Symbolic Synthesis of Observability Requirements for Diagnosability

Size: px
Start display at page:

Download "Symbolic Synthesis of Observability Requirements for Diagnosability"

Transcription

1 Symbolic Synthesis of Observability Requirements for Diagnosability B. Bittner 1,2 M.Bozzano 2 A. Cimatti 2 X. Olive 3 1 University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands bittner@science.uva.nl 2 FBK-irst, Trento, Italy bozzano,cimatti@fbk.eu 3 Thales Alenia Space, 100 Boulevard Midi, Cannes, France xavier.olive@thalesaleniaspace.com 11thh Symposium on Advanced Space Technologies in Robotics and Automation - ASTRA 2011 ESTEC (Netherlands)

2 Context Plant in closed loop with controller. Diagnosis Systems for Fault Detection, Identification and Recovery (FDIR). The diagnosis system tracks the hidden state of the plant over time. The diagnosis process has no direct control over the control loop. Sensed Information Diagnosis System Controller Plant Commands

3 The Problem of Diagnosability Sensors/observables may not be enough: even an ideal Diagnosis System may not have enough information. The Diagnosability problem: verify off-line that an ideal Diagnosis System can infer at run-time accurate and sufficient information on the behavior of the observed Plant. The system is diagnosable when there is no pair of indistinguishable traces, one good and one dangerous/bad. Previous work with NASA AMES A. Cimatti, C. Pecheur and R. Cavada, Formal Verification of Diagnosability via Symbolic Model Checking [IJCAI 03].

4 In this work: Synthesis for Diagnosability Assume we have enough sensors for diagnosability. Maybe they are (and they cost) more than needed. The synthesis for diagnosability problem: find sensor configurations that could be used... That are sufficient to guarantee diagnosability, and that are minimal, or have minimum cardinality, or minimize a given cost function.

5 Our contribution We propose practical methods for synthesis of diagnosable configurations. This work is based on symbolic model checking techniques, inspired by and built on top of framework applied in recent ESA projects: OMCARE COMPASS In particular, we provide formal modeling of the problem we generalize the diagnosability framework to synthesis, with the parameterized twin plant construction We propose two complementary algorithms FTA-based algorithm trace-based algorithm Experimental evaluation

6 Index of the Talk Diagnosability Synthesis for diagnosability Generalized twin plant Symbolic techniques FTA-based algorithm Trace-based algorithm Experiments Related work Conclusions and future work

7 Plant Partially Observable Plant X, U, Y, δ, λ : X is the state space; x, x 0, x 1,... are states; U is the input space; u, u 0, u 1,... are inputs; Y is the output space; y, y 0, y 1,... are outputs; To Controller Hidden State From Controller y Outputs λ x Delay x δ x u Inputs ToDiagnosis System ToDiagnosis System δ X U X is the transition relation. We write x 0 u 1 x1 if δ(x 0, u 1, x 1 ). λ X Y is the observation relation. We require that x. y.λ(x, y). We write x/y iff λ(x, y).

8 Execution, Trace An execution has the form x 0, y 0, u 1, x 1, y 1, u 2,..., u k, x k, y k, where u i+1 x i xi+1, and x i /y i. The observable trace of x 0, y 0, u 1, x 1, y 1, u 2,..., u k, x k, y k is y 0, u 1, y 1,..., u k, y k

9 Diagnosability A diagnosis condition for a plant P is a pair of nonempty sets of states c 1, c 2 X, with c 1 c 2 =, written c 1 c 2. A critical pair for diagnosis condition c 1 c 2 is a pair of executions π 1 and π 2, both of length t, with the same observable traces obs(π 1 ) = obs(π 2 ), and c 1 (x t π 1 ) c 2 (x t π 2 ). x^ c 1 w c 1 x 1 x 2 w x 1 x ^ 0 x 01 x 02 w ^x 0 x 01 x 02 x^ w x 2 c 2 c 2

10 Synthesis for Diagnosability Let P =< X, U, Y, δ, λ > be a plant. Assume outputs as Boolean vectors: Y = B N, with B = {0, 1}. The observation relation λ is presented by N observation relations [λ 1,..., λ N ], with λ i : X B. The induced observation relation λ : X B is defined as λ(x, b) iff for all i [1, N].λ i (x, b[i]). To Controller Hidden State From Controller y Outputs λ x Delay x δ x u Inputs ToDiagnosis Sys ToDiagnosis Sys. Definition (Sensor Configuration) A sensor configuration for P is a set of indices sc {1,..., N}. Definition (Plant Restriction) The restriction of P to a sensor configuration sc, denoted P sc, is the plant < X, U, Y, δ, [λ 1,..., λ N ] >, where λ i = λ i if i sc, and λ i = λ : X {0} otherwise.

11 Problem Definition Find all the sensor configurations sc {1,..., N} such that P sc is diagnosable, and sc is minimal, that is, for every sc sc, if P sc satisfies the problem then sc = sc, or sc is minimum w.r.t. cardinality, that is, for every sc {1,..., N}, if P sc satisfies the problem then sc sc, or sc is cost minimum, that is, for every sc {1,..., N}, if P sc satisfies the problem then cost(sc) cost(sc ). Additional remarks: Minimum sensor configurations are also minimal. The notion of minimum configurations can be generalized with respect to a cost function expressed as cost : 2 {1,...,N} N. We require that cost(sc 1 ) cost(sc 2 ) if sc 1 sc 2, and cost(sc 1 ) < cost(sc 2 ) if sc 1 sc 2.

