Design Space Exploration

Size: px
Start display at page:

Download "Design Space Exploration"

Transcription

1 Design Space Exploration SS 2012 Jun.-Prof. Dr. Christian Plessl Custom Computing University of Paderborn Version

2 Overview motivation for design space exploration design space exploration using evolutionary algorithms case studies 2

3 Motivation challenge: many real-world synthesis problems cannot be solved optimally large search space (combinatorial explosion) metrics to be optimized can be estimated only crudely without implementation (e.g. power consumption, performance, chip area, ) no closed form solution available (e.g. because of non-linear constraints or metrics) no general definition what optimal means in the case of multiple, contradicting optimization goals Allocation, Binding v RISC v bus power consumption? communication bus usage? v HWM1 v ptp v HWM2 execution time? code size? 4 3

4 objective instead of finding one optimal solution Design Space Exploration determine many alternative solutions and their characteristics use cases present designer with choices to select from understand design trade-offs create starting points for refined designs iterative stochastic search process initialize candidates generate new solution candidates evaluate candidates update set of solutions e.g. randomly generated chose allocation and binding compute schedule and other metrics select which solution(s) to pursue further 4

5 Evolutionary Algorithms Basic Principles ➊ selection ➋ crossover ➌ mutation 5

6 minimize g(x) = x² Evolutionary Algorithms (EA) 0011 = one solution 0011 fitness = 9 fitnesscalculation selection next generation mutation crossover 6

7 Evolutionary Algorithms (EA) evolutionary algorithms are randomized search heuristics problem-independent (meta heuristics) population based use variation (crossover, mutation) and selection application domains when optimization problem is complex and 'diffuse' examples: system synthesis, path planning in robotics diffuse + complex multiobjective optimization several conflicting criteria, eg. performance vs. cost vs. power consumption EAs find Pareto fronts (set of Pareto points) 7

8 Dominance, Pareto Points definition: a (design) point J i is dominated by point J k, if J k is equal or better than J i in all criteria and better in at least one criterion. J J i k definition: a (design) point is Pareto-optimal or a Pareto point, if it is not dominated by any other point. 8

9 Multiobjective Optimization (1) decision space (x1, x2,, xn) minimize f objective space (y1, y2,, yk) x2 y2 dominated x1 y1 Pareto optimal = not dominated difficulties: large search space multiple optima 9

10 Multiobjective Optimization (2) classic single-objective methods e.g. simulated annealing, ILP, hierarchical clustering,... decision making before optimization weighted cost function multi-stage optimization e.g. hierarchical clustering with different closeness functions decision making after optimization multiple optimization runs with varying weights population-based methods evolutionary algorithms decision making after optimization the goal is to explore the design space 10

11 multiple objectives (y1, y2,, yk) parameters transformation Weighted Cost Function single objective y example: weighting approach y2 maximization problem (w1, w2,, wk) y = w1y1 + + wkyk y1 11

12 EAs for Multiobjective Optimization y2 EA operations selection recombination mutation diversity goals y1 distance 12

13 Fitness Assessment by Pareto Ranking fitness function: F'( J ) = = i 1.. N, J 0 : J i 1: Ji else J execution time F' (1) = F F F F '(2) '(3) '(4) '(5) = 1 = 1 = 2 = 1 5 cost F '(6) = 0 13

14 Fitness Assessment by Non-dominated Sorting 1. start with set of all solutions J 2. determine set of non-dominated solutions (A 0 ) in J, assign fitness value φ 0 to these solutions 3. remove A 0 from J (J 1 = J \ A 0 ), determine set of non-dominated solutions (A 1 ) in A 0, assign fitness value φ 1 to these solutions 4. repeat until J i is empty f 2 ϕ = 3 ϕ = 2 ϕ = 1 ϕ = 0 Teich & Haubelt 2007 f 1 14

15 Example: Strength Pareto EA (1) save non-dominated solutions (elitism) reduce non-dominated set by means of clustering population non-dominated set assign fitness values (Pareto-based) perform binary tournament selection recombination Mutation 15

16 Example: Strength Pareto EA (2) clustering: reduce non-dominated set but do not destroy characteristics y2 y2 y2 clustering y1 y1 y1 group select remove 16

17 Example: Strength Pareto EA (3) y fitness assignment scheme: non-dominated solutions: fitness = #dominated solutions dominated solutions : fitness = #non-pareto solutions fitness of + dominators y1 lighter better than darker guidance towards Pareto-optimal set few better than many maintenance of diversity 17

