Functions of Two variables.

Size: px
Start display at page:

Download "Functions of Two variables."

Transcription

1 Functions of Two variables. Ferdinánd Filip siva.banki.hu/jegyzetek 27 February 217 Ferdinánd Filip 27 February 217 Functions of Two variables. 1 / 36

2 Table of contents Functions of Several Variables Ferdinánd Filip 27 February 217 Functions of Two variables. 2 / 36

3 Definition Suppose D is a set of n-tuples of real numbers (x 1, x 2,..., x n ). A real-valued function f on D is a rule that assigns a unique (single) real number w = f (x 1, x 2,..., x n ) to each element in D. The set D is the function s domain. The set of w-values taken on by f is the function s range. The symbol w is the dependent variable of f, and f is said to be a function of the n independent variables x 1 to x n. We also call the x j s the function s input variables and call w the function s output variable. Ferdinánd Filip 27 February 217 Functions of Two variables. 3 / 36

4 Interior and Boundary Points, Open, Closed Definition A point (x, y )in a region (set) R in the xy-plane is an interior point of R if it is the center of a disk of positive radius that lies entirely in R. A point (x, y ) is a boundary point of R if every disk centered at (x, y ) contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.) The interior points of a region, as a set, make up the interior of the region. The region s boundary points make up its boundary. A region is open if it consists entirely of interior points. A region is closed if it contains all its boundary points. Ferdinánd Filip 27 February 217 Functions of Two variables. 4 / 36

5 Interior and Boundary Points, Open, Closed (x, y ) Interior point of R (x, y ) R (x 1, y 1 ) (x 1, y 1 ) Boundary pointof R Ferdinánd Filip 27 February 217 Functions of Two variables. 5 / 36

6 Bounded and Unbounded Regions in the Plane Definition A region in the plane is bounded if it lies inside a disk of fixed radius. A region is unbounded if it is not bounded. Example: bounded sets: line segments, triangles, interiors of triangles, rectangles, circles, and disks bounded sets: lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants, half-planes, and the plane itself. Ferdinánd Filip 27 February 217 Functions of Two variables. 6 / 36

7 Graphs, Level Curves, and Contours of Functions of Two Variables Definition:Level Curve, Graph, Surface The set of points in the plane where a function f (x, y) has a constant valuef (x, y) = c is called a level curve of f. The set of all points (x, y, f (x, y)) in space, for (x, y) in the domain of f, is called the graph of f. The graph of f is also called the surface z = f (x, y) Ferdinánd Filip 27 February 217 Functions of Two variables. 7 / 36

8 Graphs, Level Curves, and Contours of Functions of Two Variables f (x, y) = x + y f (x, y) = x 2 + y x y x y 2 Ferdinánd Filip 27 February 217 Functions of Two variables. 8 / 36

9 Graphs, Level Curves, and Contours of Functions of Two Variables f (x, y) = x 2 + y 2 f (x, y) = xe x2 y x y x y 2 Ferdinánd Filip 27 February 217 Functions of Two variables. 9 / 36

10 Graphs, Level Curves, and Contours of Functions of Two Variables f (x, y) = y 2 y 4 x 2 f (x, y) = cos x cos ye x 2 +y x y 1 5 x 5 5 y 5 Ferdinánd Filip 27 February 217 Functions of Two variables. 1 / 36

11 Definition: Limit of a Function of Two Variables We say that a function f (x, y) approaches the limit L as (x, y) approaches (x, y ), and write lim f (x, y) = L (x,y) (x,y ) if, for every number ε >, there exists a corresponding number δ > such that for all (x, y in the domain of f f (x, y) L < ε wheneever < (x x ) 2 + (y y ) 2 < δ Ferdinánd Filip 27 February 217 Functions of Two variables. 11 / 36

12 Properties of Limits of Functions of Two Variablesi The following rules hold if L, M, and k are real numbers and lim f (x, y) = L, lim (x,y) (x,y ) g(x, y) = M (x,y) (x,y ) lim (f (x, y) + g(x, y)) = L + M (x,y) (x,y ) lim (f (x, y) g(x, y)) = L M (x,y) (x,y ) lim kf (x, y) = kl (x,y) (x,y ) f (x,y) lim (x,y) (x,y ) g(x,y) = L M, ha M. Ferdinánd Filip 27 February 217 Functions of Two variables. 12 / 36

