Straightness measurement

Size: px
Start display at page:

Download "Straightness measurement"

Transcription

1 Page 1 of 45 Straightness measurement User guide This manual is available in English only Renishaw - 8 August 2001 Issue 5.1 Procedure for performing straightness measurement Straightness measurements show bending or overall misalignment in the guideways of a machine. This could be the result of wear in these guideways, an accident which may have damaged them, or poor machine foundations that are causing the axis to bow. Straightness error will have a direct effect on the positioning and contouring accuracy of a machine. The laser system measures the machine straightness accuracy and repeatability by moving the machine to a number of target positions and measuring the straightness deviations. These measurements must be repeated for the two measurement planes. e.g. the vertical measurement plane and the horizontal measurement plane when measuring the straightness of a horizontal axis. This section leads you through a practical exercise where you measure the straightness of a linear axis. IMPORTANT - please read the SAFETY section before proceeding. The steps required to perform a straightness measurement are as follows: Set up the ML10 and the straightness optics. Since straightness deviations are measured in two measurement planes, two sets of measurements need to be taken for each machine axis, using

2 Page 2 of 45 two different optical configurations. Align the laser with the machine's axis of travel. Capture straightness data. Analyse the captured straightness data. Before analysing examine the captured data with the All data plot' graph type to inspect for measurement errors. This is discussed further in Factors affecting accuracy of straightness measurement. Note: The optical reversal technique can be used to increase the accuracy of the straightness measurement. Specifications - Gives a full specification for straightness measurement accuracy. Procedure for performing straightness measurement - Issue Renishaw Straightness measurement set-up A typical system set-up for measuring straightness errors is shown in Figure 1. Select the text labels on the set-up picture to obtain more information on the components in the system. Figure 1 - Typical system set-up for measuring straightness Note: Environmental compensation is not necessary when taking straightness measurements, therefore

3 Page 3 of 45 the EC10 and environmental sensors are not required. The principles of straightness measurement describes how straightness optics work and the basic optical configuration to perform straightness measurement. Perform the following steps to set up the laser system for a straightness measurement: If you have not already done so, install the calibration software. In addition, you must ensure that one of the following Renishaw interfaces has been installed and configured on your computer: PCM10 or PCM20 (PCMCIA) card for notebook computers PC10 card for desktop computers Attach the straightness optics to the machine to be calibrated. For most set-ups the straightness accessory kit will be required. Typical straightness optical set-ups for different machine configurations are shown in the straightness measurements set-ups section. Set the ML10 laser head on the tripod. Connect the ML10 to the interface card. Plug one end of the datalink cable into the 5-pin socket on the PC10/PCM20 interface card and the other socket on the rear of the ML10 laser. The two 5-pin sockets on the PC10/PCM20 interface card are common and therefore it does not matter which socket the ML10 is connected to. WARNINGS 1. TO AVOID RISK OF EYE DAMAGE, DO NOT STARE INTO THE OUTPUT BEAM. 2. DO NOT LET THE BEAM PASS INTO YOUR EYES OR ANYONE ELSE'S, EITHER DIRECTLY OR BY REFLECTION FROM AN OPTICAL ELEMENT OR ANY OTHER REFLECTIVE SURFACE. Apply mains power to the computer and the ML10 laser. For safety, the shutter of the ML10 laser should initially be rotated to its closed position shown in Figure 2 below. Figure 2 - ML10 shutter position - no beam emitted Run the short-range or long-range straightness data capture software. It is important that the straightness data capture software matches the straightness measurement optics that are used. i.e. short-range straightness optics must be used with the short-range straightness data capture software and the long-range straightness optics must be used with the long-range straightness data capture software. Which straightness optics are used will depend on the length of axis being measured. Align the laser with the machine's axis of travel.

4 Page 4 of 45 Straightness measurement set-up - Issue Renishaw Straightness measurement optics Figure 1 - Straightness measurement optics The straightness measurement optics are used to measure straightness errors in a linear axis. Straightness errors are displacements perpendicular to the axis of travel. A kit comprises the following elements shown in Figure 1 above: straightness interferometer straightness reflector The straightness measurement kit is available in two versions: short-range for measurements from 0.1 m (4 in) up to 4 m (160 in) and long-range for measurements between 1 m (40 in) and 30 m (1200 in). Note: For short-range, these distances refer to the separation between the straightness interferometer and the straightness reflector, i.e. the length of the axis that can be tested. For long-range, these distances refer to the separation between the laser head and the straightness reflector. In both cases, the range of straightness measurement is ±2.5 mm (±0.1 in). The straightness interferometer and reflector are matched pairs. Therefore, you cannot interchange elements with other straightness kits. Each straightness interferometer and reflector is marked with a unique serial number. The standard optics mounting kit can be used to attach the optics to the machine. When measuring vertical straightness in a horizontal axis, or straightness in a vertical axis of a machine, the straightness accessory kit is also required.

5 Page 5 of 45 For details of performing straightness measurements using this kit, refer to the straightness measurements section. See the dimensions and weights section for the dimensions of the straightness measurement optics. Straightness interferometer The straightness interferometer is a prism which splits the laser beam from the ML10 into two diverging beams. The output beam from the ML10 and the return beam from the straightness reflector pass through an aperture in the straightness interferometer. There is also a white circular target and a small diameter aperture for precise beam alignment. The orientation of the straightness interferometer for both horizontal and vertical deviation measurements is shown in Figures 2 and 3 below. The interferometer's orientation can be changed by rotating the interferometer's face. Figure 2 - Orientation for measurement of horizontal straightness deviation Figure 3 - Orientation for measurement of vertical straightness deviations The laser beam is returned through the lower aperture of the laser head for horizontal deviation measurements and through the left-hand side aperture of the laser head for vertical deviation measurements. See straightness measurement set-ups for different set-up configurations Straightness reflector

6 Page 6 of 45 The straightness reflector returns the two diverging beams back to the straightness interferometer. The straightness reflector shown in Figure 4 below is symmetrical about its centre. It must be aligned perpendicular to the measurement axis, with the two diverging input beams equidistant from the centre and approximately 6 mm (¼ in) 'above' the central line as shown. There are alignment markings on the reflector casing to help achieve beam symmetry. Figure 4 - Straightness reflector shown in orientation for measurement of horizontal deviation The optical assembly within the straightness reflector can be tilted about its 'longitudinal' axis by adjustment of the control knob shown. Use of the tilt control is described under beam alignment procedure. Straightness measurement optics - Issue Renishaw Straightness accessory kit Figure 1 - Straightness accessory kit The straightness accessory kit is required for the measurement of vertical straightness in a horizontal axis, straightness in a vertical axis of a machine and squareness. The kit comprises the following:

7 Page 7 of 45 large retro-reflector - used for certain applications, e.g. vertical axis straightness. straightness shutter - a special shutter assembly for the ML10 laser to accommodate measurements where the return beam is in the same horizontal plane as the output beam. This may be factoryfitted to the ML10 laser. vertical turning mirror used particularly for vertical axis straightness. straightness base - used to mount the straightness reflector and vertical turning mirror for vertical axis measurements. This base can also be used for the mounting of linear and angular optics. For details of performing straightness measurements using this kit, refer to the straightness measurements section. See the dimensions and weights section for the dimensions of the straightness accessory kit. This kit can also be used to measure squareness and parallelism - for more details, refer to the following: Squareness measurements section Parallelism measurements section Large retro-reflector The large retro-reflector reverses the laser beam to pass through an attached straightness interferometer. It is used to measure the straightness of vertical axes. It can also be used in certain horizontal straightness configurations where it is not possible to place the stationary straightness reflector behind the interferometer. A view of the large retro-reflector and the attached straightness interferometer is shown in two orientations in Figure 2 below. Figure 2 - Large retro-reflector

8 Page 8 of 45 Straightness shutter For straightness measurements in either the horizontal or vertical plane where the optics are configured in such a way that the returning beam is in the same horizontal plane as the output beam, the laser must be fitted with a straightness shutter. If the straightness optics have been ordered at the same time as the ML10 laser, the straightness shutter may have been factory-fitted to the laser in place of the standard shutter mechanism. If the straightness optics have been ordered at a later date, the straightness shutter will be supplied as part of the straightness accessory kit, to be fitted by the customer. Figure 3 - Universal shutter mechanism Unlike the standard shutter mechanism, the straightness shutter has two rotatable elements as shown in Figure 3. Rotate both elements through 180 to change the shutter from the normal configuration to that required when the returning beam is in the same horizontal plane as the output beam as shown in Figure 4. Rotating by another 90 in the anti-clockwise direction will change the shutter to the shut-off position. Figure 4 With the shutter in either of the above two measurement configurations, rotating just the outer element clockwise through 90 will cycle the shutter through the sequence shown in Figure 5.

9 Page 9 of 45 Figure 5 Vertical turning mirror The vertical turning mirror is used for straightness measurements along vertical axes and can also be used in some horizontal axis measurements. The mirror deflects the linear beam by a nominal 90º. The mirror has two control knobs (marked 1 and 2 in Figure 6) for fine adjustment within an angle of ± 2º. The control knobs allow fine alignment of the beam without having to rotate the mirror housing or laser head. Control knob 1 provides adjustment in the axis orthogonal to both the input and exit beams, while control knob 2 provides adjustment in tilt. However there is a slight cross-sensitivity on both knobs. The vertical turning mirror can also be used for linear and angular measurement if required.

