Contents. Explorations

Size: px
Start display at page:

Download "Contents. Explorations"

Transcription

1 1 of 13 8/28/ :03 PM From EscherMath In this section we will explore some methods for creating Escher like tessellations. We will use the geometry we have developed in the previous sections to create tessellations by recognizable figures. Contents 1 Explorations 2 Introduction 3 Escher's Polygon Systems 4 Tessellating With Translations 5 Tessellating With Reflections 5.1 A Two Tile Pattern 5.2 A cm Pattern 6 Tessellating With Glide Reflections 7 Tessellating With Rotations 7.1 Rotations with translation 7.2 Rotation about the midpoints of sides 7.3 Rotation about a vertex 8 Other Interesting Methods 9 Heesch Types 10 Relevant examples from Escher's work 11 Related Sites M.C. Escher Reptiles puzzle. Explorations Escher-Like Tessellations Explorations Escher Tessellations Using Geometer s Sketchpad Introduction A tessellation, or tiling, is a division of the plane into figures called tiles. The most common tessellations today are floor tilings, using square, rectangular, hexagonal, or other shapes of ceramic tile, but many more tessellations were discussed in the Tessellations by Polygons chapter. Escher's primary interest in tessellations was as an artist. He wanted to created tessellations by recognizable figures, images of animals, people, and other everyday objects that his viewers would relate to. He used these figures to tell stories, such as the birds evolving from a rigid mesh of triangles to fly free into the sky in Liberation. In Predestination, flying birds and fish are born from the same black and white tessellation, fly into three dimensionality, and then meet when the fish completes the "predestined" killing of the bird. In his native Dutch, Escher called these tessellations 'Regelmatige Vlakverdeling', and collected them in his sketchbook. His sketches drew inspiration from geometric patterns created by Islamic artists. The Islamic religion forbids the creation of representational images, and so Islamic artists have developed a broad vernacular of decorative patterns over centuries of work. Escher writes [1] : What a pity that the religion of the Moors forbade them to make images! It seems to me that

2 2 of 13 8/28/ :03 PM they sometimes came very close to the development of their elements into more significant figures than the abstract geometric shapes that they created. No Moorish artist has, as far as I know, ever dared (or didn't he hit on the idea?) to use as building components concrete, recognizable figures borrowed from nature, such as fishes, birds, reptiles, or human beings. This is hardly believable, for recognizability is so important to me that I never could do without it. Though Escher's goal was recognizability, his tessellations began with geometry, and as he grew more accomplished at creating these tessellations he returned to geometry to classify them. All of Escher s tessellations by recognizable figures are derived from just a handful of geometric patterns. There are several different techniques that Escher used, and sometimes he combined techniques as well, but all involve a transformation from a simple geometric pattern to a complicated, recognizable figure. The simplest example of an Escher tessellation is based on a square. Start with a simple geometric pattern, a square grid, and then change that ever so slightly. M.C. Escher, Liberation, 1955 In this example each vertical edge of the grid was deformed to look like a lightning bolt. Then, each horizontal edge was redrawn as a bent curve. Note that all the vertical pieces were changed in the same way, and that all horizontal pieces look the same as well. The bends were not introduced with any intention of creating a particular shape, but now that the new pattern is drawn it becomes a sort of inkblot test. What do you see? Some will think it looks like interlocked men, others may see birds. Decorating each of the newly formed tiles can emphasize a

3 3 of 13 8/28/ :03 PM particular interpretation, and creates a tessellation by recognizable figures, in the style of Escher. This method also works well if you start with a geometric tessellation by rectangles or parallelograms, as we will see in the section #Tessellating With Translations. Escher wrote that creating these tessellations is a "compelling game", and like any game it is fun once you learn the rules. Practice making your own tessellation based on squares, and make more tessellations using the different techniques of this section as you learn them. Escher's Polygon Systems Escher created his tessellations by using fairly simple polygonal tessellations, which he then modified using isometries. This chapter gives a brief overview of Escher's own categorization system for tessellations and contains instructions for creating tessellations by recognizable figures using some of Escher's simpler techniques. Escher organizes his tessellations into two classes, systems based on quadrilaterals, and triangle systems built on the regular tessellation by equilateral triangles. The bulk of Escher's tessellations are based on quadrilaterals, which the novice will find much easier to work with. The less common triangle systems are easily identified because three or six motifs will meet at a point, and the entire tessellation will have order 3 or order 6 rotation symmetry. For a complete discussion of Escher's systems, read Visions of Symmetry (Chapter 2), which also reprints each page of Escher's notebook "Regular Division of the plane into asymmetric congruent polygons". Here, we give only a brief summary of his quadrilateral systems. Within the quadrilateral systems, Escher's categorization has two factors: the type of polygon and the symmetries present in the tessellation. Specifically, he assigns a capital letter to each type of polygon and a Roman numeral to each type of symmetry. The polygons are: A - Parallelogram B - Rhombus C - Rectangle D - Square E - Isoceles Right Triangle Note that each is a special type of quadrilateral except for E, the isoceles right triangle. These triangles fit together to form a square grid with order 4 rotation symmetry. Escher's ten different systems of symmetry do not correspond exactly to the wallpaper groups. The wallpaper group for a figure describes the isometries of the figure. Escher's systems also describe the isometries, but are additionally concerned with the relative positions of the different motifs. There are five wallpaper groups that have no reflections and no order 3 rotations, and all of Escher's symmetry systems correspond to one of these five wallpaper groups. Symmetry types for quadrilateral systems System Translations Rotations Glide-Reflections Translation in both transversal I and diagonal directions II III IV V VI VII Translations in one transversal direction Translations in both diagonal directions Translations in both diagonal directions Translations in one transversal direction Translations in one diagonal direction 2-fold rotations on the vertices; 2-fold rotations on the centers of the parallel sides 2-fold rotations on the centers of all sides 2-fold rotations on the centers of two adjacent sides 2-fold rotations on the centers of the parallel sides Glide-reflections in both transversal directions Glide-reflections in one transversal direction. Glidereflections in both diagonal directions Glide-reflections in one diagonal direction. Glidereflections in both transversal directions, but only in the direction of the sides without rotation point Glide-reflections in one transversal direction. Glidereflections in both diagonal directions.