18 Design Space Exploration with EAs individual EA selection recombination mutation allocation binding decode allocation decode binding scheduling chromosome = encoded allocation + binding design point (implementation) fitness fitness evaluation user constraints 18

19 Challenges encoding of (allocation+binding) simple encoding e.g. one bit per resource, one variable per binding easy to implement many infeasible partitionings encoding + repair e.g. simple encoding and modify such that for each v p V P there exists at least one v a V A with a β(v p ) = v a reduces number of infeasible partitionings generation of the initial population find a good starting point (seed) to accelerate convergence mutation and recombination operators must be defined that the whole search space can be reached 19

20 Case Study - Video Coder (1) 20

21 Case Study - Video Coder (2) 21

22 Case Study - Video Coder (3) frame memory dual ported frame memory block matching module input module subtract/add module DCT/IDCT module Huffman encoder output module 22

23 EA Design Space Exploration Tool

24 Case Study - Solution 1 INM OUTM FM RISC2 SBS 24

25 Case Study - Solution 2 INM OUTM DPFM HC DCTM BMM SAM SBF 25

26 Case Study - Code Synthesis (1) synchronous data flow graph (SDF) formalism programming model for streaming signal processing applications allows expressing coarse-grained parallelism suitable as specification for systems with parallel execution application is defined as a network of nodes and arcs nodes (actors) can execute arbitrary functions consume and produce tokens number of consumed/produced tokens is shown as a label arcs (communication channels) actor communicate via FIFO buffers 3 4 A example for an actor, reads 3 tokens on input arc and produces 4 tokens on output 26

27 Case Study - Code Synthesis (2) synchronous data flow graph software implementation A CD 44.1kHz B C D E sample rate converter F DAT 48 khz decisions schedule ABABABCCABABA code generation model inlining subroutines looping B 2 3 C CODE(A) CODE(B) CODE(A) CALL(A) CALL(B) CALL(A) FOR 1 TO 2 CODE(A) CALL(B) CODE(B) CALL(B) CODE(C) CODE(C) CALL(C) CODE(A) 27

28 Case Study - Code Synthesis (3) may increase data memory trade-offs saves looping program memory subroutines execution time save increase 28

29 Case Study - Code Synthesis (4) trade-off surface for TI TMS320C40 digital signal processor 29

30 TI TMS320C40 DSP Case Study - Code Synthesis (5) Motorola DSP56k ADSP 2106x DSP 30

31 Changes (v1.1.0) updated for SS (v1.0.0) initial version 31

Hardware/Software Codesign

Hardware/Software Codesign Hardware/Software Codesign 3. Partitioning Marco Platzner Lothar Thiele by the authors 1 Overview A Model for System Synthesis The Partitioning Problem General Partitioning Methods HW/SW-Partitioning Methods

More information

Evolutionary Algorithm for Embedded System Topology Optimization. Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang

Evolutionary Algorithm for Embedded System Topology Optimization. Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang Evolutionary Algorithm for Embedded System Topology Optimization Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang Agenda Introduction to the problem Principle of evolutionary algorithm Model specification

More information

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem An Evolutionary Algorithm for the Multi-objective Shortest Path Problem Fangguo He Huan Qi Qiong Fan Institute of Systems Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

More information

Hardware/Software Codesign

Hardware/Software Codesign Hardware/Software Codesign SS 2016 Prof. Dr. Christian Plessl High-Performance IT Systems group University of Paderborn Version 2.2.0 2016-04-08 how to design a "digital TV set top box" Motivating Example

More information

EE382N: Embedded System Design and Modeling

EE382N: Embedded System Design and Modeling EE382N: Embedded System Design and Modeling Lecture 11 Mapping & Exploration Andreas Gerstlauer Electrical and Computer Engineering University of Texas at Austin gerstl@ece.utexas.edu Lecture 11: Outline

More information

HETEROGENEOUS MULTIPROCESSOR MAPPING FOR REAL-TIME STREAMING SYSTEMS

HETEROGENEOUS MULTIPROCESSOR MAPPING FOR REAL-TIME STREAMING SYSTEMS HETEROGENEOUS MULTIPROCESSOR MAPPING FOR REAL-TIME STREAMING SYSTEMS Jing Lin, Akshaya Srivasta, Prof. Andreas Gerstlauer, and Prof. Brian L. Evans Department of Electrical and Computer Engineering The