10 Page 10 of 45 Figure 6 - Vertical turning mirror Straightness base The straightness base is used as a mount for the straightness reflector and vertical turning mirror for vertical straightness measurements. The vertical turning mirror and straightness reflector are screwed into their respective positions as shown in Figure 7 below: Figure 7 - Straightness base Straightness accessory kit - Issue Renishaw Principle of straightness measurement To carry out straightness measurements, position the straightness interferometer in the path between the laser head and the straightness reflector.

11 Page 11 of 45 The outgoing beam from the laser passes through the straightness interferometer which splits it into two beams which diverge at a small angle and are directed to the straightness reflector. The beams are then reflected from the straightness reflector and return along a new path to the straightness interferometer as shown in Figure 1. At the straightness interferometer the two beams are converged and a single beam is returned to the entry port in the laser head. Figure 1 - Principle of measurement The straightness is measured by detecting the optical path change from a relative lateral displacement between the interferometer and the reflector. The straightness measurement can be in a horizontal or vertical plane depending on the orientation of both the straightness interferometer and reflector. Figure 1 shows the set-up for a horizontal straightness measurement. Environmental compensation is not necessary when taking straightness measurements because the two measurement beams are both equally affected by environmental change. Principle of straightness measurement - Issue Renishaw Mounting of straightness optics For a straightness calibration of a machine tool or CMM, the straightness interferometer and straightness reflector are usually placed at the tool/probe and workpiece positions to 'mirror' the straightness accuracy along the measurement axis. Select the short-range or long-range straightness kit depending on the length of the axis to be measured. Use the short-range kit to measure axes of up to 3.9 m (153.5 in) and the long-range kit for axes up to 29m (1141 in). See the straightness specification for more information. To mount the straightness optics to the machine to be calibrated, you will need an optics mounting kit and suitable clamps for fastening the optics to the machine. Figure 1 shows a typical set-up for mounting the straightness optics to the clamp blocks and mounting pillars.

12 Page 12 of 45 Figure 1 - Mounting straightness optics to clamp blocks and mounting pillars Note: the straightness interferometer has a threaded hole in its upper surface. This can be used to accommodate the M8 aperture provided in the optics mounting kit. The mounting pillars are mounted to the machine using magnetic clamp blocks or/and the steel base plates. To minimise measurement errors, fix the optics directly to the points between which measurement is required. One optic is normally fixed to the work holder, and the other optic to the tool or probe holder. Laser measurements will then accurately reflect the errors that will occur between tool/probe and workpiece. Even if machine guards and covers make access difficult, always try to fix both the interferometer and the straightness reflector directly to the machine. When calibrating an axis with a moving spindle, mount the straightness interferometer on the moving spindle and place the straightness reflector on the stationary bed as shown in Figure 2. If you mount the straightness reflector on the moving spindle, then the measurements are subject to cross-sensitivity with angular deviations. If this is done, great care must be taken in interpreting the results.

13 Page 13 of 45 Figure 2 When calibrating an axis with a moving table, mount the straightness reflector on the moving table and place the straightness interferometer on the stationary spindle. This mirrors the set-up when performing a measurement with a dial gauge and a straight edge. Different straightness optic configurations are shown in the straightness measurement configurations section. Special cases/configurations may require alternative locations for the optical components, e.g. the straightness reflector may need to be located off the machine at the far end of travel or at the near end, using the configuration shown in Figure 3 of the section on straightness measurement set-ups. The following factors should be taken into account when mounting the optics to ensure any measurement errors are minimised: Fix optics directly to the points of interest Fix the optics rigidly Avoid localised heat sources Use turning mirrors Mounting of straightness optics - Issue Renishaw

14 Page 14 of 45 Straightness measurement configurations Most straightness measurement configurations fall into one of the categories shown in Figures 1 to 5 below. The configuration used will depend on the machine type and which axis is being calibrated. Horizontal axes Figure 1 - Vertical measurement plane - moving straightness interferometer - stationary straightness reflector

15 Page 15 of 45 Figure 2 - Horizontal measurement plane - moving straightness interferometer - stationary straightness reflector

16 Page 16 of 45 Figure 3 - Straightness interferometer fixed to retro-reflector - moving large retro-reflector/straightness interferometer - stationary straightness reflector Vertical axes

17 Page 17 of 45 Figure 4 - Straightness interferometer fixed to large retro-reflector - moving large retroreflector/straightness interferometer - stationary straightness reflector Figure 5 - Straightness interferometer fixed to large retro-reflector - moving large retroreflector/straightness interferometer - stationary straightness reflector

18 Page 18 of 45 Straightness measurement configurations - Issue Renishaw Straightness beam alignment WARNINGS 1. TO AVOID RISK OF EYE DAMAGE, DO NOT STARE INTO THE LASER BEAM. 2. DO NOT LET THE BEAM PASS INTO YOUR EYES OR ANYONE ELSE'S, EITHER DIRECTLY OR BY REFLECTION, FROM AN OPTICAL ELEMENT OR ANY OTHER REFLECTIVE SURFACE. To ensure that enough signal strength is obtained and 'slope' has been removed from the straightness measurements, the ML10's laser beam must be aligned so that it is parallel to the axis of travel. The laser steerer can be used to simplify beam alignment. It reduces the amount of adjustment that needs to be made to the laser head and tripod. The following alignment procedures are described in this section. Vertical straightness measurement on a horizontal axis Straightness measurement on a vertical axis These procedures can also be adapted to other set-ups shown in the straightness measurement configurations. However, if you are a novice user, we advise you try the simple horizontal axis set-up first to enable you to learn the basic alignment techniques. Straightness beam alignment - Issue Renishaw Straightness alignment procedure along a horizontal axis The alignment procedure discussed in this section assumes that the optics are set up to measure vertical straightness error along a horizontal axis as shown in Figure 1. The interferometer is the moving optic and the straightness reflector is the stationary optic.

19 Page 19 of 45 Figure 1 - Vertical measurement plane - moving straightness interferometer - stationary straightness reflector Note: The alignment procedure for measuring horizontal straightness error along a horizontal axis is very similar apart from the orientation of the optics and the straightness shutter. 1. Set up the ML10 on the tripod. 2. Rotate the straightness shutter so that the laser is outputting a reduced diameter beam as shown in Figure 2. The smaller diameter beam makes it easier to see any misalignment. Note: Over long distances, alignment may be easier if the shutter is rotated to its full beam and target position. Figure 2 - Straightness shutter with small output aperture and target 3. Position the straightness interferometer as close to the laser as possible and ensure it is mounted square to the machine (to within ±2 ). Rotate the straightness interferometer s face so that the white

20 Page 20 of 45 target is on the right hand side as shown in Figure 3. Translate the laser or the machine until the beam hits the white spot on the target. Figure 3 4. Align the laser so that the laser beam strikes the centre of the target over the length of axis travel. 5. Rotate the face of the straightness interferometer so that the laser beam passes centrally through the right-hand side of the 'input' aperture as shown in Figure 4. Figure 4 6. Mount the straightness reflector so that its longer edge is mounted vertically as shown in Figure 5. Make sure that it is mounted square to the laser beam (to within ±2 ). The straightness reflector should be at a suitable distance from the moving straightness interferometer when the interferometer is at its far end of the travel, i.e. nearest to the straightness reflector (at least 0.1 m for short-range straightness, and at least 1.0 m for long-range straightness).

21 Page 21 of 45 Figure 5 7. Position the interferometer so that it is about half way along the axis of travel. 8. Adjust the position and height of the reflector so that the diverging beams from the interferometer strike the right hand half of the reflector as shown on Figure 6. The beams should be approximately equidistant from its centre and approximately 6 mm to the right of the central vertical axis of the straightness reflector. Use the markings on the straightness reflector housing immediately next to the 'window' as a reference. Figure 6 9. Ensure that the reflected converging beams are focused on the return aperture of the interferometer and then strike the target on the laser's shutter as shown in Figure 7. If they don't, follow steps 10, 11 and 12. Figure If the two beams are returned above or below the centre of the shutter's target, as shown in Figure 8, then adjust the tilt control knob on the straightness reflector.