4 4 of 13 8/28/ :03 PM 2-fold rotations on the four Glide-reflections in both VIII vertices transversal directions 4-fold rotations on diagonal vertices; 2-fold rotations on IX diagonal vertices 4-fold rotations on three vertices; 2-fold rotations on the X center of the hypothenuse Escher created at least one tessellation with each of the possible systems in his categorization. His sketches were organized into five folio notebooks, the Regular Division of the Plane Drawings. Each of these drawings is carefully numbered and marked with Escher's categorization. For instance, in Sketch #96 (Swans), notice the system IV-D denoted below the sketch. System IV-D means that the underlying geometric tessellation is based on a square and that there must be translations in both diagonal directions, no rotations, and glide-reflections in both transversal directions. It is hard to see what Escher means by 'transversal directions'. In this sketch #96, you need to turn the sketch at an angle so as to see rows and columns of touching swans, alternating black and white colors. These strips alternate a swan with it's mirror image, so swans along these strips (the 'transversal directions') are alternately reflected. It's a different usage of the term 'glide reflection' than we're used to seeing. In fact, using the mathematical definition of glide reflection this sketch has two different types of glide reflection symmetry, both in Sketch #96 (Swans) the vertical direction. Tessellating With Translations The simplest and most flexible tessellations are Escher's Type I systems, which can be based on a paralellogram, rhombus, rectangle or square. Schematic for Escher's Type I Tessellation Systems To create one of these tessellations, follow these steps: Draw a parallelogram. This is easy on graph paper, as you can count squares to ensure the opposite sides are parallel and the same length. Alter the top edge of one parallelogram by replacing it with a curved or crooked line. Translate that edge to the bottom of the paralleogram. Alter the left edge of the parallelogram Translate the left edge to the right side. This gives a figure which tessellates, and with luck its outline will suggest a recognizable motif that you

5 5 of 13 8/28/ :03 PM can develop with further alterations to the edges. Finish by creating more copies of the motif by translation. The resulting tessellation has symmetry group p Escher's Regelmatige vlakverdeling, Plate I is an illustrated description of this process. A grid of parallelograms appears in panels 1-4, then develops bent or curved edges in panels 5-7. Finally, with the addition of detail, the tile becomes a bird or a fish. Escher made many sketches using system I. Some good examples to look at include Sketch #38 (Moths), Sketch #73 (Flying Fish), Regelmatige vlakverdeling, Plate I. Creating a tile for a system I-A tessellation. (See Sketch #105 (Pegasus)). Sketch #74 (Birds), Sketch #105 (Pegasus), Sketch #106 (Birds), Sketch #127 (Birds), and best of all Sketch #128 (Birds) where it is very easy to see how the bird motif developed from a square tile. Tessellating With Reflections Figures with bilateral symmetry are naturally easier to make into recognizable figures, because many natural forms have bilateral symmetry. To create a tessellation by bilaterally symmetric tiles, we need to start with a geometric pattern that has mirror symmetries. However, these mirror symmetries should not lie on the straight sides of the polygon tiles. If they do, the straight sides must remain straight and there is no longer flexibility to make a recognizable figure. A Two Tile Pattern This is a very simple method for generating a tessellation by two different tiles. Each of the two tiles has bilateral symmetry. Begin with a tessellation by rectangles. The vertical mirror symmetries down the centers of the rectangles will remain in the final tessellation. 4. Draw a rectangle. Alter one side, for example the left side. Alter half of the top edge, and half of the bottom edge. Reflect the side and both half-edges across the central vertical mirror line. Repeat the resulting figure in a checkerboard pattern, leaving spaces which form the other tile of the tessellation. Notice that the horizontal strips of tiles form frieze patterns with pm11 symmetry, which explains why the horizontal translation is by two tiles - the vertical mirror lines must be spaced at half the translation length.

6 6 of 13 8/28/ :03 PM A cm Pattern This pattern begins with a tessellation by rhombuses. Draw a rhombus. Alter one side, for example the top left side. Translate from the top left to the bottom right side. 4. Reflect both top left and bottom right across the vertical center line of the rhombus to finish all four sides. The resulting figure tessellates in a pattern similar to wood shingles, and gives a tessellation with symmetry group cm. Escher's Sketch #91 (Beetles) uses this technique. Sketch #91 (Beetles) Tessellating With Glide Reflections This simple arrangement of parallelograms is a good starting point for creating tessellations with glide reflection symmetry:

7 7 of 13 8/28/ :03 PM The pattern has horizontal translation symmetry, and vertical glide reflection. To create an interesting tessellation from it: Draw a parallelogram (or rectangle). Alter the top edge of the parallelogram by replacing it with a curved or crooked line. Glide-reflect that edge to the bottom of the paralleogram. Alter the left edge of the parallelogram Translate the left edge to the right side. This gives a figure which tessellates. Repeat identical copies of it to the left and right, and repeat mirror image copies above and below. The resulting tessellation has symmetry group pg. Escher would describe this as a Type V system, although it doesn't fit exactly into his categorization. Along with Sketch #97 (Bulldogs), Escher used this technique in Sketch #108 (Birds) and Sketch #109 (Frogs). Another good example is Sketch #17 (Parrots), though it is a slight variant. Creating a tile for a system V tessellation. (See Sketch #97 (Bulldogs)). For a shape that lends itself even more towards recognizable figures, divide each parallelogram into two halves by drawing its short diagonal. Then, erase the horizontal edges to form a tessellation by "kite" shapes: Alternately, draw the long diagonals and erase horizontal edges to form a tessellation by "dart" shapes: To create a tessellation using the kite or dart pattern above, follow these steps: Draw the kite or dart pattern by starting with parallelograms. Alter one top edge of the kite or dart by replacing it with a curved or crooked line. Glide-reflect that edge to the bottom of the kite or dart. Alter the other top edge of the kite or dart. Glide-reflect that edge to the bottom of the kite or dart.

