The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by

Size: px
Start display at page:

Download "The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by"

Transcription

1 Chapter 7 1) (AB/BC, calculator) The base of a solid is the region in the first quadrant bounded above by the line y =, below by y sin 1 x, and to the right by the line x = 1. For this solid, each cross-section perpendicular to the x-axis is a square. What is the volume of the solid? (a) 1.49 (b) (c).184 (d).766 (e) 4

2 . (AB/BC, non-calculator) Find the area of the region bounded by the y-axis, the line y = e, and the graph of the function y = e x. (a) 1 (b) e e 1 (c) 1 e (d) 8 e (e) 1 e e e

3 . (AB/BC, non-calculator) A region in the xy-plane is bounded by the curves y 4x x and y = x. (a) Find the points of intersection of the two curves. (b) Sketch the region bounded by the curves. Label the bounding curves, show and label all points of intersection, and shade the bounded region. (c) Find the area of the region, showing all work that leads to your answer.

4 4. (AB/BC, non-calculator) A region in the xy-plane is bounded by y = x +, y x, y =, and y =. (a) Sketch the bounded region on a Cartesian axis system. Label each boundary curve and shade the bounded region. (b) Find the area of the bounded region, showing all work that leads to your answer.

5 5. (AB/BC, non-calculator) Consider the region shown above, which is bounded by (a) Find the area of the region. f ( x) x, y =, x =, and x =. (b) Find the volume of the solid formed by rotating the region about the x-axis. (c) The region pictured above is the base of a solid. For this solid, each cross-section perpendicular to the x-axis is an equilateral triangle. Findd the volume of this solid.

6 6. (AB/BC, non-calculator) Consider the region R, bounded by the graphs of y = x, y = 8 and the y-axis. The region S is bounded by y = x, x = and the x-axis. (a) Find the area of region R. (b) Find the volume of the solid formed by rotating region R about the y-axis. (c) The region S is the base of a solid. For this solid, each cross-section perpendicular to the x- axis is a semi-circle with diameters extending from y = x to the x-axis. Find the volume of this solid.

7 7. (BC only, calculator) Consider the region bounded be the y-axis, y = 1, and y = 1 + 6x /. (a) Set up but do not evaluate an integral equation that will find the value of k so that x = k cuts the region into parts of equal area. (b) Find the length of the curve y = 1 + 6x / on the interval [, 1]. (c) The region is the base of a solid. For this solid, the cross-sections perpendicular to the x-axis are rectangles with a height of times that of its width. Find the volume of this solid.

8 8. (AB/BC, calculator) Let R be the region bounded by the graph of y ln xand the line y x. (a) Find the area of R. (b) Find the volume of the solid generated when R is rotated about the horizontal line y. (c) Write, but do not evaluate, an expression involving one or more integrals that can be used to find the volume of the solid generated when R is revolved about the y-axis.

9 9. (AB/BC, calculator) Let R be the region bounded by the graphs of (a) Find the area of R. y x 1 and the graph of x y. (b) Find the volume of the solid generated when R is rotated about the vertical line x (c) Write, but do not evaluate, an expression involving one or more integrals to find the volume of the solid generated when R is rotated about the horizontal line y 1.

10 1. (AB/BC, non-calculator) Consider the region bounded by the graphs of f ( x) x, y, and x. (a) Find the volume of the solid formed by rotating the region about the x-axis. (b) Find the volume of the solid formed by rotating the region about the y-axis. (c) Write, but do not evaluate, the volume integral of the solid formed by rotating the region about the line y.