13 Definition: Continuous Function of Two Variables A function f (x, y) is continuous at the point (x, y ) if 1 f is defined at (x, y ), 2 lim (x,y) (x,y ) f (x, y) exists 3 lim (x,y) (x,y ) f (x, y) = f (x, y ) A function is continuous if it is continuous at every point of its domain. Ferdinánd Filip 27 February 217 Functions of Two variables. 13 / 36

14 Definition: Partial Derivative with Respect to x The partial derivative of f (x, y) with respect to x at the point (x, y ) is f f (x + h, y ) f (x, y ) x = lim (x,y ) h h provided the limit exists. The equivalent expressions for the partial derivative are: f x (x, y ) f x(x, y ) Ferdinánd Filip 27 February 217 Functions of Two variables. 14 / 36

15 Definition: Partial Derivative with Respect to y The partial derivative of f (x, y) with respect to y at the point (x, y ) is f f (x, y + h) f (x, y ) y = lim (x,y ) h h provided the limit exists. The equivalent expressions for the partial derivative are:: f y (x, y ) f y (x, y ) Ferdinánd Filip 27 February 217 Functions of Two variables. 15 / 36

16 Calculations f x f y differentiating f with respect to x in the usual way while treating y as a constant y differentiating f with respect to x in the usual way while treating y as a constant Examples: Find f x and f y f (x, y) = x 2 + y 3 f (x, y) = x 2 y 3 f (x, y) = x 3 sin(x + y) Ferdinánd Filip 27 February 217 Functions of Two variables. 16 / 36

17 Differentiable Function A function z = f (x, y) is differentiable at (x, y ) if f x(x, y ) and f y (x ), y ) exist and z = f (x + x, y + y) f (x, y ) satisfies an equation of the form z = f x(x, y ) x + f y (x, y ) y + ε 1 x + ε 2 y in which each of ε 1, ε 2 as both x, y. We call f differentiable if it is differentiable at every point in its domain. Ferdinánd Filip 27 February 217 Functions of Two variables. 17 / 36

18 Theorem: If the partial derivatives f x and f y of a function f (x, y) are continuous throughout an open region R, then f is differentiable at every point of R. Tétel: If a function f (x, y) is differentiable at (x, y ), then f is continuous at (x, y ). Ferdinánd Filip 27 February 217 Functions of Two variables. 18 / 36

19 Linearization, Linear Approximation The linearization of a function f at a point (x, y ) where f is differentiable L(x, y) = f (x, y ) + f x(x, y )(x x ) + f y (x, y )(y y ) The approximation f (x, y) L(x, y) is the standard linear approximation of f at ((x, y ). Find the linearization of f (x, y) = x 2 + y 3 at point ( 2, 1) f (x, y) = x 3 sin(x + y) at point ( π 2, π 2 ) Ferdinánd Filip 27 February 217 Functions of Two variables. 19 / 36

20 Plane Tangent to a Surface The plane tangent to the surface z = f (x, y) of a differentiable function f at the point P (x, y, z ) = (x, y, f (x, y )) is z = z + f x(x, y )(x x ) + f y (x, y )(y y ) Ferdinánd Filip 27 February 217 Functions of Two variables. 2 / 36

21 Total Differential If we move from (x, y ) to a point (x + dx, y + dy) nearby, the resulting change df = f x(x, y )dx + f y (x, y )dy in the linearization of f f is called the total differential of f. Ferdinánd Filip 27 February 217 Functions of Two variables. 21 / 36

22 Estimating Absolut and Percentage Error Let function f (x, y) is differentiable at (x, y ). The absolute error: f df = f x(x, y )dx + f y (x, y )dy f x(x, y ) dx + f y (x, y ) dy Percentage Error: δf = f f f x(x, y ) f (x, y ) dx + f y (x, y ) f (x, y ) dy Ferdinánd Filip 27 February 217 Functions of Two variables. 22 / 36