8 8 of 13 8/28/ :03 PM Escher classified this sort of tessellation as Type IV. Good examples of tessellations based on the kite shape are Sketch #62 (Sniffers), Sketch #66 (Winged lions), Sketch #67 (Horsemen), and Sketch #96 (Swans). The birds in Sketch #19 (Birds) are only slightly altered from the dart scaffolding, although Escher's visible grid of rhombuses suggests he went about the construction in a completely different manner. Escher wrote in his summary chart that Type IV tessellations have translations in both diagonal directions and glide-reflections in both transversal directions. This means that motifs that share a side are reflected images, and motifs that touch at corners (diagonally) are translated images. Creating a tile for a system V tessellation based on kites. (See Sketch #66 (Winged lions)). Type IV tessellations based on the rhombus (left) and on th Tessellating With Rotations There are many ways to use rotation symmetry as the basis for a tessellation, and only some simpler ones will be described in this section. Rotations with translation Escher's Type II tessellations begin with a grid of parallelograms (squares, rectangles, and rhombuses also work). The tile will be distorted into a shape that can tessellate using 2-fold rotations at all four vertices and 2-fold rotations in the centers of one pair of opposite sides, as shown by the red dots in the figure below. To create a tessellation using this technique; Escher Type II tessellations, Draw a parallelogram, rhombus, rectangle, or square. Alter the top edge of the parallelogram by replacing it with a curved or crooked line. Translate that edge to the bottom of the parallelogram. 4. Alter half of one remaining side by replacing it with a curved or crooked line.

9 9 of 13 8/28/ :03 PM 5. Rotate that half side by 180 to complete the side. Creating a tile for a system II 6. Repeat steps 4 and 5 with the remaining straight side. tessellation based on parallelograms. (See Sketch #75 (Lizards)). This gives a figure which tessellates. Repeat identical copies of it by translating up and down, and repeat rotated copies of it to the left and right. This results in a tessellation with symmetry group p Examples in Escher's work include Sketch #75 (Lizards), Sketch #115 (Fish and birds), and Sketch #117 (Crabs). Rotation about the midpoints of sides All triangles tessellate, and all quadrilaterals tessellate. The pattern for these general tessellations is built from 180 rotations about the midpoints of the polygon sides. Altering half of each side and filling in the other half by rotation will also give a tessellating shape. In fact, this technique quite general and works for many geometric tessellations. 4. Draw a 3- or 4-gon Create a midpoint on each of the sides. Modify one half of each of the sides. Rotate each side 180 about the midpoint. Fill in the tessellation by rotations. Because 180 rotations were used but neither reflections nor glide reflections, the resulting patterns will have symmetry group p Example starting from a triangle.

10 10 of 13 8/28/ :03 PM Example starting from a kite-shaped quadrilateral. For Escher, these were Type III tessellations. The best example is Sketch #88 (Seahorse), because Escher's geometric scaffolding for the sketch is also in his notebook. In the scaffolding, the underlying shape appears to be a triangle but should really be viewed as a quadrilateral with two sides in a straight line, giving four vertices and four midpoint rotation centers. Another good example is Sketch #9 (Birds). In Sketch #9 (Birds), each bird is derived from a quadrilateral which you can find by connecting the points with four birds coming together. In Escher's scaffolding for the sketch, there is a visible grid of paralleograms which he obviously used to lay out the picture. His scaffolding is an easier way to build this type of tessellation by hand, and relies on a theorem of Euclidean geometry: The four midpoints of the sides of any quadrilateral form a parallelogram Escher would have drawn the grid of parallelograms, constructed the midpoints of each side of the parallelogram, and then altered the parallelogram to the bird form allowing the sides to bend and corners to move. Other examples of Type III tessellations are Sketch #90 (Fish) and Sketch #93 (Fish), where in the latter the eyes and mouths of the fish destroy the rotation symmetry of the silhouette. Rotation about a vertex Starting with a pattern of squares can produce a resulting tessellation with an order 4 rotation and symmetry group p4. Draw a square. Modify one side. Using 90 rotations at the vertices, copy the modified side to the other three sides. Fill in the tesselation by 90 rotations:

11 11 of 13 8/28/ :03 PM Tessllation built with rotations around a vertex. Escher made no tessellations using this technique, but did do something similar with his Type X tessellations. In these, he would divide the square into two triangles, and use a 180 rotation around the midpoint to modify the dividing line. Examples are sketches Sketch #35 (Lizards), Sketch #118 (Lizards), and Sketch #119 (Fish). Rotation about a vertex can be applied to a regular hexagon as well, and Escher used this as the basis for one of his most successful tessellations, Sketch #25 (Reptiles). Altering the hexagon shape will break some of the many symmetries of the hexagon grid, so it is important to carefully identify which symmetries will remain in the final tessellation. In this example, the only symmetries used are order 3 rotation symmetries of three types, marked in the picture below as the red, blue, and green dots. Each edge of the grid touches exactly one of these rotation centers, so three edges of each hexagon are free to alter and the other three are forced by the choice of symmetry. The steps for creating the tile in this pattern are: 4. Draw a hexagon, and mark three of its corners (here they are red, green, and blue). Choose a marked corner, and alter a side that touches it. Rotate the altered side to the other edge at that corner. Repeat with the other two marked corners. Sketch #25 (Reptiles)