11 Chapter 7 (Solutions) Questions c sin x dx.184 1/. a 1/ x x e e e e dx ex e

12 Question A region in the xy-plane is bounded by the curves y 4 x x and y = x. (a) Find the points of intersectionn of the two curves. (b) Sketch the region bounded by the curves. Label the bounding curves, show and label all points of intersection, and shade the boundedd region. (c) Find the area of the region, showing all work that leads to your answer. (a) 4x x x x1, x y( 1) = ( 1) = 5 y() = ( ) = The points of intersection are ( 1, 5) and (, ). : points of intersection (b) 4: graph showing shading and points of intersection (c) 1 4xx x x dx 1: integrand : 1: limits 1: answer

13 Question 4 y A region in the xy-plane is bounded by y = xx +, x, y =, and y =. (a) Sketch the bounded region on a Cartesian axis system. Label eachh boundary curve and shade the bounded region. (b) Find the area of the bounded region, showing all work that leads to your answer. (a) 1:shading 1: y x y 5: 1: x 1: y 1: y (b) y y 4 dy 44 1:solved y x for x 4: 1:integrand 1: limits 1: answer

14 Question 5 Consider the region shown above, which is bounded by (a) Find the area of the region. f ( x) x, y =, x =, and x =. (b) Find the volume of the solid formed by rotating the region about the x-axis. (c) The region pictured above is the base of a solid. For this solid, each cross-section perpendicular to the x-axis is an equilateral triangle. Findd the volume of this solid. Global limit point 1: correct limits in an integral in (a), (b), or (c) (a) Area xdx x 4 1 : : integrand 1: antiderivative 1 : answer (b) Volume = x x dx : 1 : integrand 1: : antiderivative and answer (c) Volume = 4 x dx 4 x : : integrand 1: answer

15 Question 6 Consider the region R, bounded by the graphs of y = x, y = 8 and the y-axis. The region S is bounded by y = x, x = and the x-axis. (a) Find the area of region R. (b) Find the volume of the solid formed by rotating region R about the y-axis. (c) The region S is the base of a solid. For this solid, each cross-section perpendicular to the x- axis is a semi-circle with diameters extending from y = x to the x-axis. Find the volume of this solid. 4 x 8 x dx 8x (a) 1: limits and integrand : 1: antiderivative 1: answer 8 (b) Volume = y dy y 5 5 1: limits and integrand : 1: antiderivative 1: answer (c) Volume = 7 x 6 x dx x dx :limits : 1: integrand 1: answer

16 Question 7 Consider the region bounded be the y-axis, y = 1, and y = 1 + 6x /. (a) Set up but do not evaluate an integral equation that will find the value of k so that x = k cuts the region into parts of equal area. (b) Find the length of the curve y = 1 + 6x / on the interval [, 1]. (c) The region is the base of a solid. For this solid, the cross-sections perpendicular to the x-axis are rectangles with a height of times that of its width. Find the volume of this solid. (a) Let a represent the x-coordinate of point of intersection: a 1.17 a / Area x k / Equation: 1 1 6x dx dx (b) length = 1/ x dx 181xdx6.1 1:limits : 1: integrand 1: equation 1:limits : 1: integrand 1: answer a / (c) Volume = x 1 16 dx 14. 1:limits : 1: integrand 1: answer

17 Question 8 Let R be the region bounded by the graph of y ln xand the line y x. (a) Find the area of R. (b) Find the volume of the solid generated when R is rotated about the horizontal line y. (c) Write, but do not evaluate, an expression involving one or more integrals that can be used to find the volume of the solid generated when R is revolved about the y-axis. ln x x A.5565, B B (a) A ln x x dx (b) Volume = B ln x x dx18.78 A 1: limits in (a) or (b) 1:limits : 1: integrand 1: answer : 1: integrand 1: answer B y (c) Volume = e A y dy 1:limits : 1: integrand 1: answer

18 Question 9 Let R be the region bounded by the graphs of (a) Find the area of R. y x 1 and the graph of x y. (b) Find the volume of the solid generated when R is rotated about the vertical line x (c) Write, but do not evaluate, an expression involving one or more integrals to find the volume of the solid generated when R is rotated about the horizontal line y 1. ( AB, ) and ( S,T), where A.549, B.745 S 1.49, T 1.7 are the points of intersection. 1: limits in (a) or (b) T (a) B y1 y dy 1.77 T (b) V = y y1 dy B 1:limits : 1: integrand 1: answer : 1: integrand : answer (c) The volume equals A S x x dx x x dx A : 1: limits 1: integrand

