which are denoted as f i (0). For the first interpolation of the data, Nizar Salim 5 lecture 2

6 (1) as illustrated in Figure 4.6a. This creates a column of n - 1 values of f i. A (2) second column of n - 2 values of f i is obtained by linearly interpolating (1) the column of f i values. Thus, which is illustrated in Figure 4.6b. This process is repeated to create a third column of f i (3) values, as illustrated in Figure 4.6c, and so on. The form of the resulting table is illustrated in Table 4.1. Nizar Salim 6 lecture 2

7 It can be shown by direct substitution that each specific value in Table 4.1 is identical to a Lagrange polynomial based on the data points used to (2) calculate the specific value. For example,f 1 is identical to a second-degree Lagrange polynomial based on points 1, 2, and 3. The advantage of Neville's algorithm over direct Lagrange polynomial interpolation is now apparent. The third-degree Lagrange polynomial based on points 1 to 4 is obtained simply by applying the linear interpolation formula, Eq. (4.52), to f (2) (2) 1 and f 2 to obtain f (3) 1. None of the prior work must be redone, as it would have to be redone to evaluate a third-degree Lagrange polynomial. If the original data are arranged in order of closeness to the interpolation point, each value in the (n) table, f i, represents a centered interpolation. Example 4.4. Neville's algorithm. Consider the four data points given in Example 4.3. Let's interpolate for f(3.44) using linear, quadratic, and cubic interpolation using Neville's algorithm. Rearranging the data in order of closeness to x = 3.44 yields the following set of data: Nizar Salim 7 lecture 2

8 Nizar Salim 8 lecture 2

9 Thus, the result of quadratic interpolation is f(3.44) =f 1 (2) = To evaluate,f 1 (3),f 3 (1) and f 2 (2) must first be evaluated. Then f 1 (3) can be evaluated. These results, and the results calculated above, are presented in Table 4.2. These results are the same as the results obtained by Lagrange polynomials in Example 4.3. The advantage of Neville's algorithm over a Lagrange interpolating polynomial, if the data are arranged in order of closeness to the interpolated point, is that none of the work performed to obtain a specific degree result must be redone to evaluate the next higher degree result. Neville's algorithm has a couple of minor disadvantages. All of the work must be redone for each new value of x. The amount of work is essentially the same as for a Lagrange polynomial. The divided difference polynomial presented in Section 4.5 minimizes these disadvantages. 4.5 DIVIDED DIFFERENCE TABLES AND DIVIDED DIFFERENCE POLYNOMIALS A divided difference is defined as the ratio of the difference in the function values at two points divided by the difference in the values of the corresponding independent variable. Thus, the first divided difference at point i is defined as Nizar Salim 9 lecture 2

10 Similar expressions can be obtained for divided differences of any order. Approximating polynomials for no equally spaced data can be constructed using divided differences Divided Difference Tables Consider a table of data: By definition, f[x i ] =f i. The notation presented above is a bit clumsy. A more compact notation is defined in the same manner as the notation used in Neville's method, which is presented in Section Thus, Nizar Salim 10 lecture 2

11 Table 4.3 illustrates the formation of a divided difference table. The first column contains the values of x i and the second column contains the values of f(x i ) =f i, which are denoted by f i (0). The remaining columns contain the values of the divided differences, f i (n) where the subscript i denotes the base point of the value and the superscript (n) denotes the degree of the divided difference. The data points do not have to be in any specific order to apply the divided difference concept. However, just as for the direct fit polynomial, the Lagrange polynomial, and Neville's method, more accurate results are obtained if the data are arranged in order of closeness to the interpolated point. Example 4.5. Divided difference Table. Let's construct a six-place divided difference table for the data presented in Section 4.1. The results are presented in Table 4.4. Nizar Salim 11 lecture 2

12 Divided Difference Polynomials Let's define a power series for P n (x) such that the coefficients are identical to the divided differences, f i (n) Thus, P n (x) is clearly a polynomial of degree n. To demonstrate that P n (x) passes exactly through the data points, let's substitute the data points into Eq. (4.65). Thus, Nizar Salim 12 lecture 2