22 Page 22 of 45 Figure If the two return beams do not overlap, as shown in Figure 9, then finely rotate the interferometer face. Figure If the two beams are returned to the left or to the right of the shutter's target centre, as shown in Figure 10, then translate the straightness reflector or the laser horizontally. Figure When the combined returning beams strike the centre of the shutter's target, rotate the inner element of the straightness shutter so that full measurement beam is emitted and the return beam enters the laser's detector aperture as shown in Figure 11. Figure Check the signal strength meter in the straightness data capture software. If the SIGNAL LOW or BEAM OBSTRUCTED error is shown, then check that the outgoing or return beams are not being clipped by the interferometer. If they are, then translate the interferometer to make sure the beam

23 Page 23 of 45 passes though the input aperture as shown in Figure 12. Figure Move the straightness interferometer along the measurement axis again observing the signal strength meter. You should now get good signal strength over the full length of axis travel. If the SIGNAL LOW or BEAM OBSTRUCTED error appears, you will need to return to step 1 and repeat the above alignment procedure. Note: When the moving optic is brought so close to the static optic that the spots at the reflector start to overlap, there will be a loss in signal strength. This is normal and does not warrant any adjustment. To achieve the minimum separation between optics, small vertical translations of the laser, interferometer and reflector may be required. 16. Remove any remaining misalignment between the machine's axis of travel and the straightness reflector's optical axis using the manual slope removal procedure if: - A straightness measurement accuracy is required which is better than that stated in the specification. - Measurements are being performed on a machine, i.e. CMM, which cannot be moved to a precise position. Therefore if a slope error is present, the large positional error will result in a significant contribution to the straightness reading. 17. Check that the straightness readings are of the correct sign convention. 18. Capture straightness data. Straightness alignment procedure along a horizontal axis - Issue Renishaw Straightness alignment procedure along a vertical axis The alignment procedure discussed in this section assumes that the optics are set up to measure straightness along a vertical axis as shown in Figure 1. The interferometer and large retro-reflector form the moving optic assembly and the straightness reflector and turning mirror are stationary. This procedure can be adapted to other straightness configurations for measurement of vertical axes.

24 Page 24 of 45 Figure 1 - Straightness interferometer fixed to large retro-reflector - moving large retroreflector/straightness interferometer - stationary straightness reflector 1. Set up the ML10 on the tripod. The laser should be aligned with the beam approximately 35 mm (1.35 in) above the table and parallel to a horizontal axis of motion. Note: This procedure is simplified if the laser is aligned to a horizontal axis first using the procedure described in simple alignment of laser beam using a target. 2. Attach the straightness reflector and vertical turning mirror to the straightness base as shown in Figure 2. Figure 2

25 Page 25 of Clamp the straightness base on the machine table directly below the intended location for the large retro-reflector. If available, slots in the machine bed can be used to clamp the straightness base. Make sure that the straightness base is square to the measurement axis. You may want to use the machine's spindle as a reference. The long axis of the reflector should be parallel with the axis in which deviations are to be measured, and the aperture of the vertical turning mirror should face the laser as shown in Figure Mount the straightness interferometer to the large retro-reflector as shown in Figure 3. Rotate the face of the interferometer to the position shown in Figure 3. Figure 3 - Large retro-reflector 5. Clamp the large retro-reflector to the spindle or vertically-moving element of the machine using the M8 adaptor from the optics mounting kit. The M8 adaptor can be screwed into any one of four holes in the top of the large retro-reflector. The other end of the adaptor can then be screwed into standard magnetic bases, Renishaw clamp blocks, mounting pillars or CMM probe heads. Figure 4 6. Orientate the large retro-reflector so that the target aperture is above the vertical turning mirror, and the interferometer apertures are above the straightness reflector as shown in Figure 5. Make sure that the large retro-reflector is square with the machine axis in roll, pitch and yaw. Lock the retro-reflector in position using the knurled locking nut on the M8 adaptor and check that the spindle and clamping arrangement does not rotate.

26 Page 26 of 45 Figure 5 7. Rotate the straightness shutter so that the laser is outputting a reduced diameter beam as shown in Figure 6. The smaller diameter beam makes it easier to see any misalignment. Figure 6 8. Fit a target to the vertical turning mirror aperture facing the laser so that the white spot is at the top. Vertically and horizontally translate the laser so that the beam strikes the target as shown in Figure 7, then remove the target from the vertical turning mirror.

27 Page 27 of 45 Figure 7 9. Fit a target to the input aperture on the large retro-reflector so that the white target is on the inside as shown in Figure 8. Figure Lower the large retro-reflector assembly until it is as close as possible to the vertical turning mirror but you can still see the target. A small hand-held mirror may help in viewing the target. Translate the large retro-reflector so that the laser beam is reflected by the vertical turning mirror to strike the middle of the target as shown in Figure 9. If you can not translate the large retro-reflector, then translate either the machine bed, laser and/or straightness base assembly.

28 Page 28 of 45 Figure Raise the retro-reflector to the far end of travel and make sure that the beam hits the target on the retro-reflector by adjusting the two control knobs on the adjustable turning mirror as shown in Figure 10. Figure 10 Note: If there is not enough adjustment available, then the laser is not aligned with a horizontal machine axis. Align the laser with a horizontal axis first using the procedure described in straightness alignment procedure for a horizontal axis. Alternatively, if you are an experienced user, you may wish to obtain a better coarse alignment by centralising the position of both adjustment knobs and then rotating and tilting the laser until the laser beam strikes the centre of the target. Then continue the fine alignment as previously described. 12. Lower the large retro-reflector to the near end of travel, making sure that the laser beam continues to strike the target on the input aperture of the retro-reflector. If any deviation occurs, translate the large retro-reflector in both horizontal axes to restore the beam. 13. If this is not possible to translate the large retro-reflector, then perform the following adjustments: To achieve an alignment parallel with the laser s output beam, translate the straightness base away or towards the laser head. If possible, do this by moving the machine bed. To achieve alignment perpendicular with the laser's output beam, horizontally translate the laser. A parallel displacement of the straightness base will also be required to ensure the beam still enters the turning mirror at the correct position (as shown in Figure 7). Again move the machine bed when possible.

29 Page 29 of Repeat actions 11 and 12 until no further adjustment is required. 15. Remove the target and return the retro-reflector to the far end of travel. Make sure that the beam passes into the retro-reflector via the aperture and is reflected to the straightness interferometer, where it is split into two diverging beams directed towards the straightness reflector as shown in Figure 11. Figure Rotate the face of the straightness interferometer so that the two diverging beams strike the 'inner' half of the straightness reflector as shown in Figure 12. The beams should be approximately equidistant from its centre and approximately 6 mm below the central longitudinal axis of the straightness reflector. Use the markings on the straightness reflector housing immediately next to the 'window' as a reference. If the beams do not strike the reflector in the correct position, check that the large retro-reflector or the straightness base is square with the machine s axis. If they are not, adjust them so that they are square and repeat the earlier alignment procedure. If the beams still do not strike the reflector in the correct position, translate the retro-reflector or straightness base to achieve the correct alignment. Only translate the laser, if translation of the optical assemblies is not possible.

30 Page 30 of 45 Figure Adjust the tilt of the straightness reflector so that the two return beams pass into the return port of the straightness interferometer. Note: if the beams converge at a point on the axis through the centres of the apertures, but not on the return port, then further translation of the retro-reflector or straightness base (or, in the last resort, the laser) is required, as in step Finely rotate the straightness shutter's face so that the two return beams overlap on the targets shutter as shown in Figure 13. Figure Make sure that the return beam from the interferometer is reflected via the large retro-reflector and the vertical turning mirror to the detector target on the laser straightness shutter as shown in Figure 14. If the return beam is to either the left or right of the detector aperture, it may be re-aligned by adjusting the tilt control of the reflector. If it is high or low, then translate the large retro reflector or the straightness base, preferably using the machine's controller (or, in the last resort, the laser) as in step 16. Figure 14

31 Page 31 of Lower the retro-reflector to the near end of travel and make sure that the laser beam continues to hit the target throughout the extent of travel. If deviation occurs, then translate the large retro-reflector or straightness base (preferably using the machine's controller) at the near end of travel and rotate the control knobs on the vertical turning mirror at the far end of travel to ensure alignment. 21. Rotate the inner element of the straightness shutter so that the beam enters the detector aperture as shown in Figure 15. Figure Move the retro-reflector over the whole range of travel. If unacceptable signal loss is experienced, then repeat step 18 and if necessary repeat step 20 until adequate signal strength is achieved over the whole range of travel. 23. Remove any remaining misalignment between the machine's axis of travel and the straightness reflector's optical axis using the manual slope removal procedure if: - A straightness measurement accuracy is required which is better than that stated in the specification. - Measurements are being performed on a machine, i.e. CMM, which cannot be moved to a precise position. Therefore if a slope error is present the large positional error will result in a significant contribution to the straightness reading. 24. Check that the straightness readings are of the correct sign convention. 25. Capture straightness data. Straightness alignment procedure along a vertical axis - Issue Renishaw Removal of slope error Slope error Slope error is a steady change in straightness reading as the straightness optic is moved along the machine's axis of travel. This steady change is due to angular misalignment between the machine's axis of travel and the straightness reflector's optical axis. If a straightness measurement accuracy is required which is better than that stated in the specification, or

32 Page 32 of 45 measurements are being performed on a machine (CMM or machine tool under manual control) which cannot be moved to a precise position, then the slope error should be removed. The slope error should be reduced to better than 20 µm for short-range straightness or 100 µm for longrange straightness. Then any residual slope error can be removed during analysis using least squares fit of the data. When performing a squareness or parallelism measurement, any slope error on the first measurement axis should be reduced to a lower value (100 µm) to ensure alignment can be achieved for the second measurement axis. Removal of slope error To correct slope error, tilt the straightness reflector so that its optical axis becomes parallel to the machine's axis of travel. The degree of tilt required is calculated in terms of a change in straightness reading. This procedure describes the rotation of the straightness reflector when the straightness reflector and interferometer are at their greatest separation. 1. Datum the measurement reading with the straightness reflector and straightness interferometer at their closest approach. 2. Measure and note the separation between the straightness interferometer and the straightness reflector. 3. Move the machine so that the straightness reflector and interferometer are at their greatest separation. Note the measurement reading as well as the distance travelled by the machine. 4. Adjust the tilt control of the straightness reflector so that the displayed reading changes to the value calculated below: where: Ro is the measurement reading obtained in step 3 A is the separation of the two optics at their closest approach recorded in step 2 B is the distance travelled by the machine and recorded in step 3 You may wish to use estimates of values A and B, but this may result in having to repeat this procedure several times. If the distance travelled by the machine is small compared to the separation of the two optics at their closest approach, then both procedures require a large change in reading, when the straightness reflector is rotated, to achieve a small change in slope error. 5. During the adjustment of the reflector's tilt control, you may lose signal strength. This is caused by the laser beam not being properly aligned with the axis of travel and the return beam clipping on the straightness interferometer. If you do not lose signal strength, then go straight to step Rotate the inner element of the straightness shutter so that the laser is outputting a reduced diameter beam and the return beam is striking the target, as shown in Figure 1.