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 10: Genetic Algorithm Basics Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic

More information

Improving Automatic Design Space Exploration by Integrating Symbolic Techniques into Multi-Objective Evolutionary Algorithms

Improving Automatic Design Space Exploration by Integrating Symbolic Techniques into Multi-Objective Evolutionary Algorithms International Journal of Computational Intelligence Research. ISSN 097-87 Vol., No. (006), pp. 9 54 c Research India Publications http://www.ijcir.info Improving Automatic Design Space Exploration by Integrating

More information

Evolutionary Algorithms. CS Evolutionary Algorithms 1

Evolutionary Algorithms. CS Evolutionary Algorithms 1 Evolutionary Algorithms CS 478 - Evolutionary Algorithms 1 Evolutionary Computation/Algorithms Genetic Algorithms l Simulate natural evolution of structures via selection and reproduction, based on performance

More information

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Tony Maciejewski, Kyle Tarplee, Ryan Friese, and Howard Jay Siegel Department of Electrical and Computer Engineering Colorado

More information

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department ofmechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

Multi-objective Optimization

Multi-objective Optimization Jugal K. Kalita Single vs. Single vs. Single Objective Optimization: When an optimization problem involves only one objective function, the task of finding the optimal solution is called single-objective

More information

INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM

INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM Advanced OR and AI Methods in Transportation INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM Jorge PINHO DE SOUSA 1, Teresa GALVÃO DIAS 1, João FALCÃO E CUNHA 1 Abstract.

More information

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague.

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague. Evolutionary Algorithms: Lecture 4 Jiří Kubaĺık Department of Cybernetics, CTU Prague http://labe.felk.cvut.cz/~posik/xe33scp/ pmulti-objective Optimization :: Many real-world problems involve multiple

More information

Escaping Local Optima: Genetic Algorithm

Escaping Local Optima: Genetic Algorithm Artificial Intelligence Escaping Local Optima: Genetic Algorithm Dae-Won Kim School of Computer Science & Engineering Chung-Ang University We re trying to escape local optima To achieve this, we have learned

More information

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Hisao Ishibuchi Graduate School of Engineering Osaka Prefecture University Sakai, Osaka 599-853,

More information

Hardware-Software Codesign

Hardware-Software Codesign Hardware-Software Codesign 4. System Partitioning Lothar Thiele 4-1 System Design specification system synthesis estimation SW-compilation intellectual prop. code instruction set HW-synthesis intellectual

More information

BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP SCHEDULING PROBLEM. Minimizing Make Span and the Total Workload of Machines

BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP SCHEDULING PROBLEM. Minimizing Make Span and the Total Workload of Machines International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN 2249-6955 Vol. 2 Issue 4 Dec - 2012 25-32 TJPRC Pvt. Ltd., BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP

More information

Throughput-optimizing Compilation of Dataflow Applications for Multi-Cores using Quasi-Static Scheduling

Throughput-optimizing Compilation of Dataflow Applications for Multi-Cores using Quasi-Static Scheduling Throughput-optimizing Compilation of Dataflow Applications for Multi-Cores using Quasi-Static Scheduling Tobias Schwarzer 1, Joachim Falk 1, Michael Glaß 1, Jürgen Teich 1, Christian Zebelein 2, Christian

More information

A Multiobjective Optimization Model for Exploring Multiprocessor Mappings of Process Networks

A Multiobjective Optimization Model for Exploring Multiprocessor Mappings of Process Networks A Multiobjective Optimization Model for Exploring Multiprocessor Mappings of Process Networks Cagkan Erbas Dept. of Computer Science University of Amsterdam Kruislaan 43, 198 SJ Amsterdam, The Netherlands

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 6, 2015 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff INRIA Lille Nord Europe 2 Exercise: The Knapsack Problem

More information

Evolutionary Computation for Combinatorial Optimization

Evolutionary Computation for Combinatorial Optimization Evolutionary Computation for Combinatorial Optimization Günther Raidl Vienna University of Technology, Vienna, Austria raidl@ads.tuwien.ac.at EvoNet Summer School 2003, Parma, Italy August 25, 2003 Evolutionary

More information

Genetic Algorithms Variations and Implementation Issues

Genetic Algorithms Variations and Implementation Issues Genetic Algorithms Variations and Implementation Issues CS 431 Advanced Topics in AI Classic Genetic Algorithms GAs as proposed by Holland had the following properties: Randomly generated population Binary

