Parametric Real Time System Feasibility Analysis Using Parametric Timed Automata

Size: px
Start display at page:

Download "Parametric Real Time System Feasibility Analysis Using Parametric Timed Automata"

Transcription

1 Parametric Real Time System Feasibility Analysis Using Parametric Timed Automata PhD Dissertation Yusi Ramadian Advisor : Luigi Palopoli Co advisor : Alessandro Cimatti 1

2 Real Time System Applications A computer based system, which produces results to inputs complying with some temporal constraints Page 2

3 Main Research Idea Real Time System Design Process Parameters Feasibility Analysis on Parametric Real Time System Parameter2 Region of Feasibility Correct and Robust Real Time System Parameter1 3

4 Contribution of PhD research Parametric Timed Automata (PTA) definition and representation of Real Time System Parametric Verification of Temporal Properties (PVTP) method Implementation in tool Quinq Application in case problems : periodic task system [RTSS08], heterogeneous system [ETFA10], collaboration with Modular Performance Analysis Toolbox (MPA) [CASES11]. Page 4

5 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 5

6 The Importance of CORRECT & ROBUST Real Time System Safety consideration Manufacturing consideration Variability in environment and run time Need for formalization of design process Page 6

7 Design Process Design & Modelling Activation pattern Timing properties Scheduling Algorithm Robustness & Parameter Tuning Assign values Evaluate system robustness w.r.t to parameters Functional Design Schedulability Region Functional Specification Mapping on RTS Architecture Design RTS Model RTS Model Environment Design Parameter Exogenous Parameter Parametric Feasibility Analysis Correct and Robust RTS Page 7

8 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 8

9 Sensitivity Analysis : Example Scenario Parameters Task 1 Task 2 Period Deadline Computation Time Offset 0 0 Task Task ? Page 9

10 Sensitivity Analysis : Example Scenario Discussion #1 Classical scheduling theory system failure Task system is not schedulable Solution Stronger machine (Hardware solution) Tweaking offset.. Page 10

11 Sensitivity Analysis : Region of Schedulability on Offsets Parameters Task 1 Task 2 Period Deadline Computation Time Offset 0? 0? O O Page 11

12 Sensitivity Analysis: Corrected Scenario Parameters Task 1 Task 2 Period Deadline Computation Time Offset 05 0 Task Task Page 12

13 Page 13 Sensitivity Analysis: Example Scenario Discussion #2: Robustness Parameters Task 1 Task 2 Period Deadline Computation Time 11? 12? Offset 5 0? System robustness =? C O2 O1 = 10 O2 O1 = 8 O2 O1= C1

14 Sensitivity Analysis Requirement conclusion #1: We want to find out : the schedulability regions in the space of parameters most robust design for our real-time systems Page 14

15 Sensitivity Analysis: Example Scenario Discussion #3: System model not in classical RTS Examples: System with buffers Complex activation pattern Heterogeneous, distributed system Flexible deadline (e.g. Firm Deadline) Page 15

16 Sensitivity Analysis Requirement conclusion #2 Sensitivity analysis for general real time system Page 16

17 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 17

18 Sensitivity Analysis: Formal problem definition Problem 1: System S Task 1 Task 2 Task n Scheduling Algorithm P :{P1, P2, Pn} P1 R P2 Page 18

19 Sensitivity Analysis: Formal problem definition Problem 2: System S Task 1 Task 2 Task n P :{P1, P2, Pn} P1 R Γ P2 Page 19

20 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 20

21 Parametric Timed Automata Timed automata with parameters extension Main differences: Parameters Auxiliary variables General update statement Page 21

22 Real Time System in PTA: Activation Pattern Allow complex activation pattern Avoiding restrictive 0 offset Wait for offset Clock O1 Activation depending on other tasks Release τ1 Clock=O1 Clock:= 0 Release τ2 Clock=Q2 Clock:= 0 Release τ2 Clock=Q2 Clock:= 0 Wait for Q1 Clock Q1 Wait for Q2 Clock Q2 Wait for event Activation depending on time Release τ1 General Clock=Q1 update Clock:= Clock Q2 Activation depending on environment Release τ3 Event_e = True Clock:= 0 Page 22

23 Real Time System in PTA: Feasibility Checker Parameter Idle Release τ1 Clock_x:=0 r:= C1 Release τ1 Check Clock_x=D1 Clock_x r Error Clock_x=r Busy Release τ1 Clock_x:=0 r:= C1 Clock_x=r Release τ1 r:= r + C1 Release τ1 Clock_x:=0 r:= r + C1 Clock_x Auxiliary Variables Page 23

24 Sensitivity Analysis via PTA PTA : L4 P1 L4 L1 L3 Activation Automata L2 P1 Activation Automata Feasibility region R: P2 L4 L4 L1 L3 Activation Automata P2 L2 Pn L4 L4 L1 Pn L3 Feasibility Checker Automata L2 P1 R R P2 Page 24

25 Symbolic representation of PTA Current state variables V: Discrete vars D: Location, transitions as boolean Continuous vars X: Clocks and other variables as real Symbolic model of PTA : set of constraints on boolean and real variables Examples: Loc i x y O1 Trans i (x C1) (x = C1+x) (y = y) Page 25

26 Bounded Model Checking (BMC) Look only for counterexample made of k states BMC(k): I(V 0 ) R(V 0,V 1 ) R(V k 1,V k ) Error(V k ) Completeness of the solution is not guaranteed Complementing method : inductive reasoning S0 S1 Sk Error Error Error Page 26