12 12 of 13 8/28/ :03 PM Other Interesting Methods Cutting a tile into two pieces is a simple way to get added flexibility. The dividing line rarely needs to obey any symmetries, and so can be drawn freely. A good example of this is Escher's Sketch #76 (Birds and horses), which could be started as a Type IV or Type V grid of parallelograms each divided into two. Other examples based on translation only are Sketch #52 (Birds and frogs) and Sketches #47-50 which are the basis for Verbum. Pentagon tessellation. Escher's favorite Alhambra pattern. Heesch Types Escher's tessellations are sometimes described according to their Heesch type. There are symbols for tessellations based on triangles, quadrilaterals, pentagons, and hexagons. These tessellations are all isohedral, i.e for any two tiles there is a symmetry mapping one tile to the other. The most general type of labelling for the tile is to use the following convention: Sketch #76 (Birds and horses) C: the edge has 180 degree rotational symmetry with itself. Label that edge C. T: an edge has translational symmetry with another edge. Label both T. G: An edge has glide reflectional symmetry with another edge. Label both G. C n : An edge has (360/n) degree rotational symmetry with an adjacent side.label both C n In the standard notation the convention is to start the Heesch type with the a minimal label, where T < C < C 3 < C 4 < C 6 < G < G 1 < G 2. For instance, we would write TCTC and not CTCT because we want to start off with the "lowest" possible label. For triangles the following 5 labelings will create a tessellation: CCC, CC 3 C 3, CC 4 C 4, CC 6 C 6,CGG. For quadrilaterals the following 11 labelings will create a tessellation: TTTT, CCCC, TCTC, C 3 C 3 C 3 C 3, C 4 C 4 C 4 C 4, C 3 C 3 C 6 C 6,CCGG, TGTG, CGCG, G 1 G 1 G 2 G 2, G 1 G 2 G 1 G 2. For pentagonal tiles the following 5 labelings will create a tessellation: TCTCC, TCTGG, CC 3 C 3 C 6 C 6,CC 4 C 4 C 4 C 4, CG 1 G 2 G 1 G 2. For hexagonal tiles the following 7 labelings will create a tessellation: TTTTTT, TCCTCC, TG 1 G 1 TG 2 G 2, TG 1 G 2 TG 1 G 2, TCCTGG, C 3 C 3 C 3 C 3 C 3 C 3, CG 1 CG 2 G 1 G 2. Relevant examples from Escher's work Regelmatige vlakverdeling, Plate I Regular Division of the Plane Drawings, particularly those which also show the underlying geometric tessellation: Sketch #67 (Man on horse) and related work Visions of Symmetry pg. 11 Sketch #96 (Birds) Sketch #127 (Birds) Sketch #128 (Birds) Related Sites

13 13 of 13 8/28/ :03 PM David Bailey's World of Escher-like Tessellations ( Tessellation Database ( by Snels-Design. Escher in the Classroom ( by Jill Britton. Cite error: <ref> tags exist, but no <references/> tag was found Retrieved from "" This page was last modified on 15 October 2010, at 17:49. Copyright

Part XV. Drawing wallpaper patterns. The goal for this part is to draw Esher-style wallpaper patterns with interlocking figures.

Part XV. Drawing wallpaper patterns. The goal for this part is to draw Esher-style wallpaper patterns with interlocking figures. Part XV Drawing wallpaper patterns The goal for this part is to draw Esher-style wallpaper patterns with interlocking figures. Translation only What shape can be used to make a simple fundamental domain

More information

Middle School Geometry. Session 3

Middle School Geometry. Session 3 Middle School Geometry Session 3 Topic Transformational Geometry: Tessellations Activity Name Sums of the Measures of Angles of Triangles Do Congruent Triangles Tessellate? Do Congruent Quadrilaterals

More information

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection

Lesson 10. Unit 3. Creating Designs. Transformational Designs. Reflection Lesson 10 Transformational Designs Creating Designs M.C. Escher was an artist that made remarkable pieces of art using geometric transformations. He was first inspired by the patterns in mosaic tiles.

More information

TESSELLATIONS #1. All the shapes are regular (equal length sides). The side length of each shape is the same as any other shape.

TESSELLATIONS #1. All the shapes are regular (equal length sides). The side length of each shape is the same as any other shape. TESSELLATIONS #1 Arrange for students to work in pairs during this lesson. Each pair of students needs unlined paper and two tessellation sets, one red and one blue. Ask students in each pair to share

More information

M8WSB-C07.qxd 4/4/08 7:00 PM Page NEL

M8WSB-C07.qxd 4/4/08 7:00 PM Page NEL 8 NEL GOAL Chapter 7 Tessellations You will be able to use angle measurements to identify regular and irregular polygons that might tessellate identify and describe translations, reflections, or rotations

More information

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations A pattern has translation symmetry if it can be translated along a vector so that the image coincides with the preimage. A frieze pattern is a pattern that has translation symmetry along a line. Both of

More information

Mathematics and the prints of M.C. Escher. Joe Romano Les Houches Summer School 23 July 2018

Mathematics and the prints of M.C. Escher. Joe Romano Les Houches Summer School 23 July 2018 Mathematics and the prints of M.C. Escher Joe Romano Les Houches Summer School 23 July 2018 Possible topics projective geometry non-euclidean geometry topology & knots ambiguous perspective impossible

More information

Objective: Students will

Objective: Students will Please read the entire PowerPoint before beginning. Objective: Students will (1) Understand the concept of and the process of making tessellations. (2) Create tessellations using: Rotation, Translation,

More information

6. 5 Symmetries of Quadrilaterals

6. 5 Symmetries of Quadrilaterals 2 CC BY fdecomite 6. Symmetries of Quadrilaterals A Develop Understanding Task A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto itself by a rotation

More information

Grade 7/8 Math Circles November 3/4, M.C. Escher and Tessellations

Grade 7/8 Math Circles November 3/4, M.C. Escher and Tessellations Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Tiling the Plane Grade 7/8 Math Circles November 3/4, 2015 M.C. Escher and Tessellations Do the following

More information

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,

More information

Unit 1, Lesson 1: Moving in the Plane

Unit 1, Lesson 1: Moving in the Plane Unit 1, Lesson 1: Moving in the Plane Let s describe ways figures can move in the plane. 1.1: Which One Doesn t Belong: Diagrams Which one doesn t belong? 1.2: Triangle Square Dance m.openup.org/1/8-1-1-2

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

TESSELLATION. For me it remains an open question whether [this work] pertains to the realm of mathematics or to that of art. M.C.