12 Coupled Twin Plant The twin plant of P, denoted Twin(P), is the plant X X, U, Y, δ δ, λ λ, where X X X 2, where (x 1, x 2 ) X X iff there exists y Y such that λ(x 1, y) and λ(x 2, y); ((x 1, x 2 ), u, (x 1, x 2 )) δ δ iff (x 1, u, x 1 ) δ and (x 2, u, x 2 ) δ; ((x 1, x 2 ), y) λ λ iff λ(x 1, y) and λ(x 2, y). y Outputs λ x1 x2 Delay x1 Hidden State Hidden State x2 Delay δ δ x1 x2 u Inputs x ^ 0 x 01 x 02 w w c 1 x 1 x 2 x^ c 2

13 Find sensor configurations, reformulated Find all the sensor configurations sc {1,..., N} such that the twin plant Twin(P sc ) has no critical pair, and sc is a minimal [minimum, or minimum cost, resp.] configuration.

14 Symbolic Representation Vectors of variables ( x 1, x 2, u, y ), respectively ranging over X, X, U and Y. Any subset c of X X U Y (states, transitions) can be described with a formula c( x 1, x 2, y, u ). Set operations (union, intersection, complement) are represented by boolean connectives (or, and, not) Algorithms can manipulate sets of states, without explicitly enumerating them. Formulae are represented and manipulated as SAT, RBC, BDDs.

15 Symbolic Representation of Parameterized Twin Plant Vector of N activation variables a. A truth assignment to a represents a sensor configuration sc, i.e. a [i] is true if and only if i is in sc, and thus λ i is available. λ λ is characterized as a [i] (λ i ( x 1, y ) λ i ( x 2, y )). if a [i] is false, there is no constraint over the values of λ i if a [i] is true, (λ i ( x 1, y ) λ i ( x 2, y )) is enforced, hence less critical pairs exist δ δ is extended to constrain a not to change over time.

16 FTA-based algorithm function alldiagnosablesets (Twin(P), dc) 1 Reach := I(Twin(P)) 2 Front := I(Twin(P)) 3 BadSC := 4 while (Front ) do 5 BadSC := BadSC Proj( a, Front dc) 6 BadSC := BadSC allsubsets(badsc) 7 Front := Front \BadSC 8 temp := Reach 9 Reach := Reach FwdImage(Front, Twin(P)) 10 Front := Reach\temp 11 end while 12 GoodSC := BadSC 13 return GoodSC

17 Trace-based algorithm function allminimumsets (Twin(P), dc, costfn) 1 obsreq := 2 do 3 configs := getminconf (obsreq, costfn) 4 π := check(twin(p) = configs F dc) 5 if (π = ) do 6 return (, configs) 7 endif 8 obsreq := obsreq getobsreq(π) 9 while (obsreq ) 10 return (, )

18 Related Work Synthesis for diagnosability for continuous dynamics, based structural on analysis [L. Travé-Massuyes at al., 2001], [Yassine et al, 2008] Dynamic activation (beyond static observer): one approach based on safety 2-player games and weighted automata [Cassez et al., 2007]; another looks for minimal (not minimum) configurations [Wang et al., 2008]. An approximated approach is proposed in [Ru and Hadjicostis, 2010] in the setting of Petri nets. The twin plant construction is used in [Briones et al., 2008], the search of critical pairs is not addressed. A trace-based method is proposed in [Grastien, 2009]. No practical implementation is proposed. Large bodies of work on diagnosability: seminal work by [Sampath et al., 95, 96], automata-theoretic extensions to complex failures in temporal logics [Jiang and Kumar, 02], reformulation in process algebras [Console et al. 00]; practical approach based on symbolic model checking [Cimatti et al, 03]; generalization of zero-delay diagnosability, using SAT techniques [Rintanen and Grastien, 07]. Other work on active diagnosis [Sampath et al, 98], with controller designed to take into account diagnosability; planning under partial observability with information gathering actions [Bertoli et al, 02].

19 Implementation The approach has been implemented within the NuSMV3 platform. NuSMV3 is a substantial extension of NUSMV2 Requirements analysis, functional verification, safety assessment Boolean engines (BDD, SAT), integration with theory-specific reasoning (the MathSAT SMT solver) Wide set of verification algorithms: interpolation, CEGAR Backend in various functional verification flows: AADL/SLIM, ALTARICA, Mathlab/StateFlow/Simulink, SystemC, PLC, Interlocking. User specifies model of plant, list of observables, cost function. System generates twin plant, carries out search, and presents the results.

20 Experiments: benchmarks Orbiter, Rover are models of an orbiter and of a planetary rover, both develped in the OMCARE project. The models describe the functional level, with various relevant subsystems including failure modes. The diagnosis property used for the benchmarks is whether a working component has failed (fault detection). Cassini models is the propulsion system of the Cassini spacecraft: two engines fed by redundant propellant/gas circuit lines, which contain several valves and pyro-valves. Leakage failures are attached to all components. The diagnosis property of interest is a correct input pressure in at least one of the engines in presence of a correct output pressure from the gas and propellant tanks. Elevator is a newly created set of models of an elevator controller, parameterized by the number of floors. The modelled properties are cabin and door movement, request and reset operations at each floor, and the controller logic. The property of interest is whether the cabin is moving or not.