27 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 27

28 PTVP algorithm intuition: Search for an error trace Verification on reachability problem using BMC: An error trace for every found counterexample Alternatively, error trace can be searched via nonparametric model checker An error trace π : L1 L2 Error Page 28

29 PTVP algorithm intuition: An error trace π Along with the trace, an assignment for the parameters that validate the trace is produced L1 L2 Error P2? Γ P1 Page 29

30 PTVP algorithm intuition: Sensitivity analysis to an error trace By processing the trace, the surrounding region of parameters that make the trace true is identified And we rule this region out from the next search L1 L2 Error P2? Γ P1 Page 30

31 PTVP algorithm intuition: Schedulability region Feasibility region : found by iteratively bounding the parameter space from the unschedulability regions L1 L2 Error P2 Γ Final Schedulability Region P1 31

32 Parametric Verification of Temporal Properties (PVTP) Algorithm Error Trace Search Sensitivity Analysis Region Exclusion Collection of regions Page 32

33 Sensitivity Analysis Given Polyhedron in the space of clocks and parameters Poly{P, X} Obtain Poly{P} < > X, Poly {P, X} Existential Quantifier Elimination Page 33

34 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 34

35 Implementation in Quinq Based on NuSMV3 symbolic model checker with underlying MathSAT SMT solver Main functionalities : Input handling PVTP algorithm implementation Completion check Output handling Components Sensitivity add on High level periodic system analysis Search optimization Model checker drivers Graph generator Blackbox components : UPPAAL, JUNT, existelim Page 35

36 Architecture RTS Model QUINQ Input Handling NuSMV3 PVTP Implementation UPPAAL Output handling Feasibility Region Page 36

37 Input Handling Periodic System Input Input Handling Automatic Periodic Analysis NuSMV Model JUNT UPPAAL Model NuSMV Model 37

38 Input via UPPAAL Model UPPAAL Model Parameters JUNT NuSMV Model (Non Parametric) Parametric Model Generator NuSMV Model (Parametric) Point of Considerations: Integer vs Real domain Array data structure Clocks Transition synchronization Page 38

39 Architecture RTS Model QUINQ Input Handling NuSMV3 PVTP Implementation UPPAAL Output handling Feasibility Region Page 39

40 Parametric Verification of Temporal Property Implementation NuSMV Model PVTP Implementation Error Trace Search Error Trace Sensitivity Analysis Feasibility Region 40

41 PTVP Algorithm Implementation NuSMV Model Error Trace Search NuSMV3 Parametric search Non parametric search UPPAAL Error Trace Page 41

42 Non Parametric Search UPPAAL Model+Parameters Non parametric search UPPAAL Search Point Generator Trace Translation Trace Replication NuSMV3 Error Trace Page 42

43 Sensitivity Analysis : Implementation Sensitivity Analysis Model + Error Trace Polyhedral region in parameters space Trace Extraction Constraint Processing After Processing Polyhedral region in clocks and variables space Parametric Constraints Page 43

44 Constraint Processing Constraint Processing Constraints in Clocks & Vars Reorder expression Case Handling Equality Constraint Propagation Existelim Parametric Constraints Page 44

45 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 45

46 DEMO Previously Illustrated example: 2 periodic tasks system with 3 parameters S = {task1, task2} Periodic tasks : T1=D1=20, T2=D2=30 Offset : O1 = 0 Parameters : Computation time: C1, C2 Offset : O2 Page 46

47 Demo:result Offset2 = 15 8 Page 47

48 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 48

49 Sensitivity Analysis Tools Tool Flexible RTS Expression System known apriori Inference Point Number of Parameters Feasibility Region Bini No limit MAST SMART * No limit* IMITATOR * 2 QUINQ No limit* Page 49

50 Presentation Outline Motivation Real time system design Example scenario Problem Statement Solution Parametric Timed Automata Parametric Verification of Temporal Property Method Implementation in Quinq Architecture Demo State of the art Conclusion 50

51 Conclusion PTA representation flexible activation pattern, general RTS presentation PVTP algorithm General method to obtain feasibility region Implemented in Quinq with applications on some example cases Edge on comparison with other tools: Flexible RTS representation No reference point input needed Whole region of schedulability result Page 51

52 K Induction Does there exist k such that the following formula is unsatisfiable S0 S1 Sk 1 Error Error Error Sk Error if unsatisfiable and BMC(k) unsatisfiable then error state unreachable 52

Parameter Synthesis with IC3

Parameter Synthesis with IC3 Parameter Synthesis with IC3 Alessandro Cimatti Email: cimatti@fbk.eu Alberto Griggio Email: griggio@fbk.eu Sergio Mover Email: mover@fbk.eu Stefano Tonetta Email: tonettas@fbk.eu Abstract Parametric systems

More information

Xuandong Li. BACH: Path-oriented Reachability Checker of Linear Hybrid Automata

Xuandong Li. BACH: Path-oriented Reachability Checker of Linear Hybrid Automata BACH: Path-oriented Reachability Checker of Linear Hybrid Automata Xuandong Li Department of Computer Science and Technology, Nanjing University, P.R.China Outline Preliminary Knowledge Path-oriented Reachability

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

Overview of Timed Automata and UPPAAL

Overview of Timed Automata and UPPAAL Overview of Timed Automata and UPPAAL Table of Contents Timed Automata Introduction Example The Query Language UPPAAL Introduction Example Editor Simulator Verifier Conclusions 2 Introduction to Timed

More information

Parametric Analysis of Distributed Firm Real-Time Systems: A Case Study

Parametric Analysis of Distributed Firm Real-Time Systems: A Case Study Parametric Analysis of Distributed Firm Real-Time Systems: A Case Study Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, Yusi Ramadian DISI - University of Trento, Trento, Italy Alessandro Cimatti