More information

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007)

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007) In the name of God Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm Spring 2009 Instructor: Dr. Masoud Yaghini Outlines Problem Definition Modeling As A Set Partitioning

More information

Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach

Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach 1 Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach David Greiner, Gustavo Montero, Gabriel Winter Institute of Intelligent Systems and Numerical Applications in Engineering (IUSIANI)

More information

Genetic Algorithms. Kang Zheng Karl Schober

Genetic Algorithms. Kang Zheng Karl Schober Genetic Algorithms Kang Zheng Karl Schober Genetic algorithm What is Genetic algorithm? A genetic algorithm (or GA) is a search technique used in computing to find true or approximate solutions to optimization

More information

Evolutionary Computation

Evolutionary Computation Evolutionary Computation Lecture 9 Mul+- Objec+ve Evolu+onary Algorithms 1 Multi-objective optimization problem: minimize F(X) = ( f 1 (x),..., f m (x)) The objective functions may be conflicting or incommensurable.

More information

A computational intelligence approach to systemof-systems. optimization

A computational intelligence approach to systemof-systems. optimization SoS Optimization A computational intelligence approach to systemof-systems architecting incorporating multiobjective optimization MOTIVATION > To better understand the role of multi-objective optimization

More information

Software Synthesis Trade-offs in Dataflow Representations of DSP Applications

Software Synthesis Trade-offs in Dataflow Representations of DSP Applications in Dataflow Representations of DSP Applications Shuvra S. Bhattacharyya Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies University of Maryland, College Park

More information

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Search & Optimization Search and Optimization method deals with

More information

Evolutionary Approaches for Resilient Surveillance Management. Ruidan Li and Errin W. Fulp. U N I V E R S I T Y Department of Computer Science

Evolutionary Approaches for Resilient Surveillance Management. Ruidan Li and Errin W. Fulp. U N I V E R S I T Y Department of Computer Science Evolutionary Approaches for Resilient Surveillance Management Ruidan Li and Errin W. Fulp WAKE FOREST U N I V E R S I T Y Department of Computer Science BioSTAR Workshop, 2017 Surveillance Systems Growing

More information

Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping Problem in Multiprocessor System-on-Chip Design

Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping Problem in Multiprocessor System-on-Chip Design To appear in IEEE Trans. Evolutionary Computation PREPRINT Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping Problem in Multiprocessor System-on-Chip Design Cagkan Erbas,

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 21, 2016 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff Inria Saclay Ile-de-France 2 Exercise: The Knapsack

More information

Handling Constraints in Multi-Objective GA for Embedded System Design

Handling Constraints in Multi-Objective GA for Embedded System Design Handling Constraints in Multi-Objective GA for Embedded System Design Biman Chakraborty Ting Chen Tulika Mitra Abhik Roychoudhury National University of Singapore stabc@nus.edu.sg, {chent,tulika,abhik}@comp.nus.edu.sg

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Module 6 Evolutionary Computation Ajith Abraham Ph.D. Q What is the most powerful problem solver in the Universe? ΑThe (human) brain that created the wheel, New York, wars and

More information

Genetic Algorithms. PHY 604: Computational Methods in Physics and Astrophysics II

Genetic Algorithms. PHY 604: Computational Methods in Physics and Astrophysics II Genetic Algorithms Genetic Algorithms Iterative method for doing optimization Inspiration from biology General idea (see Pang or Wikipedia for more details): Create a collection of organisms/individuals

More information

Efficient Symbolic Multi Objective Design Space Exploration

Efficient Symbolic Multi Objective Design Space Exploration This is the author s version of the work. The definitive work was published in Proceedings of the 3th Asia and South Pacific Design Automation Conference (ASP-DAC 2008), pp. 69-696, 2008. The work is supported

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Winter Term 2016/17 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Slides prepared by Dr. Nicola Beume (2012) Multiobjective

More information

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland March 19, 2014

More information

MULTI-OBJECTIVE GENETIC LOCAL SEARCH ALGORITHM FOR SUPPLY CHAIN SIMULATION OPTIMISATION

MULTI-OBJECTIVE GENETIC LOCAL SEARCH ALGORITHM FOR SUPPLY CHAIN SIMULATION OPTIMISATION MULTI-OBJECTIVE GENETIC LOCAL SEARCH ALGORITHM FOR SUPPLY CHAIN SIMULATION OPTIMISATION Galina Merkuryeva (a), Liana Napalkova (b) (a) (b) Department of Modelling and Simulation, Riga Technical University,