21 model orbiter rover cassini # state vars # input vars state space reachable states % reachable e-36 diameter model elevator 8 fl. 12 fl. 16 fl. 20 fl. # state vars # input vars state space reachable states % reachable e e e-6 diameter

22 Experiments model obs c1 s1 s1d c2 s2 s2t (tl) elev (4.91) elev (5.50) elev (4.91) elev (5.50) elev (4.75) elev (4.66) elev orbiter (2.00) rover (3.00) rover (2.90) rover (3.00) rover (3.00) rover 40 cassini (2.00) cassini

23 Conclusions and Future Work Conclusions: A practical approach to synthesis for diagnosability Two complementary algorithms Implemented in the NuSMV symbolic model checker Future activities: investigate more aggressive use of advanced verification techniques (e.g. incremental SAT, model simplification); experiment with different domains take into account fault tolerance generalize the approach to arbitrary diagnosability conditions expressed in LTL extend approach to continuous time systems

24 Questions?

AUTOMATED GENERATION OF FDIR FOR THE COMPASS INTEGRATED TOOLSET (AUTOGEF)

AUTOMATED GENERATION OF FDIR FOR THE COMPASS INTEGRATED TOOLSET (AUTOGEF) AUTOMATED GENERATION OF FDIR FOR THE COMPASS INTEGRATED TOOLSET (AUTOGEF) (1) Elena Alaña, Héctor Naranjo, (2) Yuri Yushtein, (3) Marco Bozzano, Alessandro Cimatti, Marco Gario, (4) Régis de Ferluc, Gérard

More information

A Symbolic Model Checking Approach to On-Board Autonomy

A Symbolic Model Checking Approach to On-Board Autonomy AAAI 2011 Workshop on Generalized Planning Artificial Alessandro Cimatti A Symbolic Model Checking Approach to On-Board Autonomy Alessandro Cimatti Embedded System Unit Fondazione Bruno Kessler Trento,

More information

A Comprehensive Approach to On-Board Autonomy Verification and Validation

A Comprehensive Approach to On-Board Autonomy Verification and Validation Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence A Comprehensive Approach to On-Board Autonomy Verification and Validation M. Bozzano, A. Cimatti, M. Roveri, A.

More information

COMPASS GRAPHICAL MODELLER

COMPASS GRAPHICAL MODELLER COMPASS GRAPHICAL MODELLER Viet Yen Nguyen Software Modelling and Verification Group RWTH Aachen University Final Presentation Days, April 2012, ESTEC Christian Dehnert, Joost-Pieter Katoen, Thomas Noll

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

Towards Pareto-Optimal Parameter Synthesis for Monotonic Cost Functions

Towards Pareto-Optimal Parameter Synthesis for Monotonic Cost Functions Towards Pareto-Optimal Parameter Synthesis for Monotonic Cost Functions B. Bittner, M. Bozzano, A. Cimatti, M. Gario, A. Griggio Fondazione Bruno Kessler, Trento, Italy Email: surname@fbk.eu Abstract Designers

More information

ON-BOARD AUTONOMY VIA SYMBOLIC MODEL-BASED REASONING

ON-BOARD AUTONOMY VIA SYMBOLIC MODEL-BASED REASONING ON-BOARD AUTONOMY VIA SYMBOLIC MODEL-BASED REASONING M. Bozzano 1 A. Cimatti 1 A. Guiotto 2 A. Martelli 2 M. Roveri 1 A. Tchaltsev 1 Y. Yushtein 3 1 Fondazione Bruno Kessler 2 Thales Alenia Space Italy

More information

FAME PROCESS: A DEDICATED DEVELOPMENT AND V&V PROCESS FOR FDIR

FAME PROCESS: A DEDICATED DEVELOPMENT AND V&V PROCESS FOR FDIR FAME PROCESS: A DEDICATED DEVELOPMENT AND V&V PROCESS FOR FDIR Andrea Guiotto (1), Regis De Ferluc (2), Marco Bozzano (3), Alessandro Cimatti (3), Marco Gario (3) Yuri Yushtein (4) (1) Thales Alenia Space

More information

Parametric Real Time System Feasibility Analysis Using Parametric Timed Automata

Parametric Real Time System Feasibility Analysis Using Parametric Timed Automata Parametric Real Time System Feasibility Analysis Using Parametric Timed Automata PhD Dissertation Yusi Ramadian Advisor : Luigi Palopoli Co advisor : Alessandro Cimatti 1 Real Time System Applications

More information

A Toolbox for Counter-Example Analysis and Optimization

A Toolbox for Counter-Example Analysis and Optimization A Toolbox for Counter-Example Analysis and Optimization Alan Mishchenko Niklas Een Robert Brayton Department of EECS, University of California, Berkeley {alanmi, een, brayton}@eecs.berkeley.edu Abstract

More information

COMPASS: FORMAL METHODS FOR SYSTEM-SOFTWARE CO-ENGINEERING

COMPASS: FORMAL METHODS FOR SYSTEM-SOFTWARE CO-ENGINEERING COMPASS: FORMAL METHODS FOR SYSTEM-SOFTWARE CO-ENGINEERING Viet Yen Nguyen Lehrstuhl für Informatik 2, RWTH Aachen University nguyen@cs.rwth-aachen.de Technology Innovation Days, ESA/ESTEC, 2011 ABOUT

More information

An Integrated Process for FDIR Design in Aerospace

An Integrated Process for FDIR Design in Aerospace An Integrated Process for FDIR Design in Aerospace Benjamin Bittner 1, Marco Bozzano 1, Alessandro Cimatti 1, Regis De Ferluc 2, Marco Gario 1, Andrea Guiotto 3, and Yuri Yushtein 4 1 Fondazione Bruno

More information

Verification of Intelligent Software

Verification of Intelligent Software Verification of Intelligent Software Charles Pecheur (RIACS / NASA Ames) Charles Pecheur 2003 1 Contents Model Checking for Intelligent Software Why? Intelligent software, how to verify it? What? A bird's-eye

More information

Model checking pushdown systems

Model checking pushdown systems Model checking pushdown systems R. Ramanujam Institute of Mathematical Sciences, Chennai jam@imsc.res.in Update Meeting, IIT-Guwahati, 4 July 2006 p. 1 Sources of unboundedness Data manipulation: integers,