13 Since P n (x) is a polynomial of degree n and passes exactly through the n + 1 data points, it is obviously one form of the unique polynomial passing through the data points. Example 4.6. Divided difference polynomials. Consider the divided difference table presented in Example 4.5. Let's interpolate for f(3.44) using the divided difference polynomial, Eq. (4.65), using x 0 = 3.35 as the base point. The exact solution is f(3.44) = 1/3.44 = From Eq. (4.65): Nizar Salim 13 lecture 2

14 The advantage of higher-degree interpolation is obvious. The above results are not the most accurate possible since the data points in Table 4.4 are in monotonic order, which make the linear interpolation result actually linear extrapolation. Rearranging the data in order of closeness to x = 3.44 yields the results presented in Table 4.5. From Eq. (4.65): Nizar Salim 14 lecture 2

15 The linear interpolation value is much more accurate due to the centering of the data. The quadratic and cubic interpolation values are the same as before, except for round-off errors, because the same points are used in those two interpolations. These results are the same as the results obtained in the previous examples. Nizar Salim 15 lecture 2

16 This document was created with Win2PDF available at The unregistered version of Win2PDF is for evaluation or non-commercial use only.

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

specified or may be difficult to handle, we often have a tabulated data

specified or may be difficult to handle, we often have a tabulated data Interpolation Introduction In many practical situations, for a function which either may not be explicitly specified or may be difficult to handle, we often have a tabulated data where and for In such

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

Handout 4 - Interpolation Examples

Handout 4 - Interpolation Examples Handout 4 - Interpolation Examples Middle East Technical University Example 1: Obtaining the n th Degree Newton s Interpolating Polynomial Passing through (n+1) Data Points Obtain the 4 th degree Newton

More information

APPM/MATH Problem Set 4 Solutions

APPM/MATH Problem Set 4 Solutions APPM/MATH 465 Problem Set 4 Solutions This assignment is due by 4pm on Wednesday, October 16th. You may either turn it in to me in class on Monday or in the box outside my office door (ECOT 35). Minimal

More information

Lecture 9. Curve fitting. Interpolation. Lecture in Numerical Methods from 28. April 2015 UVT. Lecture 9. Numerical. Interpolation his o

Lecture 9. Curve fitting. Interpolation. Lecture in Numerical Methods from 28. April 2015 UVT. Lecture 9. Numerical. Interpolation his o Curve fitting. Lecture in Methods from 28. April 2015 to ity Interpolation FIGURE A S Splines Piecewise relat UVT Agenda of today s lecture 1 Interpolation Idea 2 3 4 5 6 Splines Piecewise Interpolation

More information

Section 2.2: Introducing Permutations and Factorial Notation

Section 2.2: Introducing Permutations and Factorial Notation Section 2.2: Introducing Permutations and Factorial Notation Factorial Notation is useful when calculating the number of permutations or combinations for specific problems. Permutation An arrangement of

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

Lesson 8 - Practice Problems

Lesson 8 - Practice Problems Lesson 8 - Practice Problems Section 8.1: A Case for the Quadratic Formula 1. For each quadratic equation below, show a graph in the space provided and circle the number and type of solution(s) to that

More information

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( )

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( ) Calculating exact values of without using recurrence relations This note describes an algorithm for calculating exact values of, the number of partitions of into distinct positive integers each less than

More information

Assignment 2. with (a) (10 pts) naive Gauss elimination, (b) (10 pts) Gauss with partial pivoting

Assignment 2. with (a) (10 pts) naive Gauss elimination, (b) (10 pts) Gauss with partial pivoting Assignment (Be sure to observe the rules about handing in homework). Solve: with (a) ( pts) naive Gauss elimination, (b) ( pts) Gauss with partial pivoting *You need to show all of the steps manually.

More information

Natasha S. Sharma, PhD

Natasha S. Sharma, PhD Revisiting the function evaluation problem Most functions cannot be evaluated exactly: 2 x, e x, ln x, trigonometric functions since by using a computer we are limited to the use of elementary arithmetic

More information

Interpolation. TANA09 Lecture 7. Error analysis for linear interpolation. Linear Interpolation. Suppose we have a table x x 1 x 2...

Interpolation. TANA09 Lecture 7. Error analysis for linear interpolation. Linear Interpolation. Suppose we have a table x x 1 x 2... TANA9 Lecture 7 Interpolation Suppose we have a table x x x... x n+ Interpolation Introduction. Polynomials. Error estimates. Runge s phenomena. Application - Equation solving. Spline functions and interpolation.