33 Page 33 of 45 Note: If you are an experienced user, you may be able to regain signal strength by rotating and translating the ML10 without rotating the straightness shutter and hence causing a beam break. Figure 1 7. Rotate the laser head (horizontally for horizontal straightness and vertically for vertical straightness) and translate the laser head (horizontally for horizontal straightness and vertically for vertical straightness) to bring the beam back on to the centre of the shutter s target. Then check the outgoing and return beams pass though the aperture on the straightness interferometer without clipping and the beams are symmetrical about the centre of the straightness reflector as shown in Figure 2. Figure 2 - Straightness reflector shown in orientation for measuring horizontal deviation Note: When measuring vertical straightness, angular rotations of the laser beam are achieved by tilting the vertical turning mirror using the appropriate controls. 8. Rotate the straightness shutter back to its measurement position and return to step Datum the display and move the optics to their furthest approach position and check the new reading. If the reading is sufficiently small (typically better than 20 µm for short-range straightness, 100 µm for long-range straightness), the axes are said to be aligned to within the working tolerance. 10. If necessary repeat steps 1 to 9. Derivation of equation used during manual removal of slope Removal of slope error - Issue 5.1

34 Page 34 of Renishaw Derivation of equation used during manual removal of slope With reference to Figure 1 below, the interferometer reading is datumed when the separation distance between the straightness interferometer and reflector is A, and this separation is then increased by a further distance B. Figure 1 - Beam diagram (equation 1) Thus to first order, the interferometer reading is given by: Ro = B where axis. is the angular misalignment between the machine's axis of travel and the straightness reflector's To align the straightness reflector to the axis of travel, it needs to be rotated by the same amount,. On rotation, it will change the reading by: R = (A + B) = (A + B) Ro/B Since the rotation of the reflector decreases the displayed reading, the reading of the display after rotation of the straightness reflector is given by: Note that, when performing manual removal of slope with squareness, distance B may be smaller than A. In this case, the final reading after rotation will be greater than the initial reading.

35 Page 35 of 45 Derivation of equation - Issue Renishaw Sign convention Before capturing data, you must define a suitable sign convention. Figure 1 below shows a sign convention covering both horizontal and vertical axes, but alternative conventions may be used if so desired (e.g. based on the machine's coordinate convention). Figure 1 - Sign convention Check that the readings are of the correct sign as follows: 1. With the straightness interferometer positioned along the axis of test and stationary, gently push the interferometer in the direction specified in the convention as being a positive deviation. 2. Check that the laser display reads an increasing positive value.

36 Page 36 of If this is not the case, change the sign by pressing the [Ctrl]+[-] keys or by clicking on the button on the toolbar and check the sign convention again. Whatever sign convention is used, it is important that it is recorded, particularly when separate measurement results are to be compared (e.g. for squareness or parallelism measurement). Sign convention - Issue Renishaw Optical reversal measurement To ensure optimum straightness measurement accuracy, the straightness measurement should be repeated with the straightness reflector rotated through 180 so that the 'left hand' and 'right hand' sides are reversed. After the first set of straightness measurements have been made, remove the straightness reflector carefully from its mounting without disturbing the position of the mounting. Invert and replace the reflector with care, again care being taken not to disturb the position of the mounting. (Where the standard optics mounting kit is used, the clamp block can be removed and inverted with the straightness reflector.) Provided that the mounting for the straightness reflector was not disturbed and the alignment of the laser beam and position of the straightness interferometer have remained unchanged, the system will be generally aligned except that the tilt adjustment on the straightness reflector will be in the opposite direction to that required. System alignment, including manual removal of slope, should be possible by adjustment of the tilt of the straightness reflector alone. Now capture a second set of straightness measurements. The analysed results from the two sets of measurements can be compared; a true measurement (i.e. optimum accuracy) is obtained from the mean of the two. Optical reversal measurement - Issue Renishaw Data capture Data capture is carried out by moving the machine to a number of different positions (or 'targets') along the axis under test and measuring the machine s error. You can write a part program to drive the machine from one target position to the next, pausing for a few seconds at each target position. Measurements are taken during each pause. The steps required to perform data capture are as follows: 1. The machine's temperature will often rise during operation. So that this effect is included in the calibration, it is recommended you perform a warm-up sequence of moves. 2. Define the units (English or Metric) and resolution of the laser measurement display and error value readings.

37 Page 37 of Set the direction sense of the laser system to be the same as the machine under test using button on the toolbar or the [Ctrl] + [-] keys. For linear measurements, the sign of the laser display should correspond to the sign of the machine's axis. For angular and straightness measurements, the laser display should match the sign convention defined for the test. 4. For linear measurements, move the linear interferometer and linear reflector close together, then datum the measurement display using the button on the toolbar or the [Ctrl] + [D] keys. Datuming with the optics close together minimises deadpath error. 5. Move the machine to the calibration start position. To ensure that any backlash in the machine's axis is removed, approach the start position in the same direction as the first run. 6. For linear measurements, if the machine read-out does not agree with the laser read-out, the preset function may now be used to adjust the laser reading accordingly using the button on the toolbar or the [Ctrl] + [P] keys. For angular and straightness measurements, datum the measurement display to zero using the button on the toolbar or the [Ctrl] + [D] keys. 7. Set up the target positions and the data capture sequence. If a calibration is being carried out in accordance with an approved national or international standard then set up the number of target points and run sequence as defined in the standard. The software has an automatic set-up option which guides the user through the normal data capture set-up process by displaying the automatic target generation, capture initialisation and automatic data capture dialog boxes in sequence before starting data capture. To use this option, select File/New/Automatic Set-up from the menu bar or click on the button on the toolbar. CAUTION THE RENISHAW SOFTWARE ASSUMES THAT ODD-NUMBERED RUNS ARE POSITIVE APPROACHES. TO COMPLY WITH THE STANDARD CONVENTION THAT POSITIVE APPROACHES ARE FOR POSITIVELY INCREASING TARGET POSITIONS, PARTICULARLY ON AN AXIS WHERE THE SCALE IS NEGATIVE, ENSURE THAT THE FIRST TARGET POSITION IS MORE NEGATIVE (OR LESS POSITIVE) THAN THE LAST TARGET POSITION (E.G. FIRST TARGET POSITION = -560; LAST TARGET POSITION = 0). Select the measurement target positions Select the measurement target sequence and the number of runs Set up automatic data capture settings if required Measure and record machine errors Save the captured data to disk Analyse the captured data Data capture - Issue Renishaw Straightness data analysis The Laser10 software allows you to analyse straightness data. For general instructions on how to run and use the analysis software, refer to the Analysis section.

38 Page 38 of 45 When selecting a straightness file for analysis, select Straightness (*.st?) from the File of type option. Both short-range and long-range data files are available for analysis, regardless of which module was accessed from the Renishaw Laser10 window. You can now use the Analysis option on the menu to select the type of analysis to be performed on the data. The straightness error of any axis can be defined as the distance between two parallel lines which just contain all points along the axis and are parallel to the general direction of the axis. The raw straightness data captured using the calibration interferometer system will be datumed, not on the line parallel to the general direction of the axis, but on the axis of the laser beam. Manual removal of slope can greatly reduce the misalignment of the laser beam from the theoretical straightness datum, but cannot eliminate it entirely, so there is a need to 'fit' the raw data to a theoretical datum. The Renishaw straightness analysis software provides two options for defining the theoretical straightness datum and the straightness errors along the given axis. These options are: end-point fit least-squares fit The end-point fit approach defines the first and last data points as lying on the datum and all errors are plotted with respect to the straight line which joins these points, see Figure 1. Figure 1 - End-point fit analysis This approach does not strictly comply with the straightness definition given above, but some users prefer it, particularly for correction of straightness errors, as it fixes two readily-identifiable datum points on the axis. The least-squares fit approach provides a more mathematically correct definition of the straightness datum. In this approach, the datum line is defined in such a way that the sum of the squares of the data point values is a minimum. See Figure 2. Figure 2 - Least-squares fit analysis

39 Page 39 of 45 To perform end-point-fit, select End-point-fit from the Analysis menu and to perform least squares fit, select Least squares fit from the Analysis menu. Note: The graphs and data presented will vary depending on whether any analysis of data has taken place before their selection. With newly-loaded data, the presentations provided will be raw data; however, if an end-point or least-squares fit has been carried out on the data, then it will be presented to an end-point or least-squares fit, depending on which was done last. Figures 3 to 5 show all data plots for raw data, endpoint fit data and least-squares fit data, respectively. Figure 3 - All data plot (raw data) Figure 4 - All data plot (end-fit data)

40 Page 40 of 45 Figure 5 - All data plot (least-squares data) The presentation of end-point fit graphs will depend on whether the data was captured unidirectionally or bidirectionally. Unidirectional data will be presented on a single graph (as shown in Figure 6) which gives the mean straightness error plus the 3 sigma (standard deviation) bands on either side of the mean. Figure 6 - End-point fit analysis (unidirectional data) Bidirectional data is presented as a triplet (as shown in Figure 7) where: 1. The top graph shows the mean straightness error for the 'positive approach' passes, plus the 3 sigma bands on either side, with the mean being the basis for the end-point fit.