More information

Overview of SRI s. Lee Pike. June 3, 2005 Overview of SRI s. Symbolic Analysis Laboratory (SAL) Lee Pike

Overview of SRI s. Lee Pike. June 3, 2005 Overview of SRI s. Symbolic Analysis Laboratory (SAL) Lee Pike June 3, 2005 lee.s.pike@nasa.gov Model-Checking 101 Model-checking is a way automatically to verify hardware or software. For a property P, A Model-checking program checks to ensure that every state on

More information

Bounded Model Checking with Parametric Data Structures

Bounded Model Checking with Parametric Data Structures Bounded Model Checking with Marc Herbstritt (joint work with Erika Ábrahám, Bernd Becker, Martin Steffen) www.avacs.org August 15 2006 4th International Workshop on Bounded Model Checking Context Automated

More information

Action Language Verifier, Extended

Action Language Verifier, Extended Action Language Verifier, Extended Tuba Yavuz-Kahveci 1, Constantinos Bartzis 2, and Tevfik Bultan 3 1 University of Florida 2 Carnegie Mellon University 3 UC, Santa Barbara 1 Introduction Action Language

More information

Model Checking Embedded C Software using k-induction and Invariants

Model Checking Embedded C Software using k-induction and Invariants FEDERAL UNIVERSITY OF RORAIMA and FEDERAL UNIVESITY OF AMAZONAS Model Checking Embedded C Software using k-induction and Invariants Herbert Rocha, Hussama Ismail, Lucas Cordeiro and Raimundo Barreto Agenda

More information

Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols

Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols Temporal Refinement Using SMT and Model Checking with an Application to Physical-Layer Protocols Lee Pike (Presenting), Galois, Inc. leepike@galois.com Geoffrey M. Brown, Indiana University geobrown@cs.indiana.edu

More information

NuSMV 2.2 Tutorial. Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore and Marco Roveri

NuSMV 2.2 Tutorial. Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore and Marco Roveri NuSMV 2.2 Tutorial Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore and Marco Roveri IRST - Via Sommarive 18, 38055 Povo (Trento) Italy Email: nusmv@irst.itc.it Contents

More information

Reasoning about Timed Systems Using Boolean Methods

Reasoning about Timed Systems Using Boolean Methods Reasoning about Timed Systems Using Boolean Methods Sanjit A. Seshia EECS, UC Berkeley Joint work with Randal E. Bryant (CMU) Kenneth S. Stevens (Intel, now U. Utah) Timed System A system whose correctness

More information

Symbolic Synthesis of Observability Requirements for Diagnosability

Symbolic Synthesis of Observability Requirements for Diagnosability Symbolic Synthesis of Observability Requirements for Diagnosability B. Bittner 1,2 M.Bozzano 2 A. Cimatti 2 X. Olive 3 1 University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands bittner@science.uva.nl

More information

Lecture 2. Decidability and Verification

Lecture 2. Decidability and Verification Lecture 2. Decidability and Verification model temporal property Model Checker yes error-trace Advantages Automated formal verification, Effective debugging tool Moderate industrial success In-house groups:

More information

Deductive Methods, Bounded Model Checking

Deductive Methods, Bounded Model Checking Deductive Methods, Bounded Model Checking http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Deductive methods Pavel Parízek Deductive Methods, Bounded

More information

Model-based Analysis of Event-driven Distributed Real-time Embedded Systems

Model-based Analysis of Event-driven Distributed Real-time Embedded Systems Model-based Analysis of Event-driven Distributed Real-time Embedded Systems Gabor Madl Committee Chancellor s Professor Nikil Dutt (Chair) Professor Tony Givargis Professor Ian Harris University of California,

More information

NO WARRANTY. Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

NO WARRANTY. Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder. NO WARRANTY THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING INSTITUTE IS FURNISHED ON AN AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED

More information

Automatic synthesis of switching controllers for linear hybrid systems: Reachability control

Automatic synthesis of switching controllers for linear hybrid systems: Reachability control Automatic synthesis of switching controllers for linear hybrid systems: Reachability control Massimo Benerecetti and Marco Faella Università di Napoli Federico II, Italy Abstract. We consider the problem

More information

More on Verification and Model Checking

More on Verification and Model Checking More on Verification and Model Checking Wednesday Oct 07, 2015 Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se 1/60 Course fair! 2/60 Exam st October 21, 8:00 13:00 If you want to participate,

More information

Hierarchical Composition and Abstraction In Architecture Models

Hierarchical Composition and Abstraction In Architecture Models Hierarchical Composition and Abstraction In Architecture Models Pam Binns and Steve Vestal Honeywell Labs {pam.binns, steve.vestal}@honeywell.com Supported by the Air Force Office of Scientific Research

More information

Verification of Behavior-Based Control Systems in their Physical Environment

Verification of Behavior-Based Control Systems in their Physical Environment Verification of Behavior-Based Control Systems in their Physical Environment Thorsten Ropertz, Prof. Dr. Karsten Berns Robotics Research Lab Department of Computer Science University of Kaiserslautern,

More information

Formally Certified Satisfiability Solving

Formally Certified Satisfiability Solving SAT/SMT Proof Checking Verifying SAT Solver Code Future Work Computer Science, The University of Iowa, USA April 23, 2012 Seoul National University SAT/SMT Proof Checking Verifying SAT Solver Code Future