19 Question 1 Consider the region bounded by the graphs of f ( x) x, y, and x. (a) Find the volume of the solid formed by rotating the region about the x-axis. (b) Find the volume of the solid formed by rotating the region about the y-axis. (c) Write, but do not evaluate, the volume integral of the solid formed by rotating the region about the line y. (a) x x dx 6.8 1: limits and integral : 1: antiderivative 1: answer (b) 4 y 4 dy 5 y 16 4y 5 5 (c) Volume = x 4 dx 1: limits 4: 1: integral 1: antiderivative 1: answer : 1: limits 1: integrand

Aim: How do we find the volume of a figure with a given base? Get Ready: The region R is bounded by the curves. y = x 2 + 1

Aim: How do we find the volume of a figure with a given base? Get Ready: The region R is bounded by the curves. y = x 2 + 1 Get Ready: The region R is bounded by the curves y = x 2 + 1 y = x + 3. a. Find the area of region R. b. The region R is revolved around the horizontal line y = 1. Find the volume of the solid formed.

More information

Name Date Period. Worksheet 6.3 Volumes Show all work. No calculator unless stated. Multiple Choice

Name Date Period. Worksheet 6.3 Volumes Show all work. No calculator unless stated. Multiple Choice Name Date Period Worksheet 6. Volumes Show all work. No calculator unless stated. Multiple Choice. (Calculator Permitted) The base of a solid S is the region enclosed by the graph of y ln x, the line x

More information

Area and Volume. where x right and x left are written in terms of y.

Area and Volume. where x right and x left are written in terms of y. Area and Volume Area between two curves Sketch the region and determine the points of intersection. Draw a small strip either as dx or dy slicing. Use the following templates to set up a definite integral:

More information

AP * Calculus Review. Area and Volume

AP * Calculus Review. Area and Volume AP * Calculus Review Area and Volume Student Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

More information

Find the volume of a solid with regular cross sections whose base is the region between two functions

Find the volume of a solid with regular cross sections whose base is the region between two functions Area Volume Big Ideas Find the intersection point(s) of the graphs of two functions Find the area between the graph of a function and the x-axis Find the area between the graphs of two functions Find the

More information

AP Calculus. Areas and Volumes. Student Handout

AP Calculus. Areas and Volumes. Student Handout AP Calculus Areas and Volumes Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright

More information

Topic 6: Calculus Integration Volume of Revolution Paper 2

Topic 6: Calculus Integration Volume of Revolution Paper 2 Topic 6: Calculus Integration Standard Level 6.1 Volume of Revolution Paper 1. Let f(x) = x ln(4 x ), for < x

More information

AP Calculus BC. Find a formula for the area. B. The cross sections are squares with bases in the xy -plane.

AP Calculus BC. Find a formula for the area. B. The cross sections are squares with bases in the xy -plane. AP Calculus BC Find a formula for the area Homework Problems Section 7. Ax of the cross sections of the solid that are perpendicular to the x -axis. 1. The solid lies between the planes perpendicular to

More information

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is More Integration Page 1 Directions: Solve the following problems using the available space for scratchwork. Indicate your answers on the front page. Do not spend too much time on any one problem. Note:

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Section 7.2 Volume: The Disk Method

Section 7.2 Volume: The Disk Method Section 7. Volume: The Disk Method White Board Challenge Find the volume of the following cylinder: No Calculator 6 ft 1 ft V 3 1 108 339.9 ft 3 White Board Challenge Calculate the volume V of the solid

More information

AB Student Notes: Area and Volume

AB Student Notes: Area and Volume AB Student Notes: Area and Volume An area and volume problem has appeared on every one of the free response sections of the AP Calculus exam AB since year 1. They are straightforward and only occasionally

More information

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4.