More information

System-Software Co-Engineering: Dependability and Safety Perspective

System-Software Co-Engineering: Dependability and Safety Perspective System-Software Co-Engineering: Dependability and Safety Perspective Y. Yushtein, M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, Th. Noll, X. Olive, M. Roveri Systems, Software & Technology Department,

More information

Contract-based design, model checking, and model-based safety assessment

Contract-based design, model checking, and model-based safety assessment Contract-based design, model checking, and model-based safety assessment An integrated view Alessandro Cimatti Fondazione Bruno Kessler, Trento, Italy Take away message Beyond model checking: new generation

More information

Formal Verification and Validation of AADL Models

Formal Verification and Validation of AADL Models Formal Verification and Validation of AADL Models M. Bozzano 2, R. Cavada 2, A. Cimatti 2, J.-P. Katoen 1, V.Y. Nguyen 1, T. Noll 1, X. Olive 3 1 Software Modeling and Verification Group, RWTH Aachen University,

More information

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis (abridged version of DAC slides) Sanjit A. Seshia Associate Professor EECS Department UC Berkeley Design Automation

More information

Overview. Discrete Event Systems - Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for?

Overview. Discrete Event Systems - Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for? Computer Engineering and Networks Overview Discrete Event Systems - Verification of Finite Automata Lothar Thiele Introduction Binary Decision Diagrams Representation of Boolean Functions Comparing two

More information

COMPASS. COMPASS Tutorial. Correctness, Modeling, and Performance of Aerospace Systems. Version 3.0

COMPASS. COMPASS Tutorial. Correctness, Modeling, and Performance of Aerospace Systems. Version 3.0 COMPASS Correctness, Modeling, and Performance of Aerospace Systems COMPASS Tutorial Version 3.0 Prepared by Fondazione Bruno Kessler RWTH Aachen University Contents 1 Introduction 3 2 Terminology 4 3

More information

Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis

Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis Isil Dillig, Thomas Dillig, Alex Aiken Stanford University Scalability and Formula Size Many program analysis

More information

Automatic synthesis of switching controllers for linear hybrid systems: Reachability control

Automatic synthesis of switching controllers for linear hybrid systems: Reachability control Automatic synthesis of switching controllers for linear hybrid systems: Reachability control Massimo Benerecetti and Marco Faella Università di Napoli Federico II, Italy Abstract. We consider the problem

More information

Tighter Integration of BDDs and SMT for Predicate Abstraction

Tighter Integration of BDDs and SMT for Predicate Abstraction Tighter Integration of BDDs and SMT for Predicate Abstraction A. Cimatti, A. Franzen, A. Griggio, K. Kalyanasundaram, M. Roveri FBK-irst, Trento, Italy {cimatti,franzen,krishnamani,roveri}@fbk.eu University

More information

Tutorial on Model Checking Modelling and Verification in Computer Science

Tutorial on Model Checking Modelling and Verification in Computer Science Tutorial on Model Checking Modelling and Verification in Computer Science Armin Biere Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria Abstract. This paper serves

More information

Action Language Verifier, Extended

Action Language Verifier, Extended Action Language Verifier, Extended Tuba Yavuz-Kahveci 1, Constantinos Bartzis 2, and Tevfik Bultan 3 1 University of Florida 2 Carnegie Mellon University 3 UC, Santa Barbara 1 Introduction Action Language

More information

Knowledge-based Systems for Industrial Applications

Knowledge-based Systems for Industrial Applications Knowledge-based Systems for Industrial Applications 1 The Topic 2 Tasks Goal: Overview of different tasks Systematic and formal characterization as a requirement for theory and implementation Script: Chap.

More information

NuSMV 2: An OpenSource Tool for Symbolic Model Checking

NuSMV 2: An OpenSource Tool for Symbolic Model Checking Carnegie Mellon University Research Showcase @ CMU Computer Science Department School of Computer Science 2002 NuSMV 2: An OpenSource Tool for Symbolic Model Checking Alessandro Cimatti ITC-IRST Edmund

More information

Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints

Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints L. Cordeiro, B. Fischer, H. Chen, J. P. Marques-Silva Lucas Cordeiro lcc08r@ecs.soton.ac.uk Agenda

More information

Qualitative Multi-faults Diagnosis Based on Automated Planning II: Algorithm and Case Study

Qualitative Multi-faults Diagnosis Based on Automated Planning II: Algorithm and Case Study Qualitative Multi-faults Diagnosis Based on Automated Planning II: Algorithm and Case Study He-xuan Hu, Anne-lise Gehin, and Mireille Bayart Laboratoire d Automatique, Génie Informatique & Signal, UPRESA

More information

Mike Whalen Program Director, UMSEC University of Minnesota

Mike Whalen Program Director, UMSEC University of Minnesota Formal Analysis for Communicating Medical Devices Mike Whalen Program Director, UMSEC University of Minnesota Research Topics Multi-Domain Analysis of System Architecture Models Compositional Assume-Guarantee

More information

DISCRETE-event dynamic systems (DEDS) are dynamic

DISCRETE-event dynamic systems (DEDS) are dynamic IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999 175 The Supervised Control of Discrete-Event Dynamic Systems François Charbonnier, Hassane Alla, and René David Abstract The supervisory

More information

Model Checking for Autonomy Software

Model Checking for Autonomy Software Model Checking for Autonomy Software Charles Pecheur RIACS / ASE Group, NASA Ames Charles Pecheur, RIACS / NASA Ames 1 Contents Model Checking for Autonomy Software Why? Autonomy software, how to verify