More information

A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization

A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization Hisao Ishibuchi and Youhei Shibata Department of Industrial Engineering, Osaka Prefecture University, - Gakuen-cho, Sakai,

More information

CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS

CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS 6.1 Introduction Gradient-based algorithms have some weaknesses relative to engineering optimization. Specifically, it is difficult to use gradient-based algorithms

More information

Heuristic Optimisation Methods for System Partitioning in HW/SW Co-Design

Heuristic Optimisation Methods for System Partitioning in HW/SW Co-Design Heuristic Optimisation Methods for System Partitioning in HW/SW Co-Design Univ.Prof. Dipl.-Ing. Dr.techn. Markus Rupp Vienna University of Technology Institute of Communications and Radio-Frequency Engineering

More information

Multi-objective Optimization

Multi-objective Optimization Some introductory figures from : Deb Kalyanmoy, Multi-Objective Optimization using Evolutionary Algorithms, Wiley 2001 Multi-objective Optimization Implementation of Constrained GA Based on NSGA-II Optimization

More information

DERIVATIVE-FREE OPTIMIZATION

DERIVATIVE-FREE OPTIMIZATION DERIVATIVE-FREE OPTIMIZATION Main bibliography J.-S. Jang, C.-T. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, New Jersey,

More information

STUDY OF MULTI-OBJECTIVE OPTIMIZATION AND ITS IMPLEMENTATION USING NSGA-II

STUDY OF MULTI-OBJECTIVE OPTIMIZATION AND ITS IMPLEMENTATION USING NSGA-II STUDY OF MULTI-OBJECTIVE OPTIMIZATION AND ITS IMPLEMENTATION USING NSGA-II A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology in Electrical Engineering.

More information

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems Repair and Repair in EMO Algorithms for Multiobjective 0/ Knapsack Problems Shiori Kaige, Kaname Narukawa, and Hisao Ishibuchi Department of Industrial Engineering, Osaka Prefecture University, - Gakuen-cho,

More information

The Genetic Algorithm for finding the maxima of single-variable functions

The Genetic Algorithm for finding the maxima of single-variable functions Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 46-54 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com The Genetic Algorithm for finding

More information

Standard Error Dynamic Resampling for Preference-based Evolutionary Multi-objective Optimization

Standard Error Dynamic Resampling for Preference-based Evolutionary Multi-objective Optimization Standard Error Dynamic Resampling for Preference-based Evolutionary Multi-objective Optimization Florian Siegmund a, Amos H. C. Ng a, and Kalyanmoy Deb b a School of Engineering, University of Skövde,

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Bio-inspired Optimization and Design

Bio-inspired Optimization and Design Eckart Zitzler Computer Engineering and Networks Laboratory Introductory Example: The Knapsack Problem weight = 750g profit = 5 weight = 1500g profit = 8 weight = 300g profit = 7 weight = 1000g profit

More information

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2 Hybridization EVOLUTIONARY COMPUTING Hybrid Evolutionary Algorithms hybridization of an EA with local search techniques (commonly called memetic algorithms) EA+LS=MA constructive heuristics exact methods

More information

Multi-Objective Memetic Algorithm using Pattern Search Filter Methods

Multi-Objective Memetic Algorithm using Pattern Search Filter Methods Multi-Objective Memetic Algorithm using Pattern Search Filter Methods F. Mendes V. Sousa M.F.P. Costa A. Gaspar-Cunha IPC/I3N - Institute of Polymers and Composites, University of Minho Guimarães, Portugal

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Revision Lecture Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University

More information

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell Introduction to Genetic Algorithms Based on Chapter 10 of Marsland Chapter 9 of Mitchell Genetic Algorithms - History Pioneered by John Holland in the 1970s Became popular in the late 1980s Based on ideas

More information

Outline of the module

Outline of the module Evolutionary and Heuristic Optimisation (ITNPD8) Lecture 2: Heuristics and Metaheuristics Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ Computing Science and Mathematics, School of Natural Sciences University

More information

Non-convex Multi-objective Optimization

Non-convex Multi-objective Optimization Non-convex Multi-objective Optimization Multi-objective Optimization Real-world optimization problems usually involve more than one criteria multi-objective optimization. Such a kind of optimization problems