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include

In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include Parametric Curves and Surfaces In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include Describing curves in space that objects move

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

ME 261: Numerical Analysis Lecture-12: Numerical Interpolation

ME 261: Numerical Analysis Lecture-12: Numerical Interpolation 1 ME 261: Numerical Analysis Lecture-12: Numerical Interpolation Md. Tanver Hossain Department of Mechanical Engineering, BUET http://tantusher.buet.ac.bd 2 Inverse Interpolation Problem : Given a table

More information

MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves

MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves MA 323 Geometric Modelling Course Notes: Day 14 Properties of Bezier Curves David L. Finn In this section, we discuss the geometric properties of Bezier curves. These properties are either implied directly

More information

Maximizing an interpolating quadratic

Maximizing an interpolating quadratic Week 11: Monday, Apr 9 Maximizing an interpolating quadratic Suppose that a function f is evaluated on a reasonably fine, uniform mesh {x i } n i=0 with spacing h = x i+1 x i. How can we find any local

More information

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR EXERCISE SET 10. STUDENT MATD 090 DUE DATE: INSTRUCTOR You have studied the method known as "completing the square" to solve quadratic equations. Another use for this method is in transforming the equation

More information

February 23 Math 2335 sec 51 Spring 2016

February 23 Math 2335 sec 51 Spring 2016 February 23 Math 2335 sec 51 Spring 2016 Section 4.1: Polynomial Interpolation Interpolation is the process of finding a curve or evaluating a function whose curve passes through a known set of points.

More information

Alternative Exponential Equations for. Rectangular Arrays of Four and Five Data

Alternative Exponential Equations for. Rectangular Arrays of Four and Five Data Applied Mathematical Sciences, Vol. 5, 2011, no. 35, 1733-1738 Alternative Exponential Equations for Rectangular Arrays of Four and Five Data G. L. Silver Los Alamos National Laboratory* P.O. Box 1663,

More information

Vectors. Section 1: Lines and planes

Vectors. Section 1: Lines and planes Vectors Section 1: Lines and planes Notes and Examples These notes contain subsections on Reminder: notation and definitions Equation of a line The intersection of two lines Finding the equation of a plane

More information

Sharing Several Secrets based on Lagrange s Interpolation formula and Cipher Feedback Mode

Sharing Several Secrets based on Lagrange s Interpolation formula and Cipher Feedback Mode Int. J. Nonlinear Anal. Appl. 5 (2014) No. 2, 60-66 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir Sharing Several Secrets based on Lagrange s Interpolation formula and Cipher Feedback Mode

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Interpolation by Spline Functions

Interpolation by Spline Functions Interpolation by Spline Functions Com S 477/577 Sep 0 007 High-degree polynomials tend to have large oscillations which are not the characteristics of the original data. To yield smooth interpolating curves

More information

An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis October 12, 2016 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

More information

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Approximate the coordinates of each turning point by graphing f(x) in the standard viewing

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

1. How many white tiles will be in Design 5 of the pattern? Explain your reasoning.

1. How many white tiles will be in Design 5 of the pattern? Explain your reasoning. Algebra 2 Semester 1 Review Answer the question for each pattern. 1. How many white tiles will be in Design 5 of the pattern Explain your reasoning. 2. What is another way to represent the expression 3.

More information

Piecewise Polynomial Interpolation, cont d

Piecewise Polynomial Interpolation, cont d Jim Lambers MAT 460/560 Fall Semester 2009-0 Lecture 2 Notes Tese notes correspond to Section 4 in te text Piecewise Polynomial Interpolation, cont d Constructing Cubic Splines, cont d Having determined

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Computational Physics PHYS 420

Computational Physics PHYS 420 Computational Physics PHYS 420 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Efficient Method for Half-Pixel Block Motion Estimation Using Block Differentials

Efficient Method for Half-Pixel Block Motion Estimation Using Block Differentials Efficient Method for Half-Pixel Block Motion Estimation Using Block Differentials Tuukka Toivonen and Janne Heikkilä Machine Vision Group Infotech Oulu and Department of Electrical and Information Engineering

More information

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter.

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. QUADRATIC FUNCTIONS PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. SHAPE-VERTEX FORMULA One can write any quadratic function (1) as f(x) = a(x h) 2 + k,

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

Consider functions such that then satisfies these properties: So is represented by the cubic polynomials on on and on.