More information

want turn==me wait req2==0

want turn==me wait req2==0 Uppaal2k: Small Tutorial Λ 16 October 2002 1 Introduction This document is intended to be used by new comers to Uppaal and verification. Students or engineers with little background in formal methods should

More information

Distributed Systems Programming (F21DS1) Formal Verification

Distributed Systems Programming (F21DS1) Formal Verification Distributed Systems Programming (F21DS1) Formal Verification Andrew Ireland Department of Computer Science School of Mathematical and Computer Sciences Heriot-Watt University Edinburgh Overview Focus on

More information

Andrew Reynolds Liana Hadarean

Andrew Reynolds Liana Hadarean 425,7 3!7441$ 89028147 30,7 #0, 7 9 209.&8 3 $ Andrew Reynolds Liana Hadarean July 15, 2010 1 . 34 0/ 020398 University of Iowa Andrew Reynolds, Cesare Tinelli, Aaron Stump Liana Hadarean, Yeting Ge, Clark

More information

Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems

Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems Insup Lee 1, Oleg Sokolsky 1, Anna Philippou 2 1 RTG (Real-Time Systems Group) Department of

More information

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis

Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis Sciduction: Combining Induction, Deduction and Structure for Verification and Synthesis (abridged version of DAC slides) Sanjit A. Seshia Associate Professor EECS Department UC Berkeley Design Automation

More information

Applying Multi-Core Model Checking to Hardware-Software Partitioning in Embedded Systems

Applying Multi-Core Model Checking to Hardware-Software Partitioning in Embedded Systems V Brazilian Symposium on Computing Systems Engineering Applying Multi-Core Model Checking to Hardware-Software Partitioning in Embedded Systems Alessandro Trindade, Hussama Ismail, and Lucas Cordeiro Foz

More information

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers Isil Dillig, Thomas Dillig, and Alex Aiken Computer Science Department Stanford University Linear Arithmetic

More information

Towards Compositional Testing of Real-Time Systems

Towards Compositional Testing of Real-Time Systems Towards Compositional Testing of Real-Time Systems Kim G Larsen, Axel Legay, Marius Mikucionis, Brian Nielsen, Ulrik Nyman Aalborg University, DENMARK Compositional Testing Integration of fully conformant

More information

Pluggable SAT-Solvers for SMT-Solvers

Pluggable SAT-Solvers for SMT-Solvers Pluggable SAT-Solvers for SMT-Solvers Bas Schaafsma DISI, University of Trento & Fondazione Bruno Kessler May 29, 2013 http://mathsat.fbk.eu/ 1 The SAT/SMT problem Applications of SAT/SMT-Solvers Motivation

More information

Formal Methods in Software Engineering. Lecture 07

Formal Methods in Software Engineering. Lecture 07 Formal Methods in Software Engineering Lecture 07 What is Temporal Logic? Objective: We describe temporal aspects of formal methods to model and specify concurrent systems and verify their correctness

More information

Satisfiability Modulo Theories: ABsolver

Satisfiability Modulo Theories: ABsolver Satisfiability Modulo Theories: ABsolver Michael Tautschnig Joint work with: Andreas Bauer Martin Leucker Christian Schallhart Michael Tautschnig 1 Outline 1. Introduction Michael Tautschnig 2 Outline

More information

DSVerifier: A Bounded Model Checking Tool for Digital Systems

DSVerifier: A Bounded Model Checking Tool for Digital Systems DSVerifier: A Bounded Model Checking Tool for Digital Systems Hussama I. Ismail, Iury V. Bessa, Lucas C. Cordeiro, Eddie B. de Lima Filho and João E. Chaves Filho Electronic and Information Research Center

More information

Introduction. Preliminaries. Original IC3. Tree-IC3. IC3 on Control Flow Automata. Conclusion

Introduction. Preliminaries. Original IC3. Tree-IC3. IC3 on Control Flow Automata. Conclusion .. Introduction Preliminaries Original IC3 Tree-IC3 IC3 on Control Flow Automata Conclusion 2 of 22 Lifting IC3 to Control Flow Automata Tim Lange tim.lange@cs.rwth-aachen.de Introduction Preliminaries

More information

An Introduction to UPPAAL. Purandar Bhaduri Dept. of CSE IIT Guwahati

An Introduction to UPPAAL. Purandar Bhaduri Dept. of CSE IIT Guwahati An Introduction to UPPAAL Purandar Bhaduri Dept. of CSE IIT Guwahati Email: pbhaduri@iitg.ernet.in OUTLINE Introduction Timed Automata UPPAAL Example: Train Gate Example: Task Scheduling Introduction UPPAAL:

More information

M. De Wulf, L. Doyen,J.-F. Raskin Université Libre de Bruxelles Centre Fédéré en Vérification

M. De Wulf, L. Doyen,J.-F. Raskin Université Libre de Bruxelles Centre Fédéré en Vérification Systematic Implementation of Real-Time Models M. De Wulf, L. Doyen,J.-F. Raskin Université Libre de Bruxelles Centre Fédéré en Vérification Model-based Development for Controllers Make a model of the environment

More information

Complete Instantiation of Quantified Formulas in Satisfiability Modulo Theories. ACSys Seminar

Complete Instantiation of Quantified Formulas in Satisfiability Modulo Theories. ACSys Seminar Complete Instantiation of Quantified Formulas in Satisfiability Modulo Theories Yeting Ge Leonardo de Moura ACSys Seminar 2008.12 Motivation SMT solvers have been successful Quantified smt formulas are