TESSELLATION. For me it remains an open question whether [this work] pertains to the realm of mathematics or to that of art. M.C. TESSELLATION For me it remains an open question whether [this work] pertains to the realm of mathematics or to that of art. M.C. Escher Activity 1: Guessing the lesson Doc. 1 Word Cloud 1) What do you

More information

Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P

Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P and parallel to l, can be drawn. A triangle can be

More information

The National Strategies Secondary Mathematics exemplification: Y8, 9

The National Strategies Secondary Mathematics exemplification: Y8, 9 Mathematics exemplification: Y8, 9 183 As outcomes, Year 8 pupils should, for example: Understand a proof that the sum of the angles of a triangle is 180 and of a quadrilateral is 360, and that the exterior

More information

Geometry Practice. 1. Angles located next to one another sharing a common side are called angles.

Geometry Practice. 1. Angles located next to one another sharing a common side are called angles. Geometry Practice Name 1. Angles located next to one another sharing a common side are called angles. 2. Planes that meet to form right angles are called planes. 3. Lines that cross are called lines. 4.

More information

15. First make a parallelogram by rotating the original triangle. Then tile with the Parallelogram.

15. First make a parallelogram by rotating the original triangle. Then tile with the Parallelogram. Shapes and Designs: Homework Examples from ACE Investigation 1: Question 15 Investigation 2: Questions 4, 20, 24 Investigation 3: Questions 2, 12 Investigation 4: Questions 9 12, 22. ACE Question ACE Investigation

More information

COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS

COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS Douglas Dunham University of Minnesota Duluth Department of Computer Science 1114 Kirby Drive Duluth, Minnesota 55812-2496 USA ddunham@d.umn.edu Abstract:

More information

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology Shape and Structure An explanation of Mathematical terminology 2005 1 POINT A dot Dots join to make lines LINE A line is 1 dimensional (length) A line is a series of points touching each other and extending

More information

Tessellations: Wallpapers, Escher & Soccer Balls. Robert Campbell

Tessellations: Wallpapers, Escher & Soccer Balls. Robert Campbell Tessellations: Wallpapers, Escher & Soccer Balls Robert Campbell Tessellation Examples What Is What is a Tessellation? A Tessellation (or tiling) is a pattern made by copies of one or

More information

Answer Key Lesson 11: Workshop: Shapes and Properties

Answer Key Lesson 11: Workshop: Shapes and Properties Answer Key esson 11: Use the nine Power Polygons below for Questions 1 and 2. 1. A. Sort the shapes with four sides into ox A. Sort the Shapes with one or more right angles into ox. Some shapes will go

More information

TESSELATIONS. BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS:

TESSELATIONS. BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS: TESSELATIONS BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS: Why might M.C. Escher think like a mathematician? What is the relationship

More information

An angle that has a measure less than a right angle.

An angle that has a measure less than a right angle. Unit 1 Study Strategies: Two-Dimensional Figures Lesson Vocab Word Definition Example Formed by two rays or line segments that have the same 1 Angle endpoint. The shared endpoint is called the vertex.

More information

A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota

A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota 15 th International Conference on Geometry and Graphics A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota Outline Families of patterns -

More information

M.C. Escher. Tessellations, 1957

M.C. Escher. Tessellations, 1957 In mathematical quarters, the regular division of the plane has been considered theoretically. Does this mean that it is an exclusively mathematical question? In my opinion, it does not. Mathematicians

More information

Shapes. Reflection Symmetry. Exercise: Draw the lines of symmetry of the following shapes. Remember! J. Portelli

Shapes. Reflection Symmetry. Exercise: Draw the lines of symmetry of the following shapes. Remember! J. Portelli Reflection Symmetry Shapes Learning Intention: By the end of the lesson you will be able to Identify shapes having reflection and/or rotational symmetry. Exercise: Draw the lines of symmetry of the following

More information

Working with Transformations on the Coordinate Plane

Working with Transformations on the Coordinate Plane Working with Transformations on the Coordinate Plane Movies create the illusion of movement by showing us 24 images per second. When the human eye processes 24 images per second it is interpreted in our

More information

Zome Symmetry & Tilings

Zome Symmetry & Tilings Zome Symmetry & Tilings Tia Baker San Francisco State tiab@mail.sfsu.edu 1 Introduction Tessellations also known as tilings are a collection of polygons that fill the plane with no overlaps or gaps. There

More information

heptagon; not regular; hexagon; not regular; quadrilateral; convex concave regular; convex

heptagon; not regular; hexagon; not regular; quadrilateral; convex concave regular; convex 10 1 Naming Polygons A polygon is a plane figure formed by a finite number of segments. In a convex polygon, all of the diagonals lie in the interior. A regular polygon is a convex polygon that is both

More information

Main Idea: classify polygons and determine which polygons can form a tessellation.

Main Idea: classify polygons and determine which polygons can form a tessellation. 10 8: Polygons and Tesselations Main Idea: classify polygons and determine which polygons can form a tessellation. Vocabulary: polygon A simple closed figure in a plane formed by three or more line segments

More information

Pattern tessellates the plane Template with modifications turned in Appearance and Neatness Creativity/Originality/Difficulty

Pattern tessellates the plane Template with modifications turned in Appearance and Neatness Creativity/Originality/Difficulty Name: Date: Hour: A tessellation is a repeated polygon and/or combinations of polygons on a two dimensional plane. Each tessellated tile fits perfectly next to its adjacent twin. A true tessellation could

More information

Chapter 20 Tilings For All Practical Purposes: Effective Teaching Chapter Briefing Chapter Topics to the Point Tilings with Regular Polygons

Chapter 20 Tilings For All Practical Purposes: Effective Teaching Chapter Briefing Chapter Topics to the Point Tilings with Regular Polygons Chapter 20 Tilings For All Practical Purposes: Effective Teaching With this day and age of technology, most students are adept at using E-mail as a form of communication. Many institutions automatically

More information

Constructing Symmetrical Shapes

Constructing Symmetrical Shapes 1 Constructing Symmetrical Shapes 1 Construct 2-D shapes with one line of symmetry A line of symmetry may be horizontal or vertical 2 a) Use symmetry to complete the picture b) Describe the method you