More information

38050 Povo (Trento), Italy Tel.: Fax: e mail: url:

38050 Povo (Trento), Italy Tel.: Fax: e mail: url: CENTRO PER LA RICERCA SCIENTIFICA E TECNOLOGICA 38050 Povo (Trento), Italy Tel.: +39 061 31312 Fax: +39 061 30200 e mail: prdoc@itc.it url: http://www.itc.it SYMBOLIC MODEL CHECKING FOR MULTI AGENT SYSTEMS

More information

System Correctness. EEC 421/521: Software Engineering. System Correctness. The Problem at Hand. A system is correct when it meets its requirements

System Correctness. EEC 421/521: Software Engineering. System Correctness. The Problem at Hand. A system is correct when it meets its requirements System Correctness EEC 421/521: Software Engineering A Whirlwind Intro to Software Model Checking A system is correct when it meets its requirements a design without requirements cannot be right or wrong,

More information

LECTURE 8: SETS. Software Engineering Mike Wooldridge

LECTURE 8: SETS. Software Engineering Mike Wooldridge LECTURE 8: SETS Mike Wooldridge 1 What is a Set? The concept of a set is used throughout mathematics; its formal definition matches closely our intuitive understanding of the word. Definition: A set is

More information

CS 267: Automated Verification. Lecture 13: Bounded Model Checking. Instructor: Tevfik Bultan

CS 267: Automated Verification. Lecture 13: Bounded Model Checking. Instructor: Tevfik Bultan CS 267: Automated Verification Lecture 13: Bounded Model Checking Instructor: Tevfik Bultan Remember Symbolic Model Checking Represent sets of states and the transition relation as Boolean logic formulas

More information

Computer Science Technical Report

Computer Science Technical Report Computer Science Technical Report Feasibility of Stepwise Addition of Multitolerance to High Atomicity Programs Ali Ebnenasir and Sandeep S. Kulkarni Michigan Technological University Computer Science

More information

Lecture 2. Decidability and Verification

Lecture 2. Decidability and Verification Lecture 2. Decidability and Verification model temporal property Model Checker yes error-trace Advantages Automated formal verification, Effective debugging tool Moderate industrial success In-house groups:

More information

Automated Model Repair for Distributed Programs

Automated Model Repair for Distributed Programs Automated Model Repair for Distributed Programs Borzoo Bonakdarpour Sandeep S. Kulkarni School of Computer Science Dept. of Computer Science and Engineering University of Waterloo Michigan State University

More information

NuSMV 2: An OpenSource Tool for Symbolic Model Checking

NuSMV 2: An OpenSource Tool for Symbolic Model Checking NuSMV 2: An OpenSource Tool for Symbolic Model Checking Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella

More information

Verification and Validation meet Planning and Scheduling

Verification and Validation meet Planning and Scheduling Verification and Validation meet Planning and Scheduling AndreA Orlandini (CNR-ISTC) Email: andrea.orlandini@istc.cnr.it National Research Council of Italy (CNR-ISTC) P&S Autonomy and V&V P&S systems are

More information

Behavioural Equivalences and Abstraction Techniques. Natalia Sidorova

Behavioural Equivalences and Abstraction Techniques. Natalia Sidorova Behavioural Equivalences and Abstraction Techniques Natalia Sidorova Part 1: Behavioural Equivalences p. p. The elevator example once more How to compare this elevator model with some other? The cabin

More information

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example Lecture 2: Combinatorial search and optimisation problems Different types of computational problems Examples of computational problems Relationships between problems Computational properties of different

More information

MODEL-BASED DESIGN OF CODE FOR PLC CONTROLLERS

MODEL-BASED DESIGN OF CODE FOR PLC CONTROLLERS Krzysztof Sacha Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland k.sacha@ia.pw.edu.pl Keywords: Abstract: Automatic program generation, Model verification, Finite state machine,

More information

Using Java Pathfinder to Reason about Agent Systems

Using Java Pathfinder to Reason about Agent Systems Using Java Pathfinder to Reason about Agent Systems Franco Raimondi f.raimondi@mdx.ac.uk Department of Computer Science Middlesex University http://www.rmnd.net Liverpool, 11th September 2015 Joint work

More information

Model checking Hybrid Systems via Satisfiability Modulo Theories

Model checking Hybrid Systems via Satisfiability Modulo Theories Model checking Hybrid Systems via Satisfiability Modulo Theories Alessandro Cimatti Embedded System Unit Fondazione Bruno Kessler Trento, Italy cimatti@fbk.eu Joint work with Andrea Micheli, Sergio Mover,

More information

Safety Assessment of AltaRica models via Symbolic Model Checking

Safety Assessment of AltaRica models via Symbolic Model Checking Safety Assessment of AltaRica models via Symbolic Model Checking Marco Bozzano a, Alessandro Cimatti a, Oleg Lisagor b, Cristian Mattarei a, Sergio Mover a, Marco Roveri a, Stefano Tonetta a a Fondazione

More information

NuSMV 2.2 Tutorial. Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore and Marco Roveri

NuSMV 2.2 Tutorial. Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore and Marco Roveri NuSMV 2.2 Tutorial Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore and Marco Roveri IRST - Via Sommarive 18, 38055 Povo (Trento) Italy Email: nusmv@irst.itc.it Contents

More information

Formal Verification: Practical Exercise Model Checking with NuSMV

Formal Verification: Practical Exercise Model Checking with NuSMV Formal Verification: Practical Exercise Model Checking with NuSMV Jacques Fleuriot Daniel Raggi Semester 2, 2017 This is the first non-assessed practical exercise for the Formal Verification course. You

More information

Binary Decision Diagrams and Symbolic Model Checking

Binary Decision Diagrams and Symbolic Model Checking Binary Decision Diagrams and Symbolic Model Checking Randy Bryant Ed Clarke Ken McMillan Allen Emerson CMU CMU Cadence U Texas http://www.cs.cmu.edu/~bryant Binary Decision Diagrams Restricted Form of