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4. QUIZ ON CHAPTER 6 - SOLUTIONS APPLICATIONS OF INTEGRALS; MATH 15 SPRING 17 KUNIYUKI 15 POINTS TOTAL, BUT 1 POINTS = 1% Note: The functions here are continuous on the intervals of interest. This guarantees

More information

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1 Chapter 7 curve Find the volume of the solid obtained by rotating the region bounded by the given cures about the specified line. Sketch the region, the solid, and a typical disk or washer.. y-/, =, =;

More information

Volume by Slicing (Disks & Washers)

Volume by Slicing (Disks & Washers) Volume by Slicing Disks & Washers) SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 6. of the recommended textbook or the equivalent chapter in

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution

Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution Goals: Beabletoapplyaslicingapproachtoconstructintegralsforareasandvolumes. Be able to visualize surfaces generated by rotating functions

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

Math 2260 Exam #1 Practice Problem Solutions

Math 2260 Exam #1 Practice Problem Solutions Math 6 Exam # Practice Problem Solutions. What is the area bounded by the curves y x and y x + 7? Answer: As we can see in the figure, the line y x + 7 lies above the parabola y x in the region we care

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

Volume Worksheets (Chapter 6)

Volume Worksheets (Chapter 6) Volume Worksheets (Chapter 6) Name page contents: date AP Free Response Area Between Curves 3-5 Volume b Cross-section with Riemann Sums 6 Volume b Cross-section Homework 7-8 AP Free Response Volume b

More information

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3 MATH 14 Sample problems for first exam - Fall 1 MATH 14 First Midterm Exam - Fall 1. Find the area between the graphs of y = 9 x and y = x + 1. (a) 4 (b) (c) (d) 5 (e) 4 (f) 81. A solid has as its base

More information

AP CALCULUS BC PACKET 2 FOR UNIT 4 SECTIONS 6.1 TO 6.3 PREWORK FOR UNIT 4 PT 2 HEIGHT UNDER A CURVE

AP CALCULUS BC PACKET 2 FOR UNIT 4 SECTIONS 6.1 TO 6.3 PREWORK FOR UNIT 4 PT 2 HEIGHT UNDER A CURVE AP CALCULUS BC PACKET FOR UNIT 4 SECTIONS 6. TO 6.3 PREWORK FOR UNIT 4 PT HEIGHT UNDER A CURVE Find an expression for the height of an vertical segment that can be drawn into the shaded region... = x =

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

minutes/question 26 minutes

minutes/question 26 minutes st Set Section I (Multiple Choice) Part A (No Graphing Calculator) 3 problems @.96 minutes/question 6 minutes. What is 3 3 cos cos lim? h hh (D) - The limit does not exist.. At which of the five points

More information

V = 2πx(1 x) dx. x 2 dx. 3 x3 0

V = 2πx(1 x) dx. x 2 dx. 3 x3 0 Wednesday, September 3, 215 Page 462 Problem 1 Problem. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the region (y = x, y =, x = 2)

More information

I IS II. = 2y"\ V= n{ay 2 l 3 -\y 2 )dy. Jo n [fy 5 ' 3 1

I IS II. = 2y\ V= n{ay 2 l 3 -\y 2 )dy. Jo n [fy 5 ' 3 1 r Exercises 5.2 Figure 530 (a) EXAMPLE'S The region in the first quadrant bounded by the graphs of y = i* and y = 2x is revolved about the y-axis. Find the volume of the resulting solid. SOLUTON The region

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate.

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate. Math 10 Practice Problems Sec 1.-1. Name Change the Cartesian integral to an equivalent polar integral, and then evaluate. 1) 5 5 - x dy dx -5 0 A) 5 B) C) 15 D) 5 ) 0 0-8 - 6 - x (8 + ln 9) A) 1 1 + x

More information

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 1 of 11 1) Give f(g(1)), given that Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 2) Find the slope of the tangent line to the graph of f at x = 4, given that 3) Determine

More information

CHAPTER 6: APPLICATIONS OF INTEGRALS

CHAPTER 6: APPLICATIONS OF INTEGRALS (Exercises for Section 6.1: Area) E.6.1 CHAPTER 6: APPLICATIONS OF INTEGRALS SECTION 6.1: AREA 1) For parts a) and b) below, in the usual xy-plane i) Sketch the region R bounded by the graphs of the given