41 Page 41 of The middle graph shows the mean straightness error for the 'reverse' passes, plus the 3 sigma bands on either side, with the 'reverse' mean being the basis for the end-point fit. 3. The lower graph shows the two means (as above) recomputed to a common end-point fit based on the mean of all data passes. It also shows a composite of the 3 sigma bands, the values shown being the maximum values of ( x + 3 ) and the minimum values of ( x - 3 ) for each point, regardless of the direction of travel. Figure 7 - End-point fit analysis (bidirectional data) The presentation of least-squares fit analysed data will also depend on whether the data was captured unidirectionally or bidirectionally and will generally follow the same format as for the end-fit presentation, but based on a least-squares analysis (see Figures 8 and 9).

42 Page 42 of 45 Figure 8 - Least-squares fit analysis (unidirectional data) Figure 9 - Least-squares analysis (bidirectional data) There is also a slight difference in the analysis methodologies adopted for the unidirectional and bidirectional cases. With unidirectional data, a least-squares analysis is made for each individual run and the mean values are derived from these individual least-squares analyses. With bidirectional data (see Figure 10), least-squares fits are carried out on the mean raw data and each

43 Page 43 of 45 pass is then fitted to the relevant datum to establish the mean straightness errors. Figure 10 - Bidirectional raw data Note: when tabulated data is printed, all 'positive approach' runs are given odd numbers, while all 'reverse' runs are given even numbers. The following characteristic statements appear in the boxes below the statistically analysed graphical data (see Figures 6 to 9): (Straightness) accuracy This is the difference between the maximum and minimum values of ( x + 3 ) and ( x - 3 ) respectively, regardless of the direction of travel. i.e. A = ( x + 3 ) max - ( x - 3 ) min Unidirectional repeatability This is the maximum value of the difference between ( x + 3 ) and ( x - 3 ) at any given point, within either direction of travel. i.e. U rep = [ ( x + 3 ) i - ( x - 3 ) i ] max where the values ( x + 3 ) i and ( x - 3 ) i must be taken from the same direction of travel. Bidirectional repeatability

XL-80 spares list. Application note. Overview

XL-80 spares list. Application note. Overview XL-80 spares list Overview This application note lists the system components for the XL-80 laser system. To order please contact your local Renishaw office at www.renishaw.com/contact Description XL-80

More information

Agilent 10706B High Stability Plane Mirror Interferometer

Agilent 10706B High Stability Plane Mirror Interferometer 7D Agilent 10706B High Stability Plane Mirror Interferometer Description Description The Agilent 10706B High Stability Plane Mirror Interferometer (see Figure 7D-1) is an improved version of the Agilent

More information

Machine Tool Alignment Boring Mills, Gantries, Machining Centers, VTLs

Machine Tool Alignment Boring Mills, Gantries, Machining Centers, VTLs Application Note 1 Machine Tool Alignment Boring Mills, Gantries, Machining Centers, VTLs System Recommendations L-743 Machine Tool Alignment System Whether it's machining centers, boring mills, lathes

More information

Prism Starter Guide 1.0 Hoskins Lab Last Modified 03/14/2017 Chris DeCiantis

Prism Starter Guide 1.0 Hoskins Lab Last Modified 03/14/2017 Chris DeCiantis Start Up: Upon entering the laser room turn on the wall mounted Laser Power Button by pulling it away from the wall. Turn on Shutter controllers (toggle switch on back of unit). There should be a U in

More information

MICHELSON S INTERFEROMETER

MICHELSON S INTERFEROMETER MICHELSON S INTERFEROMETER Objectives: 1. Alignment of Michelson s Interferometer using He-Ne laser to observe concentric circular fringes 2. Measurement of the wavelength of He-Ne Laser and Na lamp using

More information

Laser diagonal testing

Laser diagonal testing Laser diagonal testing H-5650-2056-01-B 20/08/2018 1 Introduction This presentation explains how Renishaw laser calibration systems can be used to check machine positioning performance along machine diagonals,

More information

EDUCATIONAL SPECTROPHOTOMETER ACCESSORY KIT AND EDUCATIONAL SPECTROPHOTOMETER SYSTEM

EDUCATIONAL SPECTROPHOTOMETER ACCESSORY KIT AND EDUCATIONAL SPECTROPHOTOMETER SYSTEM GAIN 0 Instruction Manual and Experiment Guide for the PASCO scientific Model OS-8537 and OS-8539 02-06575A 3/98 EDUCATIONAL SPECTROPHOTOMETER ACCESSORY KIT AND EDUCATIONAL SPECTROPHOTOMETER SYSTEM CI-6604A

More information

Limitations of laser diagonal measurements

Limitations of laser diagonal measurements Precision Engineering 27 (2003) 401 406 Limitations of laser diagonal measurements Mark A.V. Chapman Laser and Calibration Products Division, Renishaw Plc., Old Town, Wotton-under-Edge, Glos GL12 7DW,

More information

4. Recommended alignment procedure:

4. Recommended alignment procedure: 4. Recommended alignment procedure: 4.1 Introduction The described below procedure presents an example of alignment of beam shapers Shaper and Focal- Shaper (F- Shaper) with using the standard Shaper Mount

More information

Measuring object. Fig. 1: Optical scheme of focus-touching (concentricity measurement with measuring ball)

Measuring object. Fig. 1: Optical scheme of focus-touching (concentricity measurement with measuring ball) H Focus - Touching At this kind of interferometer the light of the measuring arm of the interferometer can focalized by means of a converging lens directly on a measuring object. This makes it possible

More information

11.0 Measurement of Spindle Error Motion

11.0 Measurement of Spindle Error Motion 11.0 Measurement of Spindle Error Motion 11.1 Introduction The major spindle error motion is caused by the alignment of the spindle rotational axis, the centerline of the tool holder and the centerline

More information

STEP-BY-STEP INSTRUCTIONS FOR BUILDING A MICHELSON INTERFEROMETER. TECHSPEC Optical Cage System

STEP-BY-STEP INSTRUCTIONS FOR BUILDING A MICHELSON INTERFEROMETER. TECHSPEC Optical Cage System STEP-BY-STEP INSTRUCTIONS FOR BUILDING A MICHELSON INTERFEROMETER TECHSPEC Optical Cage System INTRODUCTION 2 What is a Michelson Interferometer? A Michelson Interferometer is a simple interferometric

More information

Agilent N1203/4/7C Beam Manipulators and N1206T Adjustment Tool Kit

Agilent N1203/4/7C Beam Manipulators and N1206T Adjustment Tool Kit Agilent N1203/4/7C Beam Manipulators and N1206T Adjustment Tool Kit Product Overview N1203C, N1204C, N1207C, N1206T N1203C N1204C Introduction The Agilent beam manipulator family of products (N1203C, N1204C,

More information

Geometry Measurements

Geometry Measurements Geometry Measurements Welcome to our world Since the very beginning in 1984, ACOEM AB has helped industries throughout the world to achieve more profitable and sustainable production. We have reached where

More information

Single-Axis Lasers for Flatness and Leveling Applications. Laser Systems for Flatness and Leveling L-730/L-740 Series

Single-Axis Lasers for Flatness and Leveling Applications. Laser Systems for Flatness and Leveling L-730/L-740 Series Single-Axis Lasers for Flatness and Leveling Applications Laser Systems for Flatness and Leveling L-730/L-740 Series Why the L-730/L-740 Flatness Leveling Systems are Better Sooner or later everything

More information

LSL250. Laser light! Do not stare into the beam or view directly with magnifiers. Class 2 laser EN :

LSL250. Laser light! Do not stare into the beam or view directly with magnifiers. Class 2 laser EN : Lufkin LSL250 Professional rotary laser in extremely rugged design horizontal levelling even under tough conditions. Automatic rotary laser 635 nm, self-levelling range ± 5 horizontal, accuracy 1 mm /

More information

How to Measure Wedge. Purpose. Introduction. Tools Needed

How to Measure Wedge. Purpose. Introduction. Tools Needed Purpose Optical Wedge Application (OWA) is an add-on analysis tool for measurement of optical wedges in either transmission or reflection. OWA can measure a single part or many parts simultaneously (e.g.