More information

Formal Verification. Lecture 7: Introduction to Binary Decision Diagrams (BDDs)

Formal Verification. Lecture 7: Introduction to Binary Decision Diagrams (BDDs) Formal Verification Lecture 7: Introduction to Binary Decision Diagrams (BDDs) Jacques Fleuriot jdf@inf.ac.uk Diagrams from Huth & Ryan, 2nd Ed. Recap Previously: CTL and LTL Model Checking algorithms

More information

Local Two-Level And-Inverter Graph Minimization without Blowup

Local Two-Level And-Inverter Graph Minimization without Blowup Local Two-Level And-Inverter Graph Minimization without Blowup Robert Brummayer and Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria {robert.brummayer,

More information

Scenario Graphs Applied to Security (Summary Paper)

Scenario Graphs Applied to Security (Summary Paper) Book Title Book Editors IOS Press, 2003 1 Scenario Graphs Applied to Security (Summary Paper) Jeannette M. Wing Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 US Abstract.

More information

KRATOS A Software Model Checker for SystemC

KRATOS A Software Model Checker for SystemC KRATOS A Software Model Checker for SystemC A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri Fondazione Bruno Kessler Irst {cimatti,griggio,amicheli,narasamdya,roveri}@fbk.eu Abstract.

More information

ON-LINE QUALITATIVE MODEL-BASED DIAGNOSIS OF TECHNOLOGICAL SYSTEMS USING COLORED PETRI NETS

ON-LINE QUALITATIVE MODEL-BASED DIAGNOSIS OF TECHNOLOGICAL SYSTEMS USING COLORED PETRI NETS ON-LINE QUALITATIVE MODEL-BASED DIAGNOSIS OF TECHNOLOGICAL SYSTEMS USING COLORED PETRI NETS Adrien Leitold 1 Miklós Gerzson 2 Anna I. Pózna 2 and Katalin M. Hangos 2,3 1 Department of Mathematics 3 Process

More information

SCADE S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R

SCADE S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R SCADE 1 S E M I N A R I N S O F T W A R E E N G I N E E R I N G P R E S E N T E R A V N E R B A R R What is SCADE? Introduction 2 Software Critical Application Development Environment, a Lustrebased IDE

More information

Computer aided verification

Computer aided verification Computer aided verification lecture 10 Model-checking success stories Sławomir Lasota University of Warsaw 1 LITERATURE G. J. Holzman, Mars Code. Commun. ACM 57(2):64-73, 2014. D.L. Detlefs, C.H. Flood,

More information

Monitoring Interfaces for Faults

Monitoring Interfaces for Faults Monitoring Interfaces for Faults Aleksandr Zaks RV 05 - Fifth Workshop on Runtime Verification Joint work with: Amir Pnueli, Lenore Zuck Motivation Motivation Consider two components interacting with each

More information

Petri Nets ~------~ R-ES-O---N-A-N-C-E-I--se-p-te-m--be-r Applications.

Petri Nets ~------~ R-ES-O---N-A-N-C-E-I--se-p-te-m--be-r Applications. Petri Nets 2. Applications Y Narahari Y Narahari is currently an Associate Professor of Computer Science and Automation at the Indian Institute of Science, Bangalore. His research interests are broadly

More information

Reasoning about Timed Systems Using Boolean Methods

Reasoning about Timed Systems Using Boolean Methods Reasoning about Timed Systems Using Boolean Methods Sanjit A. Seshia EECS, UC Berkeley Joint work with Randal E. Bryant (CMU) Kenneth S. Stevens (Intel, now U. Utah) Timed System A system whose correctness

More information

Parameter Synthesis with IC3

Parameter Synthesis with IC3 Parameter Synthesis with IC3 Alessandro Cimatti Email: cimatti@fbk.eu Alberto Griggio Email: griggio@fbk.eu Sergio Mover Email: mover@fbk.eu Stefano Tonetta Email: tonettas@fbk.eu Abstract Parametric systems

More information

Relational String Verification Using Multitrack

Relational String Verification Using Multitrack Relational String Verification Using Multitrack Automata Relational String Analysis Earlier work on string analysis use multiple single-track DFAs during symbolic reachability analysis One DFA per variable

More information

Negations in Refinement Type Systems

Negations in Refinement Type Systems Negations in Refinement Type Systems T. Tsukada (U. Tokyo) 14th March 2016 Shonan, JAPAN This Talk About refinement intersection type systems that refute judgements of other type systems. Background Refinement

More information

Overview. Game-Based Verification of Fair Exchange Protocols. The Problem of Fair Exchange. Game-Theoretic Model. Protocol as a Game Tree

Overview. Game-Based Verification of Fair Exchange Protocols. The Problem of Fair Exchange. Game-Theoretic Model. Protocol as a Game Tree CS 259 Overview Game-ased Verification of Fair Exchange Protocols Vitaly Shmatikov Fair exchange protocols Protocols as games Security as presence or absence of certain strategies lternating transition

More information

Information Systems. Relational Databases. Nikolaj Popov

Information Systems. Relational Databases. Nikolaj Popov Information Systems Relational Databases Nikolaj Popov Research Institute for Symbolic Computation Johannes Kepler University of Linz, Austria popov@risc.uni-linz.ac.at Outline The Relational Model (Continues

More information

Qualitätssicherung von Software (SWQS)

Qualitätssicherung von Software (SWQS) Qualitätssicherung von Software (SWQS) Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FOKUS 28.5.2013: Modellprüfung II - BDDs Folie 2 Existenzgründer gesucht! Folie 3 Fragen