More information

Introduction to Linear-Time Temporal Logic. CSE 814 Introduction to LTL

Introduction to Linear-Time Temporal Logic. CSE 814 Introduction to LTL Introduction to Linear-Time Temporal Logic CSE 814 Introduction to LTL 1 Outline Motivation for TL in general Types of properties to be expressed in TL Structures on which LTL formulas are evaluated Syntax

More information

The UPPAAL Model Checker. Julián Proenza Systems, Robotics and Vision Group. UIB. SPAIN

The UPPAAL Model Checker. Julián Proenza Systems, Robotics and Vision Group. UIB. SPAIN The UPPAAL Model Checker Julián Proenza Systems, Robotics and Vision Group. UIB. SPAIN The aim of this presentation Introduce the basic concepts of model checking from a practical perspective Describe

More information

MODEL-BASED DESIGN OF CODE FOR PLC CONTROLLERS

MODEL-BASED DESIGN OF CODE FOR PLC CONTROLLERS Krzysztof Sacha Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland k.sacha@ia.pw.edu.pl Keywords: Abstract: Automatic program generation, Model verification, Finite state machine,

More information

Minimum Satisfying Assignments for SMT. Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U.

Minimum Satisfying Assignments for SMT. Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U. Minimum Satisfying Assignments for SMT Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken College of William & Mary Microsoft Research Stanford U. 1 / 20 Satisfiability Modulo Theories (SMT) Today, SMT solvers

More information

Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints

Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints L. Cordeiro, B. Fischer, H. Chen, J. P. Marques-Silva Lucas Cordeiro lcc08r@ecs.soton.ac.uk Agenda

More information

HySAT. what you can use it for how it works example from application domain final remarks. Christian Herde /12

HySAT. what you can use it for how it works example from application domain final remarks. Christian Herde /12 CP2007: Presentation of recent CP solvers HySAT what you can use it for how it works example from application domain final remarks Christian Herde 25.09.2007 /2 What you can use it for Satisfiability checker

More information

Introduction to Model Checking

Introduction to Model Checking Introduction to Model Checking René Thiemann Institute of Computer Science University of Innsbruck WS 2007/2008 RT (ICS @ UIBK) week 4 1/23 Outline Promela - Syntax and Intuitive Meaning Promela - Formal

More information

Model Checking Revision: Model Checking for Infinite Systems Revision: Traffic Light Controller (TLC) Revision: 1.12

Model Checking Revision: Model Checking for Infinite Systems Revision: Traffic Light Controller (TLC) Revision: 1.12 Model Checking mc Revision:.2 Model Checking for Infinite Systems mc 2 Revision:.2 check algorithmically temporal / sequential properties fixpoint algorithms with symbolic representations: systems are

More information

Partitioned Fixed-Priority Scheduling of Parallel Tasks Without Preemptions

Partitioned Fixed-Priority Scheduling of Parallel Tasks Without Preemptions Partitioned Fixed-Priority Scheduling of Parallel Tasks Without Preemptions *, Alessandro Biondi *, Geoffrey Nelissen, and Giorgio Buttazzo * * ReTiS Lab, Scuola Superiore Sant Anna, Pisa, Italy CISTER,

More information

Cyber Physical System Verification with SAL

Cyber Physical System Verification with SAL Cyber Physical System Verification with July 22, 2013 Cyber Physical System Verification with Outline 1 2 3 4 5 Cyber Physical System Verification with Table of Contents 1 2 3 4 5 Cyber Physical System

More information

Hybrid Systems Analysis of Periodic Control Systems using Continuization

Hybrid Systems Analysis of Periodic Control Systems using Continuization Hybrid Systems Analysis of Periodic Control Systems using Continuization Stanley Bak Air Force Research Lab Information Directorate June 2015 DISTRIBUTION A. Approved for public release; Distribution unlimited.

More information

A Simple Tutorial on NuSMV

A Simple Tutorial on NuSMV NuSMV-tutorial 1 A Simple Tutorial on NuSMV Chenyi Zhang March 28, 2007 For a comprehensive tutorial, please visit the site http://nusmv.irst.itc.it/ NuSMV-tutorial 2 Introduction History SMV is the first

More information

Verifying Temporal Properties via Dynamic Program Execution. Zhenhua Duan Xidian University, China

Verifying Temporal Properties via Dynamic Program Execution. Zhenhua Duan Xidian University, China Verifying Temporal Properties via Dynamic Program Execution Zhenhua Duan Xidian University, China Main Points Background & Motivation MSVL and Compiler PPTL Unified Program Verification Tool Demo Conclusion

More information

Modeling and Verification of Networkon-Chip using Constrained-DEVS

Modeling and Verification of Networkon-Chip using Constrained-DEVS Modeling and Verification of Networkon-Chip using Constrained-DEVS Soroosh Gholami Hessam S. Sarjoughian School of Computing, Informatics, and Decision Systems Engineering Arizona Center for Integrative

More information

Acceleration of SAT-based Iterative Property Checking

Acceleration of SAT-based Iterative Property Checking Acceleration of SAT-based Iterative Property Checking Daniel Große Rolf Drechsler Institute of Computer Science University of Bremen 28359 Bremen, Germany {grosse, drechsle}@informatik.uni-bremen.de Abstract

More information

Formal Analysis of the ACE Specification for Cache Coherent Systems-On-Chip

Formal Analysis of the ACE Specification for Cache Coherent Systems-On-Chip Formal Analysis of the ACE Specification for Cache Coherent Systems-On-Chip Abderahman KRIOUILE PhD student, STMicroelectronics Inria Rhône-Alpes LIG Wendelin SERWE Research scientist, Inria Rhône-Alpes

More information

Scenario Graphs Applied to Security (Summary Paper)

Scenario Graphs Applied to Security (Summary Paper) Book Title Book Editors IOS Press, 2003 1 Scenario Graphs Applied to Security (Summary Paper) Jeannette M. Wing Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 US Abstract.