More information

6. 5 Symmetries of Quadrilaterals

6. 5 Symmetries of Quadrilaterals 25 CC BY fdecomite 6. 5 Symmetries of Quadrilaterals A Develop Understanding Task A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto itself by a rotation

More information

Quantitative Literacy: Thinking Between the Lines

Quantitative Literacy: Thinking Between the Lines Quantitative Literacy: Thinking Between the Lines Crauder, Evans, Johnson, Noell Chapter 9: Geometry 2013 W. H. Freeman & Co. 1 Lesson Plan Perimeter, area, and volume: How do I measure? Proportionality

More information

POSITION, DIRECTION AND MOVEMENT Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Use mathematical

POSITION, DIRECTION AND MOVEMENT Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Use mathematical POSITION, DIRECTION AND MOVEMENT Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Use mathematical Use mathematical Describe positions on a Identify, describe and vocabulary to describe vocabulary to describe

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important First Nations artists use their artwork to preserve their heritage. Haida artist Don Yeomans is one of the foremost Northwest Coast artists. Look at this print called The Benefit, created by Don Yeomans.

More information

Shapes and Designs - Unit Test Review Sheet

Shapes and Designs - Unit Test Review Sheet Name: Class: Date: ID: A Shapes and Designs - Unit Test Review Sheet 1. a. Suppose the measure of an angle is 25. What is the measure of its complementary angle? b. Draw the angles to show that you are

More information

Ready to Go On? Skills Intervention Building Blocks of Geometry

Ready to Go On? Skills Intervention Building Blocks of Geometry 8-1 Ready to Go On? Skills Intervention Building Blocks of Geometry A point is an exact location. A line is a straight path that extends without end in opposite directions. A plane is a flat surface that

More information

Unit 1, Lesson 1: Tiling the Plane

Unit 1, Lesson 1: Tiling the Plane Unit 1, Lesson 1: Tiling the Plane Let s look at tiling patterns and think about area. 1.1: Which One Doesn t Belong: Tilings Which pattern doesn t belong? 1 1.2: More Red, Green, or Blue? m.openup.org//6-1-1-2

More information

Patterns in Geometry. Polygons. Investigation 1 UNIT. Explore. Vocabulary. Think & Discuss

Patterns in Geometry. Polygons. Investigation 1 UNIT. Explore. Vocabulary. Think & Discuss UNIT K Patterns in Geometry In this lesson, you will work with two-dimensional geometric figures. You will classify polygons and find angle measures. Explore Inv 1 Polygons 172 How many squares are in

More information

Mathematics Assessment Anchor Glossary Grades 3 & 4

Mathematics Assessment Anchor Glossary Grades 3 & 4 Mathematics Assessment Anchor Glossary Grades 3 & 4 The definitions for this glossary were taken from one or more of the following sources: Webster s Dictionary, various mathematics dictionaries, the PA

More information

Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry. We look at two types of isometries in this section: translations and rotations. Translations A

More information

Points, lines, angles

Points, lines, angles Points, lines, angles Point Line Line segment Parallel Lines Perpendicular lines Vertex Angle Full Turn An exact location. A point does not have any parts. A straight length that extends infinitely in

More information

TESSELLATION PROJECT DIRECTIONS

TESSELLATION PROJECT DIRECTIONS TESSELLATION PROJECT DIRECTIONS You are to create a tessellation portfolio. In addition to your portfolio, you will be making your own tessellation masterpiece. Your tessellation will be created based

More information

1.6 Classifying Polygons

1.6 Classifying Polygons www.ck12.org Chapter 1. Basics of Geometry 1.6 Classifying Polygons Learning Objectives Define triangle and polygon. Classify triangles by their sides and angles. Understand the difference between convex

More information

Transformations. Working backwards is performing the inverse operation. + - and x 3. Given coordinate rule

Transformations. Working backwards is performing the inverse operation. + - and x 3. Given coordinate rule Transformations In geometry we use input/output process when we determine how shapes are altered or moved. Geometric objects can be moved in the coordinate plane using a coordinate rule. These rules can

More information

Answer Key Lesson 6: Classifying Shapes

Answer Key Lesson 6: Classifying Shapes Student Guide The Flatopia Polygon Zoo Professor Peabody had a dream that he lived in a two-dimensional town called Flatopia. There were two-dimensional creatures in town, all shaped like polygons. Help

More information

Unit 10 Study Guide: Plane Figures

Unit 10 Study Guide: Plane Figures Unit 10 Study Guide: Plane Figures *Be sure to watch all videos within each lesson* You can find geometric shapes in art. Whether determining the amount of leading or the amount of glass needed for a piece

More information

MATH 113 Section 9.2: Symmetry Transformations

MATH 113 Section 9.2: Symmetry Transformations MATH 113 Section 9.2: Symmetry Transformations Prof. Jonathan Duncan Walla Walla University Winter Quarter, 2008 Outline 1 What is Symmetry 2 Types of Symmetry Reflective Symmetry Rotational Symmetry Translational

More information

Math 7, Unit 8: Geometric Figures Notes

Math 7, Unit 8: Geometric Figures Notes Math 7, Unit 8: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess

More information

Math 9: Chapter Review Assignment

Math 9: Chapter Review Assignment Class: Date: Math 9: Chapter 7.5-7.7 Review Assignment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which shapes have at least 2 lines of symmetry?