More information

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 20 CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 2.1 CLASSIFICATION OF CONVENTIONAL TECHNIQUES Classical optimization methods can be classified into two distinct groups:

More information

Hardware-Software Codesign

Hardware-Software Codesign Hardware-Software Codesign 8. Performance Estimation Lothar Thiele 8-1 System Design specification system synthesis estimation -compilation intellectual prop. code instruction set HW-synthesis intellectual

More information

CHAPTER 6 ORTHOGONAL PARTICLE SWARM OPTIMIZATION

CHAPTER 6 ORTHOGONAL PARTICLE SWARM OPTIMIZATION 131 CHAPTER 6 ORTHOGONAL PARTICLE SWARM OPTIMIZATION 6.1 INTRODUCTION The Orthogonal arrays are helpful in guiding the heuristic algorithms to obtain a good solution when applied to NP-hard problems. This

More information

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM * Azhar W. Hammad, ** Dr. Ban N. Thannoon Al-Nahrain

More information

Initial Population Construction for Convergence Improvement of MOEAs

Initial Population Construction for Convergence Improvement of MOEAs In Evolutionary Multi-Criterion Optimization by Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler (Eds.). In Lecture Notes in Computer Science (LNCS), Volume 3410, c Springer, Berlin,

More information

Local Search. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Local Search. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Local Search CS 486/686: Introduction to Artificial Intelligence Winter 2016 1 Overview Uninformed Search Very general: assumes no knowledge about the problem BFS, DFS, IDS Informed Search Heuristics A*

More information

Multi-Objective Optimization Using Genetic Algorithms

Multi-Objective Optimization Using Genetic Algorithms Multi-Objective Optimization Using Genetic Algorithms Mikhail Gaerlan Computational Physics PH 4433 December 8, 2015 1 Optimization Optimization is a general term for a type of numerical problem that involves

More information

Design Space Exploration Using Parameterized Cores

Design Space Exploration Using Parameterized Cores RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS UNIVERSITY OF WINDSOR Design Space Exploration Using Parameterized Cores Ian D. L. Anderson M.A.Sc. Candidate March 31, 2006 Supervisor: Dr. M. Khalid 1 OUTLINE

More information

Applications of scenarios in early embedded system design space exploration van Stralen, P.

Applications of scenarios in early embedded system design space exploration van Stralen, P. UvA-DARE (Digital Academic Repository) Applications of scenarios in early embedded system design space exploration van Stralen, P. Link to publication Citation for published version (APA): van Stralen,

More information

Multiobjective Job-Shop Scheduling With Genetic Algorithms Using a New Representation and Standard Uniform Crossover

Multiobjective Job-Shop Scheduling With Genetic Algorithms Using a New Representation and Standard Uniform Crossover Multiobjective Job-Shop Scheduling With Genetic Algorithms Using a New Representation and Standard Uniform Crossover J. Garen 1 1. Department of Economics, University of Osnabrück, Katharinenstraße 3,

More information

Efficient Hardware Acceleration on SoC- FPGA using OpenCL

Efficient Hardware Acceleration on SoC- FPGA using OpenCL Efficient Hardware Acceleration on SoC- FPGA using OpenCL Advisor : Dr. Benjamin Carrion Schafer Susmitha Gogineni 30 th August 17 Presentation Overview 1.Objective & Motivation 2.Configurable SoC -FPGA

More information

A genetic algorithms approach to optimization parameter space of Geant-V prototype

A genetic algorithms approach to optimization parameter space of Geant-V prototype A genetic algorithms approach to optimization parameter space of Geant-V prototype Oksana Shadura CERN, PH-SFT & National Technical Univ. of Ukraine Kyiv Polytechnic Institute Geant-V parameter space [1/2]

More information

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms H. Ishibuchi, T. Doi, and Y. Nojima, Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms, Lecture Notes in Computer Science 4193: Parallel Problem Solving

More information

PERFORMANCE SCALING OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS. Vineet Khare

PERFORMANCE SCALING OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS. Vineet Khare PERFORMANCE SCALING OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS Vineet Khare School of Computer Science The University of Birmingham Edgbaston, Birmingham B15 2TT, U.K. msc39vxk@cs.bham.ac.uk Project Supervisors

More information

Multi-objective Genetic Algorithms for Multi-depot VRP with Time Windows

Multi-objective Genetic Algorithms for Multi-depot VRP with Time Windows Multi-objective Genetic Algorithms for Multi-depot VRP with Time Windows Sanjib Biswas Submitted in partial fulfilment of the requirements for the degree of Master of Science Department of Computer Science