More information

Verifying C & C++ with ESBMC

Verifying C & C++ with ESBMC Verifying C & C++ with ESBMC Denis A Nicole dan@ecs.soton.ac.uk CyberSecuritySoton.org [w] @CybSecSoton [fb & tw] ESBMC ESBMC, the Efficient SMT-Based Context-Bounded Model Checker was originally developed

More information

Predicate Refinement Heuristics in Program Verification with CEGAR

Predicate Refinement Heuristics in Program Verification with CEGAR Predicate Refinement Heuristics in Program Verification with CEGAR Tachio Terauchi (JAIST) Part of this is joint work with Hiroshi Unno (U. Tsukuba) 1 Predicate Abstraction with CEGAR Iteratively generate

More information

Improved BDD-based Discrete Analysis of Timed Systems

Improved BDD-based Discrete Analysis of Timed Systems Improved BDD-based Discrete Analysis of Timed Systems Truong Khanh Nguyen 1, Jun Sun 2, Yang Liu 1, Jin Song Dong 1 and Yan Liu 1 1 School of Computing National University of Singapore 2 Information System

More information

Fachgebiet Softwaretechnik, Heinz Nixdorf Institut, Universität Paderborn. 2.3 Timed Automata and Real-Time Statecharts

Fachgebiet Softwaretechnik, Heinz Nixdorf Institut, Universität Paderborn. 2.3 Timed Automata and Real-Time Statecharts 2.3 Timed Automata and Real-Time Statecharts Develop a BOOK RATING APP and win awesome prizes! The creators of the best submissions will be invited to an exclusive party in February

More information

Building Graphical Promela Models using UPPAAL GUI

Building Graphical Promela Models using UPPAAL GUI Building Graphical Promela Models using UPPAAL GUI Master s Thesis Report by Vasu Hossaholal Lingegowda Software Systems Engineering Group: B2-201 under the guidance of Dr. Alexandre David Department of

More information

KRATOS A Software Model Checker for SystemC

KRATOS A Software Model Checker for SystemC KRATOS A Software Model Checker for SystemC A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri Fondazione Bruno Kessler Irst {cimatti,griggio,amicheli,narasamdya,roveri}@fbk.eu Abstract.

More information

Fine-grained Compatibility and Replaceability Analysis of Timed Web Service Protocols

Fine-grained Compatibility and Replaceability Analysis of Timed Web Service Protocols Fine-grained Compatibility and Replaceability Analysis of Timed Web Service Protocols Julien Ponge 1,2, Boualem Benatallah 2, Fabio Casati 3 and Farouk Toumani 1 (1) Université Blaise Pascal, Clermont-Ferrand,

More information

COMP 763. Eugene Syriani. Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science. McGill University

COMP 763. Eugene Syriani. Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science. McGill University Eugene Syriani Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science McGill University 1 OVERVIEW In the context In Theory: Timed Automata The language: Definitions and Semantics

More information

BOOGIE. Presentation by Itsik Hefez A MODULAR REUSABLE VERIFIER FOR OBJECT-ORIENTED PROGRAMS MICROSOFT RESEARCH

BOOGIE. Presentation by Itsik Hefez A MODULAR REUSABLE VERIFIER FOR OBJECT-ORIENTED PROGRAMS MICROSOFT RESEARCH BOOGIE A MODULAR REUSABLE VERIFIER FOR OBJECT-ORIENTED PROGRAMS MICROSOFT RESEARCH Presentation by Itsik Hefez Introduction Boogie is an intermediate verification language, intended as a layer on which

More information

Model Checking. Automatic Verification Model Checking. Process A Process B. when not possible (not AI).

Model Checking. Automatic Verification Model Checking. Process A Process B. when not possible (not AI). Sérgio Campos scampos@dcc.ufmg.br Why? Imagine the implementation of a complex hardware or software system: A 100K gate ASIC perhaps 100 concurrent modules; A flight control system dozens of concurrent

More information

HECTOR: Formal System-Level to RTL Equivalence Checking

HECTOR: Formal System-Level to RTL Equivalence Checking ATG SoC HECTOR: Formal System-Level to RTL Equivalence Checking Alfred Koelbl, Sergey Berezin, Reily Jacoby, Jerry Burch, William Nicholls, Carl Pixley Advanced Technology Group Synopsys, Inc. June 2008

More information

Using Hybrid Automata for Early Spacecraft Design Evaluation

Using Hybrid Automata for Early Spacecraft Design Evaluation Seminar Operating Systems: Winter Semester 18/19 Using Hybrid Automata for Early Spacecraft Design Evaluation Jafar Akhundov Motivation Motivation: Spacecraft Modelling Gaia - mission to chart a 3d-map

More information

Model checking Timber program. Paweł Pietrzak

Model checking Timber program. Paweł Pietrzak Model checking Timber program Paweł Pietrzak 1 Outline Background on model checking (spam?) The SPIN model checker An exercise in SPIN - model checking Timber Deriving finite models from Timber programs

More information

Temporal Logic and Timed Automata

Temporal Logic and Timed Automata Information Systems Analysis Temporal Logic and Timed Automata (5) UPPAAL timed automata Paweł Głuchowski, Wrocław University of Technology version 2.3 Contents of the lecture Tools for automatic verification

More information

A Modal Specification Approach for Assuring the Safety of On-Demand Medical Cyber-Physical Systems