Consider functions such that then satisfies these properties: So is represented by the cubic polynomials on on and on. 1 of 9 3/1/2006 2:28 PM ne previo Next: Trigonometric Interpolation Up: Spline Interpolation Previous: Piecewise Linear Case Cubic Splines A piece-wise technique which is very popular. Recall the philosophy

More information

Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots. By W. D. Hoskins

Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots. By W. D. Hoskins MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 116, OCTOBER, 1971 Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots By W. D. Hoskins Abstract. A table is given for the calculation of the

More information

Lecture VIII. Global Approximation Methods: I

Lecture VIII. Global Approximation Methods: I Lecture VIII Global Approximation Methods: I Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Global Methods p. 1 /29 Global function approximation Global methods: function

More information

Natural Numbers and Integers. Big Ideas in Numerical Methods. Overflow. Real Numbers 29/07/2011. Taking some ideas from NM course a little further

Natural Numbers and Integers. Big Ideas in Numerical Methods. Overflow. Real Numbers 29/07/2011. Taking some ideas from NM course a little further Natural Numbers and Integers Big Ideas in Numerical Methods MEI Conference 2011 Natural numbers can be in the range [0, 2 32 1]. These are known in computing as unsigned int. Numbers in the range [ (2

More information

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value?

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value? We will work with the vertex, orientation, and x- and y-intercepts of these functions. Intermediate algebra Class notes More Graphs of Quadratic Functions (section 11.6) In the previous section, we investigated

More information

Chapter 18. Geometric Operations

Chapter 18. Geometric Operations Chapter 18 Geometric Operations To this point, the image processing operations have computed the gray value (digital count) of the output image pixel based on the gray values of one or more input pixels;

More information

Spline Methods Draft. Tom Lyche and Knut Mørken. Department of Informatics Centre of Mathematics for Applications University of Oslo

Spline Methods Draft. Tom Lyche and Knut Mørken. Department of Informatics Centre of Mathematics for Applications University of Oslo Spline Methods Draft Tom Lyche and Knut Mørken Department of Informatics Centre of Mathematics for Applications University of Oslo January 27, 2006 Contents 1 Splines and B-splines an Introduction 1 1.1

More information

Finite Difference Calculus

Finite Difference Calculus Chapter 2 Finite Difference Calculus In this chapter we review the calculus of finite differences. The topic is classic and covered in many places. The Taylor series is fundamental to most analysis. A

More information

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable:

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: Euler s Methods ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an initial value/condition (i.e., value

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

2.1 Quadraticsnts.notebook. September 10, 2018

2.1 Quadraticsnts.notebook. September 10, 2018 1 A quadratic function is a polynomial function of second degree. The graph of a quadratic function is called a parabola. 2 Standard Form: Intercept Form: Vertex Form: f(x) = a(x h) 2 + k vertex: (h, k)

More information

Linear, Quadratic, Exponential, and Absolute Value Functions

Linear, Quadratic, Exponential, and Absolute Value Functions Linear, Quadratic, Exponential, and Absolute Value Functions Linear Quadratic Exponential Absolute Value Y = mx + b y = ax 2 + bx + c y = a b x y = x 1 What type of graph am I? 2 What can you tell me about

More information

Lacunary Interpolation Using Quartic B-Spline

Lacunary Interpolation Using Quartic B-Spline General Letters in Mathematic, Vol. 2, No. 3, June 2017, pp. 129-137 e-issn 2519-9277, p-issn 2519-9269 Available online at http:\\ www.refaad.com Lacunary Interpolation Using Quartic B-Spline 1 Karwan

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

General Method for Exponential-Type Equations. for Eight- and Nine-Point Prismatic Arrays

General Method for Exponential-Type Equations. for Eight- and Nine-Point Prismatic Arrays Applied Mathematical Sciences, Vol. 3, 2009, no. 43, 2143-2156 General Method for Exponential-Type Equations for Eight- and Nine-Point Prismatic Arrays G. L. Silver Los Alamos National Laboratory* P.O.