More information

Engineering design using genetic algorithms

Engineering design using genetic algorithms Retrospective Theses and Dissertations 2007 Engineering design using genetic algorithms Xiaopeng Fang Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/rtd Part of the

More information

Application of a Genetic Algorithm to a Scheduling Assignement Problem

Application of a Genetic Algorithm to a Scheduling Assignement Problem Application of a Genetic Algorithm to a Scheduling Assignement Problem Amândio Marques a and Francisco Morgado b a CISUC - Center of Informatics and Systems of University of Coimbra, 3030 Coimbra, Portugal

More information

CS348 FS Solving NP-Complete Light Up Puzzle

CS348 FS Solving NP-Complete Light Up Puzzle CS348 FS2013 - Solving NP-Complete Light Up Puzzle Daniel Tauritz, Ph.D. October 7, 2013 Synopsis The goal of this assignment set is for you to become familiarized with (I) representing problems in mathematically

More information

Regression Test Case Prioritization using Genetic Algorithm

Regression Test Case Prioritization using Genetic Algorithm 9International Journal of Current Trends in Engineering & Research (IJCTER) e-issn 2455 1392 Volume 2 Issue 8, August 2016 pp. 9 16 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Regression

More information

A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP

A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP Wael Raef Alkhayri Fahed Al duwairi High School Aljabereyah, Kuwait Suhail Sami Owais Applied Science Private University Amman,

More information

Combined System Synthesis and Communication Architecture Exploration for MPSoCs

Combined System Synthesis and Communication Architecture Exploration for MPSoCs This is the author s version of the work. The definitive work was published in Proceedings of Design, Automation and Test in Europe (DATE 2009), pp. 472-477, 2009. The work is supported in part by the

More information

GECCO 2007 Tutorial / Evolutionary Multiobjective Optimization. Eckart Zitzler ETH Zürich. weight = 750g profit = 5.

GECCO 2007 Tutorial / Evolutionary Multiobjective Optimization. Eckart Zitzler ETH Zürich. weight = 750g profit = 5. Tutorial / Evolutionary Multiobjective Optimization Tutorial on Evolutionary Multiobjective Optimization Introductory Example: The Knapsack Problem weight = 75g profit = 5 weight = 5g profit = 8 weight

More information

An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems

An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems An Evolutionary Algorithm Approach to Generate Distinct Sets of Non-Dominated Solutions for Wicked Problems Marcio H. Giacomoni Assistant Professor Civil and Environmental Engineering February 6 th 7 Zechman,

More information

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you?

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? Gurjit Randhawa Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? This would be nice! Can it be done? A blind generate

More information

Search Space Reduction for E/E-Architecture Partitioning

Search Space Reduction for E/E-Architecture Partitioning Search Space Reduction for E/E-Architecture Partitioning Andreas Ettner Robert Bosch GmbH, Corporate Reasearch, Robert-Bosch-Campus 1, 71272 Renningen, Germany andreas.ettner@de.bosch.com Abstract. As

More information

Toward Self-adaptive Embedded Systems: Multi-objective Hardware Evolution

Toward Self-adaptive Embedded Systems: Multi-objective Hardware Evolution Toward Self-adaptive Embedded Systems: Multi-objective Hardware Evolution Paul Kaufmann and Marco Platzner University of Paderborn Abstract. Evolutionary hardware design reveals the potential to provide

More information

Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows

Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows Abel Garcia-Najera and John A. Bullinaria School of Computer Science, University of Birmingham Edgbaston, Birmingham

More information

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Kalyanmoy Deb, Amrit Pratap, and Subrajyoti Moitra Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute

More information

Heuristis for Combinatorial Optimization

Heuristis for Combinatorial Optimization Heuristis for Combinatorial Optimization Luigi De Giovanni Dipartimento di Matematica, Università di Padova Luigi De Giovanni Heuristic for Combinatorial Optimization 1 / 59 Exact and heuristic methods

More information

Search Algorithms for Regression Test Suite Minimisation

Search Algorithms for Regression Test Suite Minimisation School of Physical Sciences and Engineering King s College London MSc in Advanced Software Engineering Search Algorithms for Regression Test Suite Minimisation By Benjamin Cook Supervised by Prof. Mark

More information

International Conference on Computer Applications in Shipbuilding (ICCAS-2009) Shanghai, China Vol.2, pp