More information

Innovations in touch-trigger probe sensor technology

Innovations in touch-trigger probe sensor technology White paper Innovations in touch-trigger probe sensor technology Abstract Since the invention of the touch-trigger probe in the 1970s, these devices have formed the main means of sensing for dimensional

More information

E3S-A. Built-in Amplifier Photoelectric Sensor (Medium Size) Ordering Information. Built-in Amplifier Photoelectric Sensors. Horizontal. 7 m.

E3S-A. Built-in Amplifier Photoelectric Sensor (Medium Size) Ordering Information. Built-in Amplifier Photoelectric Sensors. Horizontal. 7 m. Built-in Amplifier (Medium Size) ES-A CSM_ES-A_DS_E Be sure to read Safety Precautions on page 0. Ordering Information Built-in Amplifier s Red light Infrared light Sensing method Appearance Connection

More information

TMS Total Machine Service Corp.

TMS Total Machine Service Corp. Renishaw Ballbar Test Data Renishaw Ballbar testing in 2 planes gives a full analysis of 23 different machine errors. Below are some of the most common problems. Backlash or Lost Motion Play in the drive

More information

ACTA TECHNICA CORVINIENSIS Bulletin of Engineering Tome X [2017] Fascicule 2 [April June] ISSN:

ACTA TECHNICA CORVINIENSIS Bulletin of Engineering Tome X [2017] Fascicule 2 [April June] ISSN: Tome X [2017] Fascicule 2 [April June] ISSN: 2067 3809 1. Yung-Cheng WANG, 2. Bean-Yin LEE, 1. Chih-Hao HUANG, 3. Chi-Hsiang CHEN DEVELOPMENT OF THE AXIAL PRECISION INSPECTION SYSTEM FOR SPINDLES IN TOOL

More information

ENGR142 PHYS 115 Geometrical Optics and Lenses

ENGR142 PHYS 115 Geometrical Optics and Lenses ENGR142 PHYS 115 Geometrical Optics and Lenses Part A: Rays of Light Part B: Lenses: Objects, Images, Aberration References Pre-lab reading Serway and Jewett, Chapters 35 and 36. Introduction Optics play

More information

I N S T R U C T I O N S F O R. For Applied Photography in Science and Industry.

I N S T R U C T I O N S F O R. For Applied Photography in Science and Industry. ILFORD I N S T R U C T I O N S F O R CAMERAS For Applied Photography in Science and Industry. ILFORD K.I. MONOBAR CAMERA 2 The llford Monobar Camera Type U represents a major advance in the design of 35

More information

Operation Manual. Autocollimator Test Wedge for quick testing of Electronic Autocollimators

Operation Manual. Autocollimator Test Wedge for quick testing of Electronic Autocollimators for quick testing of Electronic Autocollimators For Ident.-No.: 223 244 Version date 05.05.2004 1. Basics The is designed for quick testing of accuracy of electronic autocollimators. If a light beam passes

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

The Nureva Span ideation system. Installation guide. Single panoramic system

The Nureva Span ideation system. Installation guide. Single panoramic system The Nureva Span ideation system Installation guide Single panoramic system Important SAFETY WARNINGS Prior to the installation of this product, the installation instructions should be completely read and

More information

Jr. Pan Tilt Head (PT-JR) Instruction Manual

Jr. Pan Tilt Head (PT-JR) Instruction Manual 1 Jr. Pan Tilt Head (PT-JR) Instruction Manual 2 At Proaim, our goal is to ensure 100% Customer Satisfaction in all that we do. We back our sales with a 1 year warranty from the date of purchase and work

More information

VELO Module Production - Final Module Metrology

VELO Module Production - Final Module Metrology LHCb-2007-087 11 January 2008 VELO Module Production - Final Module Metrology LHCB Technical Note Issue: Draft Revision: 1 Reference: LHCb 2007-087 Created: 10 th October 2006 Last modified: 11 th January

More information

METHODS FOR PERFORMANCE EVALUATION OF SINGLE AXIS POSITIONING SYSTEMS: POINT REPEATABILITY

METHODS FOR PERFORMANCE EVALUATION OF SINGLE AXIS POSITIONING SYSTEMS: POINT REPEATABILITY METHODS FOR PERFORMANCE EVALUATION OF SINGLE AXIS POSITIONING SYSTEMS: POINT REPEATABILITY Nathan Brown 1 and Ronnie Fesperman 2 1 ALIO Industries. Wheat Ridge, CO, USA 2 National Institute of Standards

More information

OTS optical tool setter (AA version)

OTS optical tool setter (AA version) Data sheet H-5514-8205-01-A OTS optical tool setter (AA version) www.renishaw.com/ots The cableless OTS with optical signal transmission allows unrestricted machine motion and ease of installation on CNC

More information

Aligning Continuous Casters and Steel Mill Rolls

Aligning Continuous Casters and Steel Mill Rolls Application Notes Aligning Continuous Casters and Steel Mill Rolls System Recommendation Continuous Casters L-740 Ultra-Precision Leveling Laser Steel L-743 Ultra-Precision Triple Scan Alignment System

More information

Laser Doppler Displacement Meter Laser Measurement System

Laser Doppler Displacement Meter Laser Measurement System Laser Doppler Displacement Meter Laser Measurement System Title: Incoming inspection procedure Document identification: MCV 500 incoming OPTODYNE, INC. 1180 Mahalo Place Compton, CA 90220 310-635-7481

More information

PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS

PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS Name Date Lab Time Lab TA PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS I. POLARIZATION Natural unpolarized light is made up of waves vibrating in all directions. When a beam of unpolarized light is

More information

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves Print Your Name Print Your Partners' Names Instructions April 17, 2015 Before lab, read the

More information

Interferometric straightness measurement and application to moving table machines

Interferometric straightness measurement and application to moving table machines Technical white paper: TE325 Interferometric straightness measurement and application to moving table machines by M.A.V. Chapman, R. Fergusson-Kelly, W. ee Introduction This paper describes in detail the

More information

A U T O C O L L I M A T O R S

A U T O C O L L I M A T O R S Printed in Germany 229 900 E 04/07 E l e c t r o n i c α A U T O C O L L I M A T O R S Measure With Precision MÖLLER-WEDEL OPTICAL GmbH Rosengarten 10 D-22880 Wedel Tel : +49-41 03-9 37 76 10 Fax: +49-41

More information

Kodak Retina II (type 122)

Kodak Retina II (type 122) Kodak Retina II (type 122) The type 122 Retina II camera is a very uncommon model, there are probably fewer than a hundred in collections around the world, with instruction books rarer still, so I thought

More information

Assessment of the volumetric accuracy of a machine with geometric compensation

Assessment of the volumetric accuracy of a machine with geometric compensation Assessment of the volumetric accuracy of a machine with geometric compensation A.P. Longstaff, S.R. Postlethwaite & D.G. Ford Precision Engineering Centre, University of HuddersJield, England Abstract

More information

Mk II 3DR MULTI-LINE LASER INSTRUCTION MANUAL

Mk II 3DR MULTI-LINE LASER INSTRUCTION MANUAL Mk II 3DR MULTI-LINE LASER INSTRUCTION MANUAL SAFETY Read the following safety instructions before attempting to operate this product. Keep these instructions in a safe place or store in the carry case

More information

Microscopic Imaging Research Station (MIRS) Assembly Guide. Version 1.0.0

Microscopic Imaging Research Station (MIRS) Assembly Guide. Version 1.0.0 Microscopic Imaging Research Station (MIRS) Assembly Guide www.adsyscontrols.com Adsys Controls, Inc.2012 Version 1.0.0 I. Assembly of the Adsys Controls MIRS system This document explains the assembly

More information

FED 2 Fed-2 35mm FILM CAMERA instruction manual

FED 2 Fed-2 35mm FILM CAMERA instruction manual FED 2 Fed-2 35mm FILM CAMERA instruction manual This text is NOT identical to the one in the official Instruction Manual. 01. Film Counter 02. Film wind knob 03. Rangefinder optic 04. Aperture index dot

More information

AIM To determine the frequency of alternating current using a sonometer and an electromagnet.