More information

6.5 Symmetries of Quadrilaterals A Develop Understanding Task

6.5 Symmetries of Quadrilaterals A Develop Understanding Task 6.5 Symmetries of Quadrilaterals A Develop Understanding Task A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto itself by a rotation is said to have

More information

Sample Quilt Word Board

Sample Quilt Word Board Sample Quilt Word Board See next page for further details Geo Jammin By DeSign 2000, 2003 www.beaconlearningcenter.com Rev. 11.05.03 Lesson 2, Duo Dancing, 1 For this unit design a repeating pattern to

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

5th Grade Geometry

5th Grade Geometry Slide 1 / 112 Slide 2 / 112 5th Grade Geometry 2015-11-23 www.njctl.org Slide 3 / 112 Geometry Unit Topics Click on the topic to go to that section Polygons Classifying Triangles & Quadrilaterals Coordinate

More information

Unit 3: Triangles and Polygons

Unit 3: Triangles and Polygons Unit 3: Triangles and Polygons Background for Standard G.CO.9: Prove theorems about triangles. Objective: By the end of class, I should Example 1: Trapezoid on the coordinate plane below has the following

More information

Creating Escher-Style Tessellations

Creating Escher-Style Tessellations Creating Escher-Style Tessellations Focus on After this lesson, you will be able to... create tessellations from combinations of regular and irregular polygons describe the tessellations in terms of the

More information

4 Mathematics Curriculum. Module Overview... i Topic A: Lines and Angles... 4.A.1. Topic B: Angle Measurement... 4.B.1

4 Mathematics Curriculum. Module Overview... i Topic A: Lines and Angles... 4.A.1. Topic B: Angle Measurement... 4.B.1 New York State Common Core 4 Mathematics Curriculum G R A D E Table of Contents GRADE 4 MODULE 4 Angle Measure and Plane Figures GRADE 4 MODULE 4 Module Overview... i Topic A: Lines and Angles... 4.A.1

More information

Parallel Lines and Quadrilaterals

Parallel Lines and Quadrilaterals Parallel Lines and Quadrilaterals Michael Fauteux Rosamaria Zapata CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this

More information

DATE PERIOD. Lesson Reading Guide

DATE PERIOD. Lesson Reading Guide NAME DATE PERIOD Lesson Reading Guide Get Ready for the Lesson Read the introduction at the top of page 316 in your textbook. Write your answers below. 1. Predict the number of triangles and the sum of

More information

Geometry. Standardized Practice Have students try the following problem.

Geometry. Standardized Practice Have students try the following problem. 1 Students need a basic understanding of angles to learn the properties of twodimensional shapes. In this lesson, students use models to represent, measure, and classify angles. Objective Recognize types

More information

Geometry Ch 7 Quadrilaterals January 06, 2016

Geometry Ch 7 Quadrilaterals January 06, 2016 Theorem 17: Equal corresponding angles mean that lines are parallel. Corollary 1: Equal alternate interior angles mean that lines are parallel. Corollary 2: Supplementary interior angles on the same side

More information

Points, Lines, Planes, and Angles pp

Points, Lines, Planes, and Angles pp LESSON 5-1 Points, Lines, Planes, and Angles pp. 222 224 Vocabulary point (p. 222) line (p. 222) plane (p. 222) segment (p. 222) ray (p. 222) angle (p. 222) right angle (p. 223) acute angle (p. 223) obtuse

More information

PROPERTIES OF TRIANGLES AND QUADRILATERALS (plus polygons in general)

PROPERTIES OF TRIANGLES AND QUADRILATERALS (plus polygons in general) Mathematics Revision Guides Properties of Triangles, Quadrilaterals and Polygons Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier PROPERTIES OF TRIANGLES AND QUADRILATERALS

More information

Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense

Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense SE2 Families of Schools Year GV1 GV2 GV3 Spring 2006 Spring 2007 Spring 2008 MC14 MC24 MC13 OR9 MC17 OR30 OR9 MC21 MC18 MC3 MC23 OR30

More information

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Polygon a closed plane figure with at least 3 sides that are segments -the sides do not intersect except at the vertices N-gon -

More information

Transformations. Working backwards is performing the inverse operation. + - and x 3. Given coordinate rule

Transformations. Working backwards is performing the inverse operation. + - and x 3. Given coordinate rule Transformations In geometry we use input/output process when we determine how shapes are altered or moved. Geometric objects can be moved in the coordinate plane using a coordinate rule. These rules can

More information

Mathematics in Art and Architecture GEK1518

Mathematics in Art and Architecture GEK1518 Mathematics in Art and Architecture GEK1518 Helmer Aslaksen Department of Mathematics National University of Singapore aslaksen@math.nus.edu.sg www.math.nus.edu.sg/aslaksen/ Symmetry and Patterns Introduction

More information

Name. Criteria for grading. Total Points Earned. What to do to Create your own Tessellation

Name. Criteria for grading. Total Points Earned. What to do to Create your own Tessellation What to do to Create your own Tessellation Name 1. Begin by creating a template using at least 1 of the nibbling methods. You may start with any size rectangular piece of cardstock. Use tape to assemble

More information

Escher s Tessellations: The Symmetry of Wallpaper Patterns II. Symmetry II

Escher s Tessellations: The Symmetry of Wallpaper Patterns II. Symmetry II Escher s Tessellations: The Symmetry of Wallpaper Patterns II Symmetry II 1/38 Brief Review of the Last Class Last time we started to talk about the symmetry of wallpaper patterns. Recall that these are

More information

Geometry Sixth Grade

Geometry Sixth Grade Standard 6-4: The student will demonstrate through the mathematical processes an understanding of shape, location, and movement within a coordinate system; similarity, complementary, and supplementary

More information

Key Learning for Grade 3

Key Learning for Grade 3 Key Learning for Grade 3 The Ontario Curriculum: Mathematics (2005) Number Sense and Numeration Read, represent, compare and order whole numbers to 1000, and use concrete materials to investigate fractions

More information

Become an Escher Sleuth

Become an Escher Sleuth mathematical explorations classroom-ready activities Become an Escher Sleuth Linda L. Cooper, Sandy M. Spitzer, and Ming C. Tomayko ttessellations, the repetition of a shape that covers a plane without

More information

Geometry. Students at Dommerich Elementary helped design and construct a mosaic to show parts of their community and local plants and animals.