More information

Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols

Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols Lee Pike (Presenting), Galois, Inc. leepike@galois.com Geoffrey M. Brown, Indiana University geobrown@cs.indiana.edu

More information

Introduction to Formal Methods

Introduction to Formal Methods 2008 Spring Software Special Development 1 Introduction to Formal Methods Part I : Formal Specification i JUNBEOM YOO jbyoo@knokuk.ac.kr Reference AS Specifier s Introduction to Formal lmethods Jeannette

More information

Reducing Clocks in Timed Automata while Preserving Bisimulation

Reducing Clocks in Timed Automata while Preserving Bisimulation Reducing Clocks in Timed Automata while Preserving Bisimulation Shibashis Guha Chinmay Narayan S. Arun-Kumar Indian Institute of Technology Delhi {shibashis, chinmay, sak}@cse.iitd.ac.in arxiv:1404.6613v2

More information

Combining Real-Time Model-Checking and Fault Tree Analysis

Combining Real-Time Model-Checking and Fault Tree Analysis Combining Real-Time and Fault Tree Analysis Andreas Schäfer MC University of Oldenburg Real-Time and Fault Tree Analysis p.1/17 Contents What is Fault Tree Analysis (FTA)? Duration Calculus with Liveness

More information

Symbolic Trajectory Evaluation - A Survey

Symbolic Trajectory Evaluation - A Survey Automated Verification Symbolic Trajectory Evaluation - A Survey by Mihaela Gheorghiu Department of Computer Science University of Toronto Instructor: Prof. Marsha Chechik January 3, 24 Motivation Simulation

More information

38050 Povo (Trento), Italy Tel.: Fax: e mail: url:

38050 Povo (Trento), Italy Tel.: Fax: e mail: url: CENTRO PER LA RICERCA SCIENTIFICA E TECNOLOGICA 38050 Povo (Trento), Italy Tel.: +39 0461 314312 Fax: +39 0461 302040 e mail: prdoc@itc.it url: http://www.itc.it PLANNING AS MODEL CHECKING FOR EXTENDED

More information

CSP- and SAT-based Inference Techniques Applied to Gnomine

CSP- and SAT-based Inference Techniques Applied to Gnomine CSP- and SAT-based Inference Techniques Applied to Gnomine Bachelor Thesis Faculty of Science, University of Basel Department of Computer Science Artificial Intelligence ai.cs.unibas.ch Examiner: Prof.

More information

A Simple Tutorial on NuSMV

A Simple Tutorial on NuSMV NuSMV-tutorial 1 A Simple Tutorial on NuSMV Chenyi Zhang March 28, 2007 For a comprehensive tutorial, please visit the site http://nusmv.irst.itc.it/ NuSMV-tutorial 2 Introduction History SMV is the first

More information

ABC basics (compilation from different articles)

ABC basics (compilation from different articles) 1. AIG construction 2. AIG optimization 3. Technology mapping ABC basics (compilation from different articles) 1. BACKGROUND An And-Inverter Graph (AIG) is a directed acyclic graph (DAG), in which a node

More information

Networked Cyber-Physical Systems

Networked Cyber-Physical Systems Networked Cyber-Physical Systems Dr.ir. Tamás Keviczky Delft Center for Systems and Control Delft University of Technology The Netherlands t.keviczky@tudelft.nl http://www.dcsc.tudelft.nl/~tkeviczky/ September

More information

Model Checking Revision: Model Checking for Infinite Systems Revision: Traffic Light Controller (TLC) Revision: 1.12

Model Checking Revision: Model Checking for Infinite Systems Revision: Traffic Light Controller (TLC) Revision: 1.12 Model Checking mc Revision:.2 Model Checking for Infinite Systems mc 2 Revision:.2 check algorithmically temporal / sequential properties fixpoint algorithms with symbolic representations: systems are

More information

Towards Trustworthy Aerospace Systems: An Experience Report

Towards Trustworthy Aerospace Systems: An Experience Report Joost-Pieter Katoen 1/48 Towards Trustworthy Aerospace Systems: An Experience Report Joost-Pieter Katoen Software Modeling and Verification Group RWTH Aachen University Invited Talk at Formal Methods in

More information

Scalable Safety and Reliability Analysis via Symbolic Model Checking: Theory and Applications. Cristian Mattarei

Scalable Safety and Reliability Analysis via Symbolic Model Checking: Theory and Applications. Cristian Mattarei DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE ICT International Doctoral School Scalable Safety and Reliability Analysis via Symbolic Model Checking: Theory and Applications Cristian Mattarei

More information

COMP 763. Eugene Syriani. Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science. McGill University

COMP 763. Eugene Syriani. Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science. McGill University Eugene Syriani Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science McGill University 1 OVERVIEW In the context In Theory: Timed Automata The language: Definitions and Semantics

More information

Orccad Control Architecture

Orccad Control Architecture In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2006' ESTEC, Noordwijk, The Netherlands, November 28-30, 2006 Orccad Control Architecture K. Kapellos

More information

Model-based Programming: From Embedded Systems To Robotic Space Explorers

Model-based Programming: From Embedded Systems To Robotic Space Explorers Model-based Programming: From Embedded Systems To Robotic Space Explorers Brian C. Williams CSAIL Massachusetts Institute of Technology Failures Highlight The Challenge of Robustness Clementine Mars Climate

More information

Reductions and Satisfiability

Reductions and Satisfiability Reductions and Satisfiability 1 Polynomial-Time Reductions reformulating problems reformulating a problem in polynomial time independent set and vertex cover reducing vertex cover to set cover 2 The Satisfiability

More information

Automated Formal Methods for Embedded Systems

Automated Formal Methods for Embedded Systems Automated Formal Methods for Embedded Systems Bernd Finkbeiner Universität des Saarlandes Reactive Systems Group 2011/02/03 Bernd Finkbeiner (UdS) Embedded Systems 2011/02/03 1 / 48 Automated Formal Methods

More information

Symbolic Model Checking

Symbolic Model Checking Bug Catching 5-398 Symbolic Model Checking Hao Zheng Dept. of Computer Science & Eng. Univ. of South Florida Overview CTL model checking operates on sets. Calculates the fix points over finite state sets.