AIM To determine the frequency of alternating current using a sonometer and an electromagnet. EXPERIMENT 8 AIM To determine the frequency of alternating current using a sonometer and an electromagnet. APPARATUS AND MATERIAL REQUIRED A sonometer with a soft iron wire stretched over it, an electromagnet,

More information

Instruction Manual. Gold Pan Tilt Head with 12V Joystick Control Box (PT-GOLD)

Instruction Manual. Gold Pan Tilt Head with 12V Joystick Control Box (PT-GOLD) Instruction Manual Gold Pan Tilt Head with 12V Joystick Control Box (PT-GOLD) All rights reserved No part of this document may be reproduced, stored in a retrieval system, or transmitted by any form or

More information

Laser Operations Guide

Laser Operations Guide Laser Operations Guide Laser excellence since 1991 You now own the Pro Shot Alpha, a high accuracy, ultra rugged servo leveled automatic laser for your most demanding leveling or grading operations. Please

More information

Three-Dimensional Laser Scanner. Field Evaluation Specifications

Three-Dimensional Laser Scanner. Field Evaluation Specifications Stanford University June 27, 2004 Stanford Linear Accelerator Center P.O. Box 20450 Stanford, California 94309, USA Three-Dimensional Laser Scanner Field Evaluation Specifications Metrology Department

More information

PH 481/581 Physical Optics Winter 2018

PH 481/581 Physical Optics Winter 2018 PH 481/581 Physical Optics Winter 2018 Laboratory #1 Week of January 15 Read: Section 5.2 (pp.151-175) of "Optics" by Hecht Do: 1. Experiment I.1: Thin Lenses 2. Experiment I.2: Alignment Project 3. Experiment

More information

Section 2. Mirror and Prism Systems

Section 2. Mirror and Prism Systems 2-1 Section 2 Mirror and Prism Systems Plane Mirrors Plane mirrors are used to: Produce a deviation Fold the optical path Change the image parity Each ray from the object point obeys the law of reflection

More information

UNIT IV - Laser and advances in Metrology 2 MARKS

UNIT IV - Laser and advances in Metrology 2 MARKS UNIT IV - Laser and advances in Metrology 2 MARKS 81. What is interferometer? Interferometer is optical instruments used for measuring flatness and determining the lengths of slip gauges by direct reference

More information

Bore Alignment. Extruder Alignment. Application Notes

Bore Alignment. Extruder Alignment. Application Notes Bore Alignment Application Notes Extruder Alignment System Recommendations L-705 Laser Borescope for Extruders L-700 Twin Barrel Extruder Alignment System The L-705 Laser Borescope Alignment System In

More information

Methods and Instrumentation for the measurement of Machine Tools (according to ISO 230 and ISO 1101)

Methods and Instrumentation for the measurement of Machine Tools (according to ISO 230 and ISO 1101) Methods and Instrumentation for the measurement of Machine Tools (according to ISO 230 and ISO 1101) BR 1076 E 04/15 Measurement Instrumentation for Machine Tools Interferometer for position calibration

More information

Ch 22 Inspection Technologies

Ch 22 Inspection Technologies Ch 22 Inspection Technologies Sections: 1. Inspection Metrology 2. Contact vs. Noncontact Inspection Techniques 3. Conventional Measuring and Gaging Techniques 4. Coordinate Measuring Machines 5. Surface

More information

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM Glossary of Navigation Terms accelerometer. A device that senses inertial reaction to measure linear or angular acceleration. In its simplest form, it consists of a case-mounted spring and mass arrangement

More information

INTERAPID Depth Feet. Brown & Sharpe CENTER FINDER. Model with a flat measuring face. Model with a prismatic measuring face H-16

INTERAPID Depth Feet. Brown & Sharpe CENTER FINDER. Model with a flat measuring face. Model with a prismatic measuring face H-16 INTERAPID Depth Feet Model with a flat measuring face ø28 ø8 Finish lapped measuring faces. Clamp with lock for mounting a dial gauge or an electronic probe Supplied ø6.5 without indicator 80 Suited carrying

More information

Complete Barrel Measuring and Inspection System. PS Series. User s manual

Complete Barrel Measuring and Inspection System. PS Series. User s manual Complete Barrel Measuring and Inspection System PS Series User s manual SAFETY PRECAUTIONS... 3 ELECTROMAGNETIC COMPATIBILITY... 3 LASER SAFETY... 3 GENERAL INFORMATION... 3 BASIC DATA AND PERFORMANCE

More information

TABLE OF CONTENTS SECTION 1 TABLETOP CONFIGURATION SECTION 2 TABLETOP CONFIGURATION ACCESSORIES SECTION 3 SLIDE CONFIGURATION

TABLE OF CONTENTS SECTION 1 TABLETOP CONFIGURATION SECTION 2 TABLETOP CONFIGURATION ACCESSORIES SECTION 3 SLIDE CONFIGURATION S6 USER S MANUAL TABLE OF CONTENTS SECTION 1 TABLETOP CONFIGURATION SECTION 2 TABLETOP CONFIGURATION ACCESSORIES SECTION 3 SLIDE CONFIGURATION SECTION 4 SLIDE CONFIGURATION ACCESSORIES SECTION 5 RACK MOUNT

More information

Mini Probe. user manual. DM Models

Mini Probe. user manual. DM Models Mini Probe user manual DM Models 1.0: Index Section Title Page 1.0 Index...............................2 2.0 Safety Summary......................3 3.0 Introduction..........................4 4.0 Components

More information

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( )

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( ) Using LoggerPro Nothing is more terrible than to see ignorance in action. J. W. Goethe (1749-1832) LoggerPro is a general-purpose program for acquiring, graphing and analyzing data. It can accept input

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Alignment Software for Linear Guides

Alignment Software for Linear Guides Alignment Software for Linear Guides You have made a good choice..., in combination with the display unit, is the optimum solution for the alignment of linear guides. The following functions and characteristics

More information

3 Indexer Installation For PRSalpha Tools

3 Indexer Installation For PRSalpha Tools 888-680-4466 ShopBotTools.com 3 Indexer Installation For PRSalpha Tools Copyright 2016 ShopBot Tools, Inc. page 1 Copyright 2016 ShopBot Tools, Inc. page 2 Table of Contents General Safety and Precautions...5

More information

ACCESSORIES FOR SAFETY DEVICES

ACCESSORIES FOR SAFETY DEVICES ACCESSORIES FOR SAFETY DEVICES - SE-DM: series: deviating mirrors - SE-LP: series: laser pointer - SE-S: series: floor stand - SE-SR2 series: safety relay - SE-SRT series: connection box INSTALLATION SE-DM

More information

Further Information can be found at

Further Information can be found at Below is a step by step guide to assembling the Hurricane-Rig. Remember that this is a precision optical instrument. Excessive force can bend critical parts. If treated well it should give many years of

More information

TL Laser Systems for Tool Measurement

TL Laser Systems for Tool Measurement TL Laser Systems for Tool Measurement Tool monitoring with a TL laser system is a very flexible solution. The contact-free optical measurement enables you to check even the smallest tools rapidly, reliably

More information

0,25 mm false pulse suppression 4 program options 4 program options on/off switchable 4 preset levels or level set by customer.

0,25 mm false pulse suppression 4 program options 4 program options on/off switchable 4 preset levels or level set by customer. Copy counters SCATEC Overview product family FLDM 170 FLDM 170 Overview Copy counters SCATEC SCATEC-15 SCATEC-10 Gripper measuring distance Sd 0... 120 mm 0... 90 mm 0... 60 mm 0... 120 mm optimum operating

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

Polarization of light

Polarization of light Polarization of light TWO WEIGHTS RECOMENDED READINGS 1) G. King: Vibrations and Waves, Ch.5, pp. 109-11. Wiley, 009. ) E. Hecht: Optics, Ch.4 and Ch.8. Addison Wesley, 00. 3) PASCO Instruction Manual

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

MacBook Core 2 Duo Display Replacement

MacBook Core 2 Duo Display Replacement MacBook Core 2 Duo Display Replacement Written By: irobot ifixit CC BY-NC-SA www.ifixit.com Page 1 of 23 INTRODUCTION Change out the entire display assembly, including the inverter, Airport antennas, hinges

More information

LCLS Undulator Quadrupole Fiducialization Plan

LCLS Undulator Quadrupole Fiducialization Plan LCLS-TN-07-7 LCLS Undulator Quadrupole Fiducialization Plan Zachary Wolf, Michael Levashov, Eric Lundahl, Ed Reese, Catherine LeCocq, Robert Ruland Stanford Linear Accelerator Center August 14, 2007 Abstract

More information

Mac Mini Mid 2010 SSD Installation

Mac Mini Mid 2010 SSD Installation Mac Mini Mid 2010 SSD Installation Replace your Mac Mini Mid 2010's hard drive for more storage space and an increase in speed. Written By: Dozuki System 2017 guides.crucial.com Page 1 of 15 INTRODUCTION

More information

Aligning Parallelism of Rolls Has Never Been Faster. L-732 Precision Dual-Scan Roll Alignment System

Aligning Parallelism of Rolls Has Never Been Faster. L-732 Precision Dual-Scan Roll Alignment System Aligning Parallelism of Rolls Has Never Been Faster L-732 Precision Dual-Scan Roll Alignment System Why the L-732 Roll Alignment System is Better Roll parallelism accuracy of.00018 in/ft (0.015 mm/m) Up

More information

XPEL DAP SUPPORT. DAP Tool List & Overview DESCRIPTION ICON/TOOL (SHORTCUT)

XPEL DAP SUPPORT. DAP Tool List & Overview DESCRIPTION ICON/TOOL (SHORTCUT) Pointer (S) Left-click on individual entities to add them to the current selection (selected entities will turn red). If the entity selected is a member of a group, the entire group will be added to the

More information

Polarization of Light

Polarization of Light Polarization of Light Introduction Light, viewed classically, is a transverse electromagnetic wave. Namely, the underlying oscillation (in this case oscillating electric and magnetic fields) is along directions

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Basic Experiments in Optics on the Optical Bench U17145 Instruction sheet 5/11/ALF/MEC Experiment 1: Experiment 2: Experiment 3: Experiment 4: Experiment 5: Experiment 6: Experiment

More information

Translation Stages Triple-Divide Series

Translation Stages Triple-Divide Series USER S GUIDE Translation Stages Triple-Divide Series Models 9064 and 9065 U.S. Patent #6,174,102 5215 Hellyer Ave. San Jose, CA 95138-1001 USA phone: (408) 284 6808 fax: (408) 284 4824 e-mail: contact@newfocus.com