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

. As x gets really large, the last terms drops off and f(x) ½x

. As x gets really large, the last terms drops off and f(x) ½x Pre-AP Algebra 2 Unit 8 -Lesson 3 End behavior of rational functions Objectives: Students will be able to: Determine end behavior by dividing and seeing what terms drop out as x Know that there will be

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

August 29, Quad2b FactoredForm Graphing.notebook

August 29, Quad2b FactoredForm Graphing.notebook Quadratics 2b Quadratic Function: Graphing Factored Form Standards: F IF.4 & F IF.7 GLOs: #3 Complex Thinker Math Practice: Look for and make use of structure HW: WS #9 (graph on graph paper!) Learning

More information

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Back board says your name if you are on my roster. I need parent financial

More information

A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings

A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings Scientific Papers, University of Latvia, 2010. Vol. 756 Computer Science and Information Technologies 207 220 P. A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings

More information

MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves

MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves David L. Finn December 14th, 2004 Yesterday, we introduced quintic Hermite curves as a higher order variant of cubic Hermite

More information

College Technical Mathematics 1

College Technical Mathematics 1 WTCS Repository 10-804-115 College Technical Mathematics 1 Course Outcome Summary Course Information Description Total Credits 5.00 Topics include: solving linear, quadratic, and rational equations; graphing;

More information

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 Engineering Analysis ENG 3420 Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 1 Lecture 24 Attention: The last homework HW5 and the last project are due on Tuesday November

More information

Friday, 11 January 13. Interpolation

Friday, 11 January 13. Interpolation Interpolation Interpolation Interpolation is not a branch of mathematic but a collection of techniques useful for solving computer graphics problems Basically an interpolant is a way of changing one number

More information

Accuracy versus precision

Accuracy versus precision Accuracy versus precision Accuracy is a consistent error from the true value, but not necessarily a good or precise error Precision is a consistent result within a small error, but not necessarily anywhere

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

Spline Methods Draft. Tom Lyche and Knut Mørken

Spline Methods Draft. Tom Lyche and Knut Mørken Spline Methods Draft Tom Lyche and Knut Mørken January 5, 2005 2 Contents 1 Splines and B-splines an Introduction 3 1.1 Convex combinations and convex hulls.................... 3 1.1.1 Stable computations...........................

More information

Math 214 Introductory Statistics Summer Class Notes Sections 3.2, : 1-21 odd 3.3: 7-13, Measures of Central Tendency

Math 214 Introductory Statistics Summer Class Notes Sections 3.2, : 1-21 odd 3.3: 7-13, Measures of Central Tendency Math 14 Introductory Statistics Summer 008 6-9-08 Class Notes Sections 3, 33 3: 1-1 odd 33: 7-13, 35-39 Measures of Central Tendency odd Notation: Let N be the size of the population, n the size of the

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

Practice Final Exam Solutions

Practice Final Exam Solutions 1 (1 points) For the following problem, the alphabet used is the standard -letter English alphabet, and vowels refers only to the letters A, E, I, O, and U (a) ( points) How many strings of five letters

More information

Research Article Data Visualization Using Rational Trigonometric Spline

Research Article Data Visualization Using Rational Trigonometric Spline Applied Mathematics Volume Article ID 97 pages http://dx.doi.org/.//97 Research Article Data Visualization Using Rational Trigonometric Spline Uzma Bashir and Jamaludin Md. Ali School of Mathematical Sciences

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Numerical Integration

Numerical Integration Numerical Integration Numerical Integration is the process of computing the value of a definite integral, when the values of the integrand function, are given at some tabular points. As in the case of

More information

CW High School. Algebra I A

CW High School. Algebra I A 1. Functions (20.00%) 1.1 I can solve a two or more step equation involving parenthesis and negative numbers including those with no solution or all real numbers solutions. 4 Pro cient I can solve a two

More information

Mathematics 12 Pre-Calculus WNCP

Mathematics 12 Pre-Calculus WNCP Mathematics 1 Pre-Calculus WNCP Page 1 Page Page 3-8 Page 9-1 General Information Record Chart Sample Guided Outlines Sample Unit Test Pages Textbook This course uses the textbook Pre-Calculus 1 ISBN 978007073870

More information

Rendering Algebraic Surfaces CS348B Final Project

Rendering Algebraic Surfaces CS348B Final Project Rendering Algebraic Surfaces CS348B Final Project Gennadiy Chuyeshov Overview This project is devoted to the visualization of a class consisting of implicit algebraic surfaces in three-dimensional space,

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Chapter 3 Polynomial and Rational Functions Review sections as needed from Chapter 0, Basic Techniques, page 8. Refer to page 187 for an example of the work required on paper for all graded homework unless

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION f(x) MISN-0-349 NUMERICAL INTEGRATION by Robert Ehrlich George Mason University 1. Numerical Integration Algorithms a. Introduction.............................................1 b.