More information

Automated Software Synthesis for Complex Robotic Systems

Automated Software Synthesis for Complex Robotic Systems Automated Software Synthesis for Complex Robotic Systems Indranil Saha Department of Computer Science and Engineering Indian Institute of Technology Kanpur Indranil Saha Automated Software Synthesis for

More information

Model Checking. Automatic Verification Model Checking. Process A Process B. when not possible (not AI).

Model Checking. Automatic Verification Model Checking. Process A Process B. when not possible (not AI). Sérgio Campos scampos@dcc.ufmg.br Why? Imagine the implementation of a complex hardware or software system: A 100K gate ASIC perhaps 100 concurrent modules; A flight control system dozens of concurrent

More information

Lecture 11 Lecture 11 Nov 5, 2014

Lecture 11 Lecture 11 Nov 5, 2014 Formal Verification/Methods Lecture 11 Lecture 11 Nov 5, 2014 Formal Verification Formal verification relies on Descriptions of the properties or requirements Descriptions of systems to be analyzed, and

More information

List of figures List of tables Acknowledgements

List of figures List of tables Acknowledgements List of figures List of tables Acknowledgements page xii xiv xvi Introduction 1 Set-theoretic approaches in the social sciences 1 Qualitative as a set-theoretic approach and technique 8 Variants of QCA

More information

Model-Checking Concurrent Systems. The Model Checker Spin. The Model Checker Spin. Wolfgang Schreiner

Model-Checking Concurrent Systems. The Model Checker Spin. The Model Checker Spin. Wolfgang Schreiner Model-Checking Concurrent Systems Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at 1.

More information

Lost in translation. Leonardo de Moura Microsoft Research. how easy problems become hard due to bad encodings. Vampire Workshop 2015

Lost in translation. Leonardo de Moura Microsoft Research. how easy problems become hard due to bad encodings. Vampire Workshop 2015 Lost in translation how easy problems become hard due to bad encodings Vampire Workshop 2015 Leonardo de Moura Microsoft Research I wanted to give the following talk http://leanprover.github.io/ Automated

More information

Proofs and Proof Certification in the TLA + Proof System

Proofs and Proof Certification in the TLA + Proof System Proofs and Proof Certification in the TLA + Proof System Stephan Merz Inria Nancy Grand-Est & LORIA, Villers-lès-Nancy, France Abstract TLA + is a specification language originally designed for specifying

More information

Xuandong Li. BACH: Path-oriented Reachability Checker of Linear Hybrid Automata

Xuandong Li. BACH: Path-oriented Reachability Checker of Linear Hybrid Automata BACH: Path-oriented Reachability Checker of Linear Hybrid Automata Xuandong Li Department of Computer Science and Technology, Nanjing University, P.R.China Outline Preliminary Knowledge Path-oriented Reachability

More information

COrDeT Cannes : Use of domain engineering process to develop reusable architectures and building-blocks

COrDeT Cannes : Use of domain engineering process to develop reusable architectures and building-blocks COrDeT Cannes : Use of domain engineering process to develop reusable architectures and building-blocks G. Garcia 1, X. Olive 1, A. Pasetti 2, O. Rohlik 2, T. Vardanega 3, A.-I. Rodríguez-Rodríguez 4 A.

More information

Formal Methods for Software Development

Formal Methods for Software Development Formal Methods for Software Development Model Checking with Temporal Logic Wolfgang Ahrendt 21st September 2018 FMSD: Model Checking with Temporal Logic /GU 180921 1 / 37 Model Checking Check whether a

More information

Generating Tests for Detecting Faults in Feature Models

Generating Tests for Detecting Faults in Feature Models Generating Tests for Detecting Faults in Feature Models Paolo Arcaini 1, Angelo Gargantini 2, Paolo Vavassori 2 1 Charles University in Prague, Czech Republic 2 University of Bergamo, Italy Outline Feature

More information

Advanced VLSI Design Prof. Virendra K. Singh Department of Electrical Engineering Indian Institute of Technology Bombay

Advanced VLSI Design Prof. Virendra K. Singh Department of Electrical Engineering Indian Institute of Technology Bombay Advanced VLSI Design Prof. Virendra K. Singh Department of Electrical Engineering Indian Institute of Technology Bombay Lecture 40 VLSI Design Verification: An Introduction Hello. Welcome to the advance

More information

On the implementation of a multiple output algorithm for defeasible argumentation

On the implementation of a multiple output algorithm for defeasible argumentation On the implementation of a multiple output algorithm for defeasible argumentation Teresa Alsinet 1, Ramón Béjar 1, Lluis Godo 2, and Francesc Guitart 1 1 Department of Computer Science University of Lleida

More information

A Revisionist History of Denotational Semantics

A Revisionist History of Denotational Semantics A Revisionist History of Denotational Semantics Stephen Brookes Carnegie Mellon University Domains XIII July 2018 1 / 23 Denotational Semantics Compositionality Principle The meaning of a complex expression

More information

Unit 4: Formal Verification

Unit 4: Formal Verification Course contents Unit 4: Formal Verification Logic synthesis basics Binary-decision diagram (BDD) Verification Logic optimization Technology mapping Readings Chapter 11 Unit 4 1 Logic Synthesis & Verification

More information