More information

Total Station & Distomat

Total Station & Distomat UNIT 6 Total Station & Distomat Learning Objectives After studying this unit, the student will be able to Understand the parts of Total station Temporary adjustments of total station Measurement of horizontal

More information

TEL: / FAX:

TEL: / FAX: Self-leveling Rotary Laser FRE-211 Operating Manual P.R.Engineering Ltd UK www.laser-level.co.uk TEL: 01246 269 777 / FAX: 01246 260 007 SAFETY PRECAUTIONS: During instrument operation, be careful not

More information

Self-leveling Laser Marker (4V1HXL)

Self-leveling Laser Marker (4V1HXL) Self-leveling Laser Marker (4V1HXL) Congratulations on your choice of this Self-leveling Laser Marker. For the purpose of long-term use of this instrument, we suggest you to read this instruction manual

More information

INSPECTION OF THE TURBINE BLADES USING SCANNING TECHNIQUES

INSPECTION OF THE TURBINE BLADES USING SCANNING TECHNIQUES INSPECTION OF THE TURBINE BLADES USING SCANNING TECHNIQUES H. Nieciag, M. Traczynski and Z. Chuchro Department of Geometrical Quanities Metrology The Institute of Metal Cutting, 30-011 Cracow, Poland Abstract:

More information

MicroLab Component Holders

MicroLab Component Holders $ Mirror and beamsplitter mounts $ Lens holders $ Optical component cell systems $ Prism/tilt table $ Polarizer holders $ Fiber holders Stable optical component holders are critical for aligning any optical

More information

V40 Videoboom MAIN OPERATING INSTRUCTIONS INDEX 5. SPECIFICATIONS V40 1. INTRODUCTION 2. LIST OF FUNCTIONS AND PARTS

V40 Videoboom MAIN OPERATING INSTRUCTIONS INDEX 5. SPECIFICATIONS V40 1. INTRODUCTION 2. LIST OF FUNCTIONS AND PARTS MAIN OPERATING INSTRUCTIONS V40 Videoboom INDEX 1. INTRODUCTION 2. LIST OF FUNCTIONS AND PARTS 3. INSTRUCTIONS V40 3.1 ASSEMBLY & SETTING UP 3.2 WEIGHT SYSTEM 3.3 MOUNTING THE VIDEO CAMERA 4. USING THE

More information

TEC APO 200 OWNER S MANUAL

TEC APO 200 OWNER S MANUAL TEC APO 200 OWNER S MANUAL 2005 IMPORTANT - PLEASE READ THIS MANUAL BEFORE USING YOUR TELESCOPE SAFETY WARNINGS Do not look at the sun through the telescope! Viewing the sun through the telescope without

More information

QC20-W wireless ballbar system description and specifications

QC20-W wireless ballbar system description and specifications QC20-W wireless ballbar system QC20-W wireless ballbar system description and specifications Hardware Software QC20-W ballbar and ballbar kit QC20-W ballbar The QC20-W ballbar contains a precision linear

More information

Air curtains for enclosures with 2 or 3 windows including flow regulation valve, pneumatic fitting for 4mm tube.

Air curtains for enclosures with 2 or 3 windows including flow regulation valve, pneumatic fitting for 4mm tube. autovimation offers various solutions to prevent dust and dirt on the front window of the camera enclosure. So the cameras can be used even under unfavourable conditions. Air curtains for enclosures with

More information

User English Manual for Sputnik Stereo Camera

User English Manual for Sputnik Stereo Camera User English Manual for Sputnik Stereo Camera STEREOSCOPIC SET Stereoscopic photography in contrast to conventional to-dimensional photography makes it possible to obtain pictures which give correct three-dimensional

More information

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Department of CIVIL Engineering Semester: III Branch: CIVIL Session: Subject: Surveying Lab

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Department of CIVIL Engineering Semester: III Branch: CIVIL Session: Subject: Surveying Lab DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Department of CIVIL Engineering Semester: III Branch: CIVIL Session: 2015-16 Subject: Surveying Lab 1. To measure bearings of a closed traverse by prismatic

More information

Parallel Roll Alignment Software

Parallel Roll Alignment Software Parallel Roll Alignment Software You have made a good choice..., in combination with the display unit, is the optimum solution for the alignment of parallel rolls. The following functions and characteristics

More information

Multi-sensor measuring technology. O-INSPECT The best of optical and contact measuring technology for true 3D measurements.

Multi-sensor measuring technology. O-INSPECT The best of optical and contact measuring technology for true 3D measurements. Multi-sensor measuring technology O-INSPECT The best of optical and contact measuring technology for true 3D measurements. 2 // multifunctionality made BY CarL Zeiss The moment you realize that new requirements

More information

Form Measurement ROUNDTEST RA-1600

Form Measurement ROUNDTEST RA-1600 Form Measurement ROUNDTEST RA-1600 A new PC-compliant Roundness and Cylindricity form measuring instrument with extensive analysis features to enable measurement of a wide variety of workpieces. Powerful

More information

LASERMET LS-20 INSTRUCTION MANUAL

LASERMET LS-20 INSTRUCTION MANUAL LASERMET LS-20 INSTRUCTION MANUAL LASER SAFETY SHUTTER 00629-53-000 Issue 2 14 December 2012 Lasermet LS-20 Instruction Manual Contents DECLARATION OF CONFORMITY... 3 Concept... 4 Control Options... 4

More information

ASI Photoport TIRF Injector Instruction Manual

ASI Photoport TIRF Injector Instruction Manual ASI Photoport TIRF Injector Instruction Manual Applied Scientific Instrumentation, Inc. 29391 W. Enid Rd. Eugene, OR 97402-9533 USA Phone: (800) 706-2284 (541) 461-8181 Fax: (541) 461-4018 Web: www.asiimaging.com

More information

Planar Model A480-PL Professional Grade Home Cinema Conversion Lens System

Planar Model A480-PL Professional Grade Home Cinema Conversion Lens System AKPro system with ATH1 transport shown Planar Model A480-PL Professional Grade Home Cinema Conversion Lens System USER MANUAL AND INSTALLATION GUIDE Including the UH480 Lens, ATH1 Transport and AKPro Projector

More information

UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT

UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT KNS 1461 CIVIL ENGINEERING LABORATORY 2 LABORATORY MANUAL (Edited : December 2008) CIVIL ENGINEERING LABORATORY 2 KNS 1461

More information

BPL SERIES INSTALLATION INSTRUCTIONS THIS SHEET CONTAINS IMPORTANT SAFETY INSTRUCTIONS. SAVE THESE INSTRUCTIONS.

BPL SERIES INSTALLATION INSTRUCTIONS THIS SHEET CONTAINS IMPORTANT SAFETY INSTRUCTIONS. SAVE THESE INSTRUCTIONS. BPL SERIES INSTALLATION INSTRUCTIONS Important Warning THIS SHEET CONTAINS IMPORTANT SAFETY INSTRUCTIONS. SAVE THESE INSTRUCTIONS. This product must be installed in accordance with National Electrical

More information

To Measure a Constant Velocity. Enter.

To Measure a Constant Velocity. Enter. To Measure a Constant Velocity Apparatus calculator, black lead, calculator based ranger (cbr, shown), Physics application this text, the use of the program becomes second nature. At the Vernier Software

More information

Contents. - i - Ver.:2

Contents. - i - Ver.:2 Contents 1 Accessories of D-Point 2... 2 2 Connecting Projector to PC... 4 3 Pen Action... 4 4 Driver Installation... 5 5 Configuration Setting... 8 6 D-Point 2 Pull-up Menu... 12 7 DT02 Multi-touch Interactive

More information

Five-Axis Fiber Aligner Model 9091 and Accessories

Five-Axis Fiber Aligner Model 9091 and Accessories USER S GUIDE Five-Axis Fiber Aligner Model 9091 and Accessories Includes Model 9131-FS-FC and Model 9131-FS-ST Fiber-Aligner Kits U.S. Patents: #5,282,393 & #5,400,674 5215 Hellyer Ave. San Jose, CA 95138-1001

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

PROMS PORTABLE RAPID-DEPLOYMENT OBSERVATION AND MONITORING SYSTEM. INSTRUCTIONS FOR USE BS EN BS EN BS EN

PROMS PORTABLE RAPID-DEPLOYMENT OBSERVATION AND MONITORING SYSTEM. INSTRUCTIONS FOR USE BS EN BS EN BS EN PROMS PORTABLE RAPID-DEPLOYMENT OBSERVATION AND MONITORING SYSTEM. INSTRUCTIONS FOR USE BS EN 55103-1 BS EN 55103-2 BS EN 60555-2 Note: The battery supplied with this equipment is a sealed lead acid cell.

More information

Using Capacitance Probes to Measure the Limit of Machine Contouring Performance

Using Capacitance Probes to Measure the Limit of Machine Contouring Performance Using Capacitance Probes to Measure the Limit of Machine Contouring Performance Don Martin, Lion Precision, 563 Shoreview Park Road, St. Paul, NIN 55126 Most machine tools used for discrete part manufacturing

More information