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

3.7 Rational Functions. Copyright Cengage Learning. All rights reserved.

3.7 Rational Functions. Copyright Cengage Learning. All rights reserved. 3.7 Rational Functions Copyright Cengage Learning. All rights reserved. Objectives Rational Functions and Asymptotes Transformations of y = 1/x Asymptotes of Rational Functions Graphing Rational Functions

More information

The complement of PATH is in NL

The complement of PATH is in NL 340 The complement of PATH is in NL Let c be the number of nodes in graph G that are reachable from s We assume that c is provided as an input to M Given G, s, t, and c the machine M operates as follows:

More information

Hyperbola for Curvilinear Interpolation

Hyperbola for Curvilinear Interpolation Applied Mathematical Sciences, Vol. 7, 2013, no. 30, 1477-1481 HIKARI Ltd, www.m-hikari.com Hyperbola for Curvilinear Interpolation G. L. Silver 868 Kristi Lane Los Alamos, NM 87544, USA gsilver@aol.com

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

GUIDED NOTES 3.1 FUNCTIONS AND FUNCTION NOTATION

GUIDED NOTES 3.1 FUNCTIONS AND FUNCTION NOTATION GUIDED NOTES 3.1 FUNCTIONS AND FUNCTION NOTATION LEARNING OBJECTIVES In this section, you will: Determine whether a relation represents a function. Find the value of a function. Determine whether a function

More information

Lecture 9: Introduction to Spline Curves

Lecture 9: Introduction to Spline Curves Lecture 9: Introduction to Spline Curves Splines are used in graphics to represent smooth curves and surfaces. They use a small set of control points (knots) and a function that generates a curve through

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_1.htm 1 of 1 6/20/2012 12:24 PM The Lecture deals with: ADI Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_2.htm 1 of 2 6/20/2012

More information

Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET

Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET 1. The ollowing n data points, ( x ), ( x ),.. ( x, ) 1, y 1, y n y n quadratic spline interpolation the x-data needs to be (A) equally

More information

Semantics via Syntax. f (4) = if define f (x) =2 x + 55.

Semantics via Syntax. f (4) = if define f (x) =2 x + 55. 1 Semantics via Syntax The specification of a programming language starts with its syntax. As every programmer knows, the syntax of a language comes in the shape of a variant of a BNF (Backus-Naur Form)

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

Rational Functions HONORS PRECALCULUS :: MR. VELAZQUEZ

Rational Functions HONORS PRECALCULUS :: MR. VELAZQUEZ Rational Functions HONORS PRECALCULUS :: MR. VELAZQUEZ Definition of Rational Functions Rational Functions are defined as the quotient of two polynomial functions. This means any rational function can

More information

Journal of mathematics and computer science 13 (2014),

Journal of mathematics and computer science 13 (2014), Journal of mathematics and computer science 13 (2014), 231-237 Interval Interpolation by Newton's Divided Differences Ali Salimi Shamloo Parisa Hajagharezalou Department of Mathematics, Shabestar Branch,

More information

IB HL Mathematical Exploration

IB HL Mathematical Exploration IB HL Mathematical Exploration Modelling the surface area of a ceramic pot Personal code: glt101 Table of Contents Introduction... 1 Rationale... 1 Aim... 1-2 Exploring the formula for surface area...

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Savitsky-Golay Filters

Savitsky-Golay Filters Savitsky-Golay Filters Robert DeSerio March 24, 2008 References 1. Abraham Savitsky and Marcel J. E. Golay, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36,

More information

12/11/2018 Algebra II - Semester 1 Review

12/11/2018 Algebra II - Semester 1 Review Name: Semester Review - Study Guide Score: 72 / 73 points (99%) Algebra II - Semester 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. Name the property

More information

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017) Homework Assignment Sheet I (Due 20-Oct-2017) Assignment 1 Let n N and A be a finite set of cardinality n = A. By definition, a permutation of A is a bijective function from A to A. Prove that there exist

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 7 January 30, 2012 CPSC 467b, Lecture 7 1/44 Public-key cryptography RSA Factoring Assumption Computing with Big Numbers Fast Exponentiation

More information