More information

Volume by Slicing (Disks & Washers)

Volume by Slicing (Disks & Washers) Volume by Slicing (Disks & Washers) SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 6.2 of the recommended textbook (or the equivalent chapter

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

2.2 Volumes of Solids of Revolution

2.2 Volumes of Solids of Revolution 2.2 Volumes of Solids of Revolution We know how to find volumes of well-established solids such as a cylinder or rectangular box. What happens when the volume can t be found quite as easily nice or when

More information

Name Class. (a) (b) (c) 2. Find the volume of the solid formed by revolving the region bounded by the graphs of

Name Class. (a) (b) (c) 2. Find the volume of the solid formed by revolving the region bounded by the graphs of Applications of Integration Test Form A. Determine the area of the region bounded by the graphs of y x 4x and y x 4. (a) 9 9 (b) 6 (c). Find the volume of the solid formed by revolving the region bounded

More information

Volumes of Rotation with Solids of Known Cross Sections

Volumes of Rotation with Solids of Known Cross Sections Volumes of Rotation with Solids of Known Cross Sections In this lesson we are going to learn how to find the volume of a solid which is swept out by a curve revolving about an ais. There are three main

More information

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES 7 CALCULUS II DR. YOU 98 LECTURE 3- AREA OF A REGION BOUNDED BY CURVES If y = f(x) and y = g(x) are continuous on an interval [a, b] and f(x) g(x) for all x in [a, b], then the area of the region between

More information

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53 January, 7 Goals:. Remember that the area under a curve is the sum of the areas of an infinite number of rectangles. Understand the approach to finding the area between curves.. Be able to identify the

More information

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods)

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) (Section 6.: Volumes of Solids of Revolution: Disk / Washer Methods) 6.. PART E: DISK METHOD vs. WASHER METHOD When using the Disk or Washer Method, we need to use toothpicks that are perpendicular to

More information

y 4 y 1 y Click here for answers. Click here for solutions. VOLUMES

y 4 y 1 y Click here for answers. Click here for solutions. VOLUMES SECTION 7. VOLUMES 7. VOLUMES A Click here for answers. S Click here for solutions. 5 Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Volumes of Solids of Revolution

Volumes of Solids of Revolution Volumes of Solids of Revolution Farid Aliniaeifard York University http://math.yorku.ca/ faridanf April 27, 2016 Overview What is a solid of revolution? Method of Rings or Method of Disks Method of Cylindrical

More information

2. Solve for x when x < 22. Write your answer in interval notation. 3. Find the distance between the points ( 1, 5) and (4, 3).

2. Solve for x when x < 22. Write your answer in interval notation. 3. Find the distance between the points ( 1, 5) and (4, 3). Math 6 Practice Problems for Final. Find all real solutions x such that 7 3 x = 5 x 3.. Solve for x when 0 4 3x

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Volume: The Disk Method Copyright Cengage Learning. All rights reserved. Objectives Find the volume of a solid of revolution

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

y = 4x + 2, 0 x 1 Name: Class: Date: 1 Find the area of the region that lies under the given curve:

y = 4x + 2, 0 x 1 Name: Class: Date: 1 Find the area of the region that lies under the given curve: Name: Class: Date: 1 Find the area of the region that lies under the given curve: y = 4x + 2, 0 x 1 Select the correct answer. The choices are rounded to the nearest thousandth. 8 Find the volume of the

More information

For Test #1 study these problems, the examples in your notes, and the homework.