International Conference on Computer Applications in Shipbuilding (ICCAS-2009) Shanghai, China Vol.2, pp AUTOMATIC DESIGN FOR PIPE ARRANGEMENT CONSIDERING VALVE OPERATIONALITY H Kimura, Kyushu University, Japan S Iehira, Kyushu University, Japan SUMMARY We propose a novel evaluation method of valve operationality

More information

Algorithm Design (4) Metaheuristics

Algorithm Design (4) Metaheuristics Algorithm Design (4) Metaheuristics Takashi Chikayama School of Engineering The University of Tokyo Formalization of Constraint Optimization Minimize (or maximize) the objective function f(x 0,, x n )

More information

Non-deterministic Search techniques. Emma Hart

Non-deterministic Search techniques. Emma Hart Non-deterministic Search techniques Emma Hart Why do local search? Many real problems are too hard to solve with exact (deterministic) techniques Modern, non-deterministic techniques offer ways of getting

More information

Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?)

Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?) SKIP - May 2004 Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?) S. G. Hohmann, Electronic Vision(s), Kirchhoff Institut für Physik, Universität Heidelberg Hardware Neuronale Netzwerke

More information

Scenario-based Design Space Exploration

Scenario-based Design Space Exploration Andy D. Pimentel and Peter van Stralen Abstract Modern embedded systems are becoming increasingly multifunctional and, as a consequence, they more and more have to deal with dynamic application workloads.

More information

Functional modeling style for efficient SW code generation of video codec applications

Functional modeling style for efficient SW code generation of video codec applications Functional modeling style for efficient SW code generation of video codec applications Sang-Il Han 1)2) Soo-Ik Chae 1) Ahmed. A. Jerraya 2) SD Group 1) SLS Group 2) Seoul National Univ., Korea TIMA laboratory,

More information

Optimization of Dynamic Data Structures in Multimedia Embedded Systems Using Evolutionary Computation

Optimization of Dynamic Data Structures in Multimedia Embedded Systems Using Evolutionary Computation Optimization of Dynamic Data Structures in Multimedia Embedded Systems Using Evolutionary Computation D. Atienza, C. Baloukas, L. Papadopoulos, C. Poucet, S. Mamagkakis, J. I. Hidalgo, F. Catthoor, D.

More information

Exploration vs. Exploitation in Differential Evolution

Exploration vs. Exploitation in Differential Evolution Exploration vs. Exploitation in Differential Evolution Ângela A. R. Sá 1, Adriano O. Andrade 1, Alcimar B. Soares 1 and Slawomir J. Nasuto 2 Abstract. Differential Evolution (DE) is a tool for efficient

More information

Improving interpretability in approximative fuzzy models via multi-objective evolutionary algorithms.

Improving interpretability in approximative fuzzy models via multi-objective evolutionary algorithms. Improving interpretability in approximative fuzzy models via multi-objective evolutionary algorithms. Gómez-Skarmeta, A.F. University of Murcia skarmeta@dif.um.es Jiménez, F. University of Murcia fernan@dif.um.es

More information

Handbook of Hardware/Software Codesign Soonhoi Ha and Jürgen Teich

Handbook of Hardware/Software Codesign Soonhoi Ha and Jürgen Teich Handbook of Hardware/Software Codesign Soonhoi Ha and Jürgen Teich v Contents 9 Scenario-based Design Space Exploration... 1 Andy Pimentel and Peter van Stralen 9.1 Introduction... 9. Application Dynamism...

More information

Dynamic Resampling for Preference-based Evolutionary Multi-Objective Optimization of Stochastic Systems

Dynamic Resampling for Preference-based Evolutionary Multi-Objective Optimization of Stochastic Systems Dynamic Resampling for Preference-based Evolutionary Multi-Objective Optimization of Stochastic Systems Florian Siegmund a, Amos H. C. Ng a, and Kalyanmoy Deb b a School of Engineering, University of Skövde,

More information

Outline. Motivation. Introduction of GAs. Genetic Algorithm 9/7/2017. Motivation Genetic algorithms An illustrative example Hypothesis space search

Outline. Motivation. Introduction of GAs. Genetic Algorithm 9/7/2017. Motivation Genetic algorithms An illustrative example Hypothesis space search Outline Genetic Algorithm Motivation Genetic algorithms An illustrative example Hypothesis space search Motivation Evolution is known to be a successful, robust method for adaptation within biological

More information