A Modal Specification Approach for Assuring the Safety of On-Demand Medical Cyber-Physical Systems A Modal Specification Approach for Assuring the Safety of On-Demand Medical Cyber-Physical Systems Lu Feng PRECISE Center Department of Computer and Information Science University of Pennsylvania lufeng@cis.upenn.edu

More information

Negations in Refinement Type Systems

Negations in Refinement Type Systems Negations in Refinement Type Systems T. Tsukada (U. Tokyo) 14th March 2016 Shonan, JAPAN This Talk About refinement intersection type systems that refute judgements of other type systems. Background Refinement

More information

Optimal Implementation of Simulink Models on Multicore Architectures with Partitioned Fixed Priority Scheduling

Optimal Implementation of Simulink Models on Multicore Architectures with Partitioned Fixed Priority Scheduling The 39th IEEE Real-Time Systems Symposium (RTSS 18) Optimal Implementation of Simulink Models on Multicore Architectures with Partitioned Fixed Priority Scheduling Shamit Bansal, Yecheng Zhao, Haibo Zeng,

More information

Outline. Introduction SDV Motivation Model vs Real Implementation SLIC SDVRP SLAM-2 Comparisons Conclusions

Outline. Introduction SDV Motivation Model vs Real Implementation SLIC SDVRP SLAM-2 Comparisons Conclusions Outline Introduction SDV Motivation Model vs Real Implementation SIC SDVRP SAM-2 Comparisons Conclusions SDV Research Platform Academic release of SDV (Static Driver Verifier), based on the code that ships

More information

From Interaction Overview Diagrams to Temporal Logic

From Interaction Overview Diagrams to Temporal Logic From Interaction Overview Diagrams to Temporal Logic Politecnico di Milano Dipartimento di Elettronica e Informazione Luciano Baresi, Angelo Morzenti, Alfredo Motta, Matteo Rossi {baresi morzenti motta

More information

BACH 2 : Bounded ReachAbility CHecker for Compositional Linear Hybrid Systems

BACH 2 : Bounded ReachAbility CHecker for Compositional Linear Hybrid Systems : Bounded ReachAbility CHecker for Compositional Linear Hybrid Systems Lei Bu, You Li, Linzhang Wang, Xin Chen, and Xuandong Li State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing,

More information

DPLL(Γ+T): a new style of reasoning for program checking

DPLL(Γ+T): a new style of reasoning for program checking DPLL(Γ+T ): a new style of reasoning for program checking Dipartimento di Informatica Università degli Studi di Verona Verona, Italy June, 2011 Motivation: reasoning for program checking Program checking

More information

Automated Software Synthesis for Complex Robotic Systems

Automated Software Synthesis for Complex Robotic Systems Automated Software Synthesis for Complex Robotic Systems Indranil Saha Department of Computer Science and Engineering Indian Institute of Technology Kanpur Indranil Saha Automated Software Synthesis for

More information

UPPAAL. Verification Engine, Options & Patterns. Alexandre David

UPPAAL. Verification Engine, Options & Patterns. Alexandre David UPPAAL Verification Engine, Options & Patterns Alexandre David 1.2.05 Outline UPPAAL Modelling Language Specification Language UPPAAL Verification Engine Symbolic exploration algorithm Zones & DBMs Verification

More information

Timing Analysis Enhancement for Synchronous Program

Timing Analysis Enhancement for Synchronous Program Timing Analysis Enhancement for Synchronous Program Extended Abstract Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Fabienne Carrier, and Mihail Asavoae Grenoble-Alpes University Verimag, Centre

More information

Automated Reasoning Lecture 3: The NuSMV Model Checker

Automated Reasoning Lecture 3: The NuSMV Model Checker Automated Reasoning Lecture 3: The NuSMV Model Checker Jacques Fleuriot jdf@inf.ed.ac.uk Recap Previously: Model Checking Introduction Linear Temporal Logic This time: An implementation of LTL Model Checking

More information

Efficient Synthesis of Production Schedules by Optimization of Timed Automata

Efficient Synthesis of Production Schedules by Optimization of Timed Automata Efficient Synthesis of Production Schedules by Optimization of Timed Automata Inga Krause Institute of Automatic Control Engineering Technische Universität München inga.krause@mytum.de Joint Advanced Student

More information

A UNITY-based Formalism for Dynamic Distributed Systems

A UNITY-based Formalism for Dynamic Distributed Systems A UNITY-based Formalism for Dynamic Distributed Systems Daniel M. Zimmerman Computer Science 256-80 California Institute of Technology Pasadena, California 91125 USA dmz@cs.caltech.edu Abstract We describe

More information

SMT-Based Bounded Model Checking for Embedded ANSI-C Software. Lucas Cordeiro, Bernd Fischer, Joao Marques-Silva

SMT-Based Bounded Model Checking for Embedded ANSI-C Software. Lucas Cordeiro, Bernd Fischer, Joao Marques-Silva SMT-Based Bounded Model Checking for Embedded ANSI-C Software Lucas Cordeiro, Bernd Fischer, Joao Marques-Silva b.fischer@ecs.soton.ac.uk Bounded Model Checking (BMC) Basic Idea: check negation of given

More information

Performance models for master/slave parallel programs

Performance models for master/slave parallel programs Performance models for master/slave parallel programs PASM 2004 Lucas Baldo Leonardo Brenner Luiz G. Fernandes Paulo Fernandes Afonso Sales {lbaldo, lbrenner, gustavo, paulof, asales}@inf.pucrs.br. PUCRS

More information

Overview. Discrete Event Systems - Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for?