23 Second-Order Partial Derivatives When we differentiate a function f (x, y) twice, we produce its second-order derivatives. These derivatives are usually denoted by 2 f x 2 vagy f xx; 2 f y x vagy f xy 2 f x y vagy f yx; 2 f y 2 vagy f yy Ferdinánd Filip 27 February 217 Functions of Two variables. 23 / 36

24 The defining equations are 2 f x 2 = ( ) f x x 2 f x y = ( ) f x y 2 f y x = ( ) f y x 2 f y 2 = ( ) f y y Ferdinánd Filip 27 February 217 Functions of Two variables. 24 / 36

25 Examples: Find all the second-order partial derivatives of the functions f (x, y) = x 2 y 3 f (x, y) = x 3 sin(x + y) f (x, y) = x 2 y 3 f (x, y) = (x 2 1)(y + 2) f (x, y) = x 2 + y 2 f (x, y) = (x 2 y 1)(y + 2) f (x, y) = x 3 sin(x + y) f (x, y) = x y f (x, y) = x2 y 1 y 3 f (x, y) = xe x2 y Ferdinánd Filip 27 February 217 Functions of Two variables. 25 / 36

26 Theorem: (Schwarz-Young) If f (x, y) and its partial derivatives f x, f y, f xy and f yx are defined throughout an open region containing a point (a, b) pontot, and are all continuous at (a, b), then f xy(a, b) = f yx(a, b). Ferdinánd Filip 27 February 217 Functions of Two variables. 26 / 36

27 The Chain Rule If w = f (x, y)has continuous partial derivatives f x and f y and if x = x(t), y = y(t) are differentiable functions of t then the composite w = f (x(t), y(t)) is a differ- entiable function of t and df dt = f x[x(t), y(t)]x (t) + f y [x(t), y(t)]y (t) or dw dt = f dx x dt + f dy y dt Ferdinánd Filip 27 February 217 Functions of Two variables. 27 / 36

28 A Formula for Implicit Differentiation Suppose that F (x, y) is differentiable and that the equation F (x, y) = defines y as a differentiable function of x. Then at any point where F y, dy dx = F x F y. Ferdinánd Filip 27 February 217 Functions of Two variables. 28 / 36

29 A Formula for Implicit Differentiation Examples Find the value of dy dx at the given point. x 3 2y 2 + xy =, (1, 1) x 2 + xy + y 2 7 =, (1, 2) xe y + sin xy + y ln 2 =, (, ln 2) Ferdinánd Filip 27 February 217 Functions of Two variables. 29 / 36

30 Definition: Local Maximum, Local Minimum Let f (x, y) be defined on a region R containing the point (a, b). Then 1 f (a, b) is a local maximum value of f if f (a, b) f (x, y) for all domain points (x, y) in an open disk centered at (a, b). 2 f (a, b)) is a local minimum value of f if f (a, b) f (x, y) for all domain points (x, y) in an open disk centered at (a, b). Ferdinánd Filip 27 February 217 Functions of Two variables. 3 / 36

31 First Derivative Test for Local Extreme Values If f (x, y) has a local maximum or minimum value at an interior point (a, b) of its domain and if the first partial derivatives exist there, then f x(a, b) = and f y (a, b) =. Definition: An interior point of the domain of a function f (x, y) where both f x and f y are zero or where one or both of f x and f y do not exist is a critical point of f Ferdinánd Filip 27 February 217 Functions of Two variables. 31 / 36

32 Definition: Saddle point A differentiable function f (x, y) has a saddle point at a critical point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) where f (x, y) < f (a, b) and domain points (x, y) where f (x, y) > f (a, b). The corresponding point (a, b, f (a, b)) on the surface f (x, y) > f (a, b) is called a saddle point of the surface. Ferdinánd Filip 27 February 217 Functions of Two variables. 32 / 36

33 lok. max lok. min Ferdinánd Filip 27 February 217 Functions of Two variables. 33 / 36

34 1 nyeregpont Ferdinánd Filip 27 February 217 Functions of Two variables. 34 / 36