Geometry. Students at Dommerich Elementary helped design and construct a mosaic to show parts of their community and local plants and animals. Geometry Describing and analyzing two-dimensional shapes Students at Dommerich Elementary helped design and construct a mosaic to show parts of their community and local plants and animals. 479 Make a

More information

Math 6, Unit 8 Notes: Geometric Relationships

Math 6, Unit 8 Notes: Geometric Relationships Math 6, Unit 8 Notes: Geometric Relationships Points, Lines and Planes; Line Segments and Rays As we begin any new topic, we have to familiarize ourselves with the language and notation to be successful.

More information

Math 7, Unit 08: Geometric Figures Notes

Math 7, Unit 08: Geometric Figures Notes Math 7, Unit 08: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My

More information

Geometry and Spatial Reasoning. Two-Dimensional Figures Important Book

Geometry and Spatial Reasoning. Two-Dimensional Figures Important Book Geometry and Spatial Reasoning Activity: TEKS: Two-Dimensional Figures Important Book (4.8) Geometry and spatial reasoning. The student identifies and describes attributes of geometric figures using formal

More information

Understanding Quadrilaterals

Understanding Quadrilaterals UNDERSTANDING QUADRILATERALS 37 Understanding Quadrilaterals CHAPTER 3 3.1 Introduction You know that the paper is a model for a plane surface. When you join a number of points without lifting a pencil

More information

Geometry Vocabulary. Name Class

Geometry Vocabulary. Name Class Geometry Vocabulary Name Class Definition/Description Symbol/Sketch 1 point An exact location in space. In two dimensions, an ordered pair specifies a point in a coordinate plane: (x,y) 2 line 3a line

More information

Worksheet 30: Wednesday April 22 Tessselations: Tiling The Plane

Worksheet 30: Wednesday April 22 Tessselations: Tiling The Plane Definition Worksheet 30: Wednesday April 22 Tessselations: Tiling The Plane A tiling of the plane or tesselation is a pattern that covers the plane with non-overlapping figures A periodic tiling is one

More information

Answer Key Lesson 6: Classifying Shapes

Answer Key Lesson 6: Classifying Shapes Student Guide The Flatopia Polygon Zoo Professor Peabody had a dream that he lived in a two-dimensional town called Flatopia. There were two-dimensional creatures in town, all shaped like polygons. Help

More information

Foundations of Math II Unit 2: Transformations in the Coordinate Plane

Foundations of Math II Unit 2: Transformations in the Coordinate Plane Foundations of Math II Unit 2: Transformations in the Coordinate Plane Academics High School Mathematics 2.1 Warm Up 1. Draw the image of stick-man m when translated using arrow p. What motion will take

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

Geometry of Art and Nature

Geometry of Art and Nature School of the Art Institute of Chicago Geometry of Art and Nature Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_geom.shtml Syllabus 1 Sept 03 Basics and Celtic Knots 2 Sept 10

More information

Prime Time (Factors and Multiples)

Prime Time (Factors and Multiples) CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;

More information

For Exercises 1 4, follow these directions. Use the given side lengths.

For Exercises 1 4, follow these directions. Use the given side lengths. A C E Applications Connections Extensions Applications For Exercises 1 4, follow these directions. Use the given side lengths. If possible, build a triangle with the side lengths. Sketch your triangle.

More information

INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM

INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM NOTE: All images in this booklet are scale drawings only of template shapes and scales. Preparation: Your SUPER RULE TM is a valuable acquisition for classroom

More information

UNIT 6: Connecting Algebra & Geometry through Coordinates

UNIT 6: Connecting Algebra & Geometry through Coordinates TASK: Vocabulary UNIT 6: Connecting Algebra & Geometry through Coordinates Learning Target: I can identify, define and sketch all the vocabulary for UNIT 6. Materials Needed: 4 pieces of white computer

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information

Quadrilaterals & Transformations Study Guide

Quadrilaterals & Transformations Study Guide s & Transformations Study Guide What do I need to know for the upcoming Summative Assessment? s Classifications and Properties of: o o Trapezoid o Kite o Parallelogram o Rhombus o Rectangle o Square The

More information

Name Date Class. Original content Copyright by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

Name Date Class. Original content Copyright by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. Name _ Date Class 8-1 Building Blocks of Geometry Use the diagram to name each geometric figure. 1. two points 2. a plane 3. a line segment 4. a point shared by two lines 5. a line Use the diagram to give

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important Patterns are pleasing to the eye. They are used by designers, architects, and engineers to make their products more attractive. Look at the quilt pattern. Which figures are used as quilt blocks? Which

More information

TESSELLATION PROJECT DIRECTIONS

TESSELLATION PROJECT DIRECTIONS TESSELLATION PROJECT DIRECTIONS You are to create your own tessellation masterpiece. Your tessellation will be created based on specific criteria. You MUST follow the guidelines given in order to receive

More information

Introduction : Applying Lines of Symmetry

Introduction : Applying Lines of Symmetry Introduction A line of symmetry,, is a line separating a figure into two halves that are mirror images. Line symmetry exists for a figure if for every point P on one side of the line, there is a corresponding

More information

Number and Operations - Fractions

Number and Operations - Fractions NF.1.3c Number and Operations - Fractions NF.1.3 NF.1.2b NF.1.2a Understand Fractions February 3 - February 20 NF.1.2 NF.1.1 Math! Lessons Develop understanding of fractions as numbers. Understand a fraction

More information

Unit 4 Reasoning about shape. Year 4. Five daily lessons. Autumn term. Unit Objectives. Link Objectives

Unit 4 Reasoning about shape. Year 4. Five daily lessons. Autumn term. Unit Objectives. Link Objectives Unit 4 Reasoning about shape Five daily lessons Year 4 Autumn term (Key objectives in bold) Unit Objectives Year 4 Describe and visualise 3-D and 2-D shapes, Page 102 including the tetrahedron and heptagon.

More information

Polygon. Note: Each segment is called a side. Each endpoint is called a vertex.

Polygon. Note: Each segment is called a side. Each endpoint is called a vertex. Polygons Polygon A closed plane figure formed by 3 or more segments. Each segment intersects exactly 2 other segments at their endpoints. No 2 segments with a common endpoint are collinear. Note: Each

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information