For Test #1 study these problems, the examples in your notes, and the homework. Mth 74 - Review Problems for Test Test covers Sections 6.-6.5, 7. and 7. For Test # study these problems, the examples in your notes, and the homework.. The base of a solid is the region inside the circle

More information

Plane Curve [Parametric Equation]

Plane Curve [Parametric Equation] Plane Curve [Parametric Equation] Bander Almutairi King Saud University December 1, 2015 Bander Almutairi (King Saud University) Plane Curve [Parametric Equation] December 1, 2015 1 / 8 1 Parametric Equation

More information

Volume by Disk/Washers - Classwork

Volume by Disk/Washers - Classwork Volume by Disk/Washers - Classwork Example 1) Find the volume if the region enclosing y = x, y = 0, x = 3 is rotated about the a) x-axis b) the line y = 6 c) the line y = 8 d) the y-axis e) the line x

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

Lecture 11 (Application of Integration) Areas between Curves Let and be continuous and on. Let s look at the region between and on.

Lecture 11 (Application of Integration) Areas between Curves Let and be continuous and on. Let s look at the region between and on. Lecture 11 (Application of Integration) Areas between Curves Let and be continuous and on. Let s look at the region between and on. Definition: The area of the region bounded by the curves and, and the

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 Name GRAPHICAL REPRESENTATION OF DATA: You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 ) and (x, y ) is x1 x y1 y,.

More information

Worksheet 3.1: Introduction to Double Integrals

Worksheet 3.1: Introduction to Double Integrals Boise State Math 75 (Ultman) Worksheet.: Introduction to ouble Integrals Prerequisites In order to learn the new skills and ideas presented in this worksheet, you must: Be able to integrate functions of

More information

Applications of Integration

Applications of Integration Week 12. Applications of Integration 12.1.Areas Between Curves Example 12.1. Determine the area of the region enclosed by y = x 2 and y = x. Solution. First you need to find the points where the two functions

More information

Graphing Linear Inequalities in Two Variables.

Graphing Linear Inequalities in Two Variables. Many applications of mathematics involve systems of inequalities rather than systems of equations. We will discuss solving (graphing) a single linear inequality in two variables and a system of linear

More information

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find.

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find. 1 of 7 1) Find 2) The function g is defined by the formula Find the slope of the tangent line at x = 1. 3) Find 5 1 The limit does not exist. 4) The given function f has a removable discontinuity at x

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Review for Applications of Definite Integrals Sections

Review for Applications of Definite Integrals Sections Review for Applications of Definite Integrals Sections 6.1 6.4 Math 166 Iowa State University http://orion.math.iastate.edu/dstolee/teaching/15-166/ September 4, 2015 1. What type of problem: Volume? Arc

More information

Tangent Lines and Linear Approximations Solutions

Tangent Lines and Linear Approximations Solutions Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment,

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

AP Calculus AB Worksheet Areas, Volumes, and Arc Lengths

AP Calculus AB Worksheet Areas, Volumes, and Arc Lengths WorksheetAreasVolumesArcLengths.n 1 AP Calculus AB Worksheet Areas, Volumes, and Arc Lengths Areas To find the area etween the graph of f(x) and the x-axis from x = a to x = we first determine if the function

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

AP Calculus. Slide 1 / 95. Slide 2 / 95. Slide 3 / 95. Applications of Definite Integrals

AP Calculus. Slide 1 / 95. Slide 2 / 95. Slide 3 / 95. Applications of Definite Integrals Slide 1 / 95 Slide 2 / 95 AP Calculus Applications of Definite Integrals 2015-11-23 www.njctl.org Table of Contents Slide 3 / 95 Particle Movement Area Between Curves Volume: Known Cross Sections Volume:

More information

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4 73 3-D Notes Honors Precalculus Date: Adapted from 111 & 114 The Three-Variable Coordinate System I Cartesian Plane The familiar xy-coordinate system is used to represent pairs of numbers (ordered pairs

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1.