Overview. Discrete Event Systems - Verification of Finite Automata. What can finite automata be used for? What can finite automata be used for? Computer Engineering and Networks Overview Discrete Event Systems - Verification of Finite Automata Lothar Thiele Introduction Binary Decision Diagrams Representation of Boolean Functions Comparing two

More information

Lecture 9: Reachability

Lecture 9: Reachability Lecture 9: Reachability Outline of Lecture Reachability General Transition Systems Algorithms for Reachability Safety through Reachability Backward Reachability Algorithm Given hybrid automaton H : set

More information

Research Collection. Formal background and algorithms. Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2001

Research Collection. Formal background and algorithms. Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2001 Research Collection Other Conference Item Formal background and algorithms Author(s): Biere, Armin Publication Date: 2001 Permanent Link: https://doi.org/10.3929/ethz-a-004239730 Rights / License: In Copyright

More information

A Tutorial on Runtime Verification and Assurance. Ankush Desai EECS 219C

A Tutorial on Runtime Verification and Assurance. Ankush Desai EECS 219C A Tutorial on Runtime Verification and Assurance Ankush Desai EECS 219C Outline 1. Background on Runtime Verification 2. Challenges in Programming Robotics System Drona). 3. Solution 1: Combining Model

More information

Pooya Saadatpanah, Michalis Famelis, Jan Gorzny, Nathan Robinson, Marsha Chechik, Rick Salay. September 30th, University of Toronto.

Pooya Saadatpanah, Michalis Famelis, Jan Gorzny, Nathan Robinson, Marsha Chechik, Rick Salay. September 30th, University of Toronto. Comparing the Pooya Michalis Jan Nathan Marsha Chechik, Rick Salay University of Toronto September 30th, 2012 MoDeVVa 12 1 / 32 in software modeling : pervasive in MDE Models with uncertainty: Represent

More information

VHDL framework for modeling fuzzy automata

VHDL framework for modeling fuzzy automata Doru Todinca Daniel Butoianu Department of Computers Politehnica University of Timisoara SYNASC 2012 Outline Motivation 1 Motivation Why fuzzy automata? Why a framework for modeling FA? Why VHDL? 2 Fuzzy

More information

plant OUTLINE The Same Goal: Reliable Controllers Who is Who in Real Time Systems

plant OUTLINE The Same Goal: Reliable Controllers Who is Who in Real Time Systems OUTLINE Introduction Lecture 1: Motivation, examples, problems to solve Modeling and Verication of Timed Systems Lecture 2: Timed automata, and timed automata in UAAL Lecture 3: Symbolic verification:

More information

Static Program Analysis

Static Program Analysis Static Program Analysis Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ws-1617/spa/ Schedule of Lectures Jan 17/19: Interprocedural DFA

More information

CS 510/13. Predicate Abstraction

CS 510/13. Predicate Abstraction CS 50/3 Predicate Abstraction Predicate Abstraction Extract a finite state model from an infinite state system Used to prove assertions or safety properties Successfully applied for verification of C programs

More information

Pierce Ch. 3, 8, 11, 15. Type Systems

Pierce Ch. 3, 8, 11, 15. Type Systems Pierce Ch. 3, 8, 11, 15 Type Systems Goals Define the simple language of expressions A small subset of Lisp, with minor modifications Define the type system of this language Mathematical definition using

More information

Real Time Software PROBLEM SETTING. Real Time Systems. Real Time Systems. Who is Who in Timed Systems. Real Time Systems

Real Time Software PROBLEM SETTING. Real Time Systems. Real Time Systems. Who is Who in Timed Systems. Real Time Systems Schedulability Analysis of Timed Systems with contributions from PROBLEM SETTING Tobias Amnell, Elena Fersma, John Håkansson, Pavel Kracal, Leonid Mokrushine, Christer Nordström, Paul Pettersson and Anders

More information

CIS 1.5 Course Objectives. a. Understand the concept of a program (i.e., a computer following a series of instructions)

CIS 1.5 Course Objectives. a. Understand the concept of a program (i.e., a computer following a series of instructions) By the end of this course, students should CIS 1.5 Course Objectives a. Understand the concept of a program (i.e., a computer following a series of instructions) b. Understand the concept of a variable

More information

Formalization of Incremental Simplex Algorithm by Stepwise Refinement

Formalization of Incremental Simplex Algorithm by Stepwise Refinement Formalization of Incremental Simplex Algorithm by Stepwise Refinement Mirko Spasić, Filip Marić Faculty of Mathematics, University of Belgrade FM2012, 30. August 2012. Overview 1 Introduction 2 Approach

More information

Applications of Program analysis in Model-Based Design

Applications of Program analysis in Model-Based Design Applications of Program analysis in Model-Based Design Prahlad Sampath (Prahlad.Sampath@mathworks.com) 2018 by The MathWorks, Inc., MATLAB, Simulink, Stateflow, are registered trademarks of The MathWorks,

More information

Symbolic and Concolic Execution of Programs

Symbolic and Concolic Execution of Programs Symbolic and Concolic Execution of Programs Information Security, CS 526 Omar Chowdhury 10/7/2015 Information Security, CS 526 1 Reading for this lecture Symbolic execution and program testing - James

More information

Off-line (Optimal) Multiprocessor Scheduling of Dependent Periodic Tasks

Off-line (Optimal) Multiprocessor Scheduling of Dependent Periodic Tasks Off-line (Optimal) Multiprocessor Scheduling of Dependent Periodic Tasks Julie Barot, Frédéric Boniol, Mikel Cordovilla, Eric Noulard, Claire Pagetti ONERA, Toulouse, France SAC 2012 March, 27th 2012 1

More information