35 Second Derivative Test for Local Extreme Values Suppose that f (x, y) and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that f x(a, b) = f y (a, b) = O. Then i. f has a local maximum at (a, b) if f xxf yy ( f xy) 2 > and f xx <. ii. f has a local minimum at (a, b) if f xxf yy ( f xy) 2 > and f xx >. iii. f has a saddle point at (a, b) if f xxf yy ( f xy) 2 <. iv. The test is inconclusive at (a, b) if f xxf yy ( f xy) 2 = at (a, b). In this case, we must find some other way to determine the behavior of f at (a, b). Ferdinánd Filip 27 February 217 Functions of Two variables. 35 / 36

36 The expression f xxf yy ( f xy) 2 is called the discriminant or Hessian of f. It is sometimes easier to remember it in determinant form, f xxf yy ( f xy ) 2 f = xx f xy f yx f yy Ferdinánd Filip 27 February 217 Functions of Two variables. 36 / 36

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Tangent Planes/Critical Points

Tangent Planes/Critical Points Tangent Planes/Critical Points Christopher Croke University of Pennsylvania Math 115 UPenn, Fall 2011 Problem: Find the tangent line to the curve of intersection of the surfaces xyz = 1 and x 2 + 2y 2

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

1 Vector Functions and Space Curves

1 Vector Functions and Space Curves ontents 1 Vector Functions and pace urves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions...................... 2 1.2 Arc Length and urvature..................................... 2 1.3 Motion

More information

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3 MATH 14 Sample problems for first exam - Fall 1 MATH 14 First Midterm Exam - Fall 1. Find the area between the graphs of y = 9 x and y = x + 1. (a) 4 (b) (c) (d) 5 (e) 4 (f) 81. A solid has as its base

More information

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Rafikul Alam Department of Mathematics IIT Guwahati Chain rule Theorem-A: Let x : R R n be differentiable at t 0 and f : R n R be differentiable

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

Minima, Maxima, Saddle points

Minima, Maxima, Saddle points Minima, Maxima, Saddle points Levent Kandiller Industrial Engineering Department Çankaya University, Turkey Minima, Maxima, Saddle points p./9 Scalar Functions Let us remember the properties for maxima,

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives.

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. Section 11.3 Partial Derivatives (1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. MATH 127 (Section 11.3) Partial Derivatives The University of Kansas

More information

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1.

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1. . Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z 2 (a) f(2, 4,5) = (b) f 2,, 3 9 = (c) f 0,,0 2 (d) f(4,4,00) = = ID: 4..3 2. Given the function f(x,y)

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Lecture 25 February 28, 2007 Recall Fact Recall Fact If f is a dierentiable function of x and y, then f has a directional derivative in the direction

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Kevin James. MTHSC 206 Section 14.5 The Chain Rule

Kevin James. MTHSC 206 Section 14.5 The Chain Rule MTHSC 206 Section 14.5 The Chain Rule Theorem (Chain Rule - Case 1) Suppose that z = f (x, y) is a differentiable function and that x(t) and y(t) are both differentiable functions as well. Then, dz dt

More information

Final Exam - Review. Cumulative Final Review covers sections and Chapter 12

Final Exam - Review. Cumulative Final Review covers sections and Chapter 12 Final Exam - eview Cumulative Final eview covers sections 11.4-11.8 and Chapter 12 The following is a list of important concepts from each section that will be tested on the Final Exam, but were not covered

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

. 1. Chain rules. Directional derivative. Gradient Vector Field. Most Rapid Increase. Implicit Function Theorem, Implicit Differentiation

. 1. Chain rules. Directional derivative. Gradient Vector Field. Most Rapid Increase. Implicit Function Theorem, Implicit Differentiation 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

3. The domain of a function of 2 or 3 variables is a set of pts in the plane or space respectively.

3. The domain of a function of 2 or 3 variables is a set of pts in the plane or space respectively. Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.1: Functions of Several Variables I. Functions and Variables A. Def n : Suppose D is a set of n-tuples of real numbers (x 1, x 2,

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods)

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) (Section 6.: Volumes of Solids of Revolution: Disk / Washer Methods) 6.. PART E: DISK METHOD vs. WASHER METHOD When using the Disk or Washer Method, we need to use toothpicks that are perpendicular to

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

Calculus 234. Problems. May 15, 2003

Calculus 234. Problems. May 15, 2003 alculus 234 Problems May 15, 23 A book reference marked [TF] indicates this semester s official text; a book reference marked [VPR] indicates the official text for next semester. These are [TF] Thomas

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES SOLUTIONS ) 3-1. Find, for the following functions: a) fx, y) x cos x sin y. b) fx, y) e xy. c) fx, y) x + y ) lnx + y ). CHAPTER 3: Partial derivatives

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) Today, We Will: Level Curves. Notes. Notes. Notes.

Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) Today, We Will: Level Curves. Notes. Notes. Notes. Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) 11 February 2015 Today, We Will: Wrap-up our discussion of level curves and contour maps. Define partial derivatives of a function

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Worksheet 2.2: Partial Derivatives

Worksheet 2.2: Partial Derivatives Boise State Math 275 (Ultman) Worksheet 2.2: Partial Derivatives From the Toolbox (what you need from previous classes) Be familiar with the definition of a derivative as the slope of a tangent line (the

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

minutes/question 26 minutes

minutes/question 26 minutes st Set Section I (Multiple Choice) Part A (No Graphing Calculator) 3 problems @.96 minutes/question 6 minutes. What is 3 3 cos cos lim? h hh (D) - The limit does not exist.. At which of the five points

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

Introduction to Functions of Several Variables

Introduction to Functions of Several Variables Introduction to Functions of Several Variables Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions of Several Variables Today 1 / 20 Introduction In this section, we extend the definition of

More information

Surfaces and Integral Curves

Surfaces and Integral Curves MODULE 1: MATHEMATICAL PRELIMINARIES 16 Lecture 3 Surfaces and Integral Curves In Lecture 3, we recall some geometrical concepts that are essential for understanding the nature of solutions of partial

More information

Differentiability and Tangent Planes October 2013

Differentiability and Tangent Planes October 2013 Differentiability and Tangent Planes 14.4 04 October 2013 Differentiability in one variable. Recall for a function of one variable, f is differentiable at a f (a + h) f (a) lim exists and = f (a) h 0 h

More information

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by Chapter 7 1) (AB/BC, calculator) The base of a solid is the region in the first quadrant bounded above by the line y =, below by y sin 1 x, and to the right by the line x = 1. For this solid, each cross-section

More information

V = 2πx(1 x) dx. x 2 dx. 3 x3 0

V = 2πx(1 x) dx. x 2 dx. 3 x3 0 Wednesday, September 3, 215 Page 462 Problem 1 Problem. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the region (y = x, y =, x = 2)

More information

AP Calculus BC. Find a formula for the area. B. The cross sections are squares with bases in the xy -plane.

AP Calculus BC. Find a formula for the area. B. The cross sections are squares with bases in the xy -plane. AP Calculus BC Find a formula for the area Homework Problems Section 7. Ax of the cross sections of the solid that are perpendicular to the x -axis. 1. The solid lies between the planes perpendicular to

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

Math 5BI: Problem Set 2 The Chain Rule

Math 5BI: Problem Set 2 The Chain Rule Math 5BI: Problem Set 2 The Chain Rule April 5, 2010 A Functions of two variables Suppose that γ(t) = (x(t), y(t), z(t)) is a differentiable parametrized curve in R 3 which lies on the surface S defined

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Marius Ionescu October 26, 2012 Marius Ionescu () Directional Derivatives and the Gradient Vector Part October 2 26, 2012 1 / 12 Recall Fact Marius

More information

Dr. Allen Back. Aug. 27, 2014

Dr. Allen Back. Aug. 27, 2014 Dr. Allen Back Aug. 27, 2014 Math 2220 Preliminaries (2+ classes) Differentiation (12 classes) Multiple Integrals (9 classes) Vector Integrals (15 classes) Math 2220 Preliminaries (2+ classes) Differentiation

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

AP * Calculus Review. Area and Volume

AP * Calculus Review. Area and Volume AP * Calculus Review Area and Volume Student Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

More information

7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011

7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011 7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed,

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

Continuity and Tangent Lines for functions of two variables

Continuity and Tangent Lines for functions of two variables Continuity and Tangent Lines for functions of two variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 4, 2014 Outline 1 Continuity

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information