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1. . Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z 2 (a) f(2, 4,5) = (b) f 2,, 3 9 = (c) f 0,,0 2 (d) f(4,4,00) = = ID: 4..3 2. Given the function f(x,y)

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Area of a Region Between Two Curves Copyright Cengage Learning. All rights reserved. Objectives Find the area of a region between

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2 MATH 14 First Midterm Exam - Fall 214 1. Find the area between the graphs of y = x 2 + x + 5 and y = 2x 2 x. 1. Find the area between the graphs of y = x 2 + 4x + 6 and y = 2x 2 x. 1. Find the area between

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

Tangent Planes/Critical Points

Tangent Planes/Critical Points Tangent Planes/Critical Points Christopher Croke University of Pennsylvania Math 115 UPenn, Fall 2011 Problem: Find the tangent line to the curve of intersection of the surfaces xyz = 1 and x 2 + 2y 2

More information

Solutions B B B B B. ( B/.B œ œ B/ ( /.B œ B/ / G

Solutions B B B B B. ( B/.B œ œ B/ ( /.B œ B/ / G Solutions. (a) ( cosa& b. œ sina&b œ sina b sina& b œ Þ)$ & & & (b) Let? œ. Then.? œ., so.? % $ (. œ ( œ (?.? œ Œ? G œ G a % b?% $ ' a $ b (c) Let? œ and.@ œ /.. Then.? œ. and @ œ /, so ( /. œ (?.@ œ?@

More information

AP Calculus AB Unit 2 Assessment

AP Calculus AB Unit 2 Assessment Class: Date: 203-204 AP Calculus AB Unit 2 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. A calculator may NOT be used on this part of the exam.

More information

Integration. Example Find x 3 dx.

Integration. Example Find x 3 dx. Integration A function F is called an antiderivative of the function f if F (x)=f(x). The set of all antiderivatives of f is called the indefinite integral of f with respect to x and is denoted by f(x)dx.

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

Circumference of a Circle

Circumference of a Circle Circumference of a Circle The line segment AB, AB = 2r, and its interior point X are given. The sum of the lengths of semicircles over the diameters AX and XB is 3πr; πr; 3 2 πr; 5 4 πr; 1 2 πr; Šárka

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Volume: The Shell Method Copyright Cengage Learning. All rights reserved. Objectives Find the volume of a solid of revolution

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Integration. Edexcel GCE. Core Mathematics C4

Integration. Edexcel GCE. Core Mathematics C4 Edexcel GCE Core Mathematics C Integration Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

Lesson 1. Unit 2 Practice Problems. Problem 2. Problem 1. Solution 1, 4, 5. Solution. Problem 3

Lesson 1. Unit 2 Practice Problems. Problem 2. Problem 1. Solution 1, 4, 5. Solution. Problem 3 Unit 2 Practice Problems Lesson 1 Problem 1 Rectangle measures 12 cm by 3 cm. Rectangle is a scaled copy of Rectangle. Select all of the measurement pairs that could be the dimensions of Rectangle. 1.

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Entrance Exam Wiskunde B

Entrance Exam Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Entrance Exam Wiskunde B Date: 16 January 2015 Time: 13.30 16.30 Questions: 5 Please read the instructions below carefully before answering the questions. There

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

PAST QUESTIONS ON INTEGRATION PAPER 1

PAST QUESTIONS ON INTEGRATION PAPER 1 PAST QUESTIONS ON INTEGRATION PAPER 1 1. Q9 Nov 2001 2. Q11 Nov 2001 3. The diagram shows the curve y = and the line y = x intersecting at O and P. Find the coordinates of P, [1] the area of the shaded

More information

Math 116 Practice for Exam 1

Math 116 Practice for Exam 1 Math 116 Practice for Exam 1 Generated September 4, 17 Name: Instructor: Section Number: 1. This exam has 5 questions. Note that the problems are not of equal difficulty, so you may want to skip over and

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

Answer: Find the volume of the solid generated by revolving the shaded region about the given axis. 2) About the x-axis. y = 9 - x π.

Answer: Find the volume of the solid generated by revolving the shaded region about the given axis. 2) About the x-axis. y = 9 - x π. Final Review Study All Eams. Omit the following sections: 6.,.6,., 8. For Ch9 and, study Eam4 and Eam 4 review sheets. Find the volume of the described solid. ) The base of the solid is the disk + y 4.

More information