Signal Processing for Big Data

Size: px
Start display at page:

Download "Signal Processing for Big Data"

Transcription

1 Signal Processing for Big Data Sergio Barbarossa 1

2 Summary 1. Networks 2.Algebraic graph theory 3. Random graph models 4. OperaGons on graphs 2

3 Networks The simplest way to represent the interaction between different entities (machines, agents, people, ) is a graph A graph is composed of vertices and edges connecting pairs of vertices A powerful theory to extract network features from a graph is Algebraic Graph Theory 3

4 Networks More complex representations of interactions are hypergraphs or simplicial complexes as they incorporate more information than just pair relations 4

5 Networks Examples 1. Technological networks 1.1 Internet The vertices are routers The edges are physical links (fiber optic, wireless link, ) 5

6 Networks Examples 1. Technological networks 1.2 Power grid The vertices are generating stations and switching substations The edges are high voltage transmission lines Spatial distribution of load on the European power grid 6

7 Networks Examples 2. Information networks 2.1 World Wide Web The vertices are webpages The edges are hyperlinks between pages 7

8 Networks Examples 2. Information networks 2.2 Citation networks The vertices are papers or disciplines The edges represent citations Curiosity: Erdos number 8

9 Networks Examples 3. Biological networks - Gene regulatory networks (GRN) The vertices are proteins or genes that code for them A directed edge from A to B indicates that A regulates the expression of B In a GRN, a gene may either promote or inhibit a transcription factor 15/10/17 Signal Processing for Big Data 9

10 Networks Examples 3. Biological networks - Gene regulatory networks (GRN) Example: Finding the GRN including the protein p53, helped to identify cancer inducing mechanisms p53 plays a key role in a series of chemical reactions involved in DNA repair, cell apoptosis and cell cycle arrest A mutation of p53 induces a series of undesired behaviors 10

11 Algebraic graph theory Consider a graph with N vertices and E edges Adjacency matrix A (NxN): a ij = 1 if there is an edge between node i and node j, otherwise a ij = 0 Degree matrix D (NxN): diagonal matrix with d ii = NX a ij j=1 Incidence matrix B (NxE): B ij = 1, if vertex i is in the tail of edge j B ij = -1, if vertex i is in the head of edge j B ij = 0, otherwise Laplacian matrix L (NxN): L = D A = BB T Edge Laplacian L e (ExE): L = B T B 11

12 Algebraic graph theory Example A = L =

13 Algebraic graph theory Example B = A = Note: for a directed graph (digraph) L = D A 6= BB T 13

14 Algebraic graph theory Properties - The total number of paths of length k between two nodes i and j is [A k ] ij - The total number of loops of length k starting from node i is - The total number of loops of length k is - The number of triangles in a graph is tr(a k ) tr(a 3 )/6 [A k ] ii 1 - By construction, L1= 0, hence is an eigenvector of L associated to the zero eigenvalue Given a vector x defined over the vertices of a graph, the disagreement is x T Lx= X u,v2e (x u x v ) 2 14

15 Algebraic graph theory Properties If G is a graph with c connected components rank (B) = N c Sketch of the proof: Let us look at the (left) null space of B z T B = 0 if (u,v) is an edge of the graph z u z v = 0 z is constant over each connected component How many independent z? c Null space of B = c Equivalently, If G is a graph with c connected components rank (L) = N c 15

16 Algebraic graph theory Properties Let us denote by 1 apple 2 apple...apple N the eigenvalues of L - By construction, the minimum eigenvalue of L is - The eigenvector associated to is composed of all ones 1 =0 1 =0 - The multiplicity of equals the number of connected components 1 =0 16

17 Algebraic graph theory Conductance Let be a subset of the vertex set V denotes the boundary of S, i.e. the set of edges with one end in S and the other end outside S Conductance: := min S with S apple V /2 Theorem: = second smallest eigenvalue of L measures graph connectivity 17

18 Algebraic graph theory Eigen-decomposition of L From Rayleigh-Ritz theorem min(l) apple xt Lx x T x apple u 1 = arg min x subject to u i = arg min x subject to max(l) x T Lx x T x ku 1 k =1 x T Lx x T x ku i k =1 u T i u j =0, j =1,...,i 1 18

19 Algebraic graph theory Examples of eigenvectors u 2 u

20 Graph features Graph features Diameter: maximal distance (number of hops along the geodesic path) between any pair of nodes Denoting with the average degree in a random graph If the graph is composed of isolated trees If a giant cluster appears If concentrated around the graph is totally connected and the diameter is 20

21 Graph features - Clustering coefficient The clustering coefficient C i for a vertex v i is given by the proportion of links between the vertices within its neighborhood divided by the max number of links that could possibly exist between them The clustering coefficient for the whole system is the average of the clustering coefficients: 21

22 Graph features - Degree centrality: d i n 1 - Closeness centrality: l(i, j) n 1 l(i, j) j=i where denotes the number of links in the shortest path between i and j - Betweenness centrality: X k6=j;i6=k,j P i (kj)/p (kj) (n 1)(n 2)/2 where denotes the number of geodesics (shortest paths) between k and j passing through node i, whereas P (kj) is the number of geodesics between k and j 22

23 Graph features Betweenness centrality Example: fifteenth century Florence BC(Medici) = BC(Strozzi) = BC(Guadagni) =

24 Graph features Eigenvector centrality Idea: Importance of a vertex in a network increases by having connections to other vertices that are themselves important x i = NX A ij x j j=1 The solution is given by the eigenvector associated to the largest eigenvalue of A x = Ax 24

25 Random graph models Erdos-Renyii Each node is connected with to each of the other n 1 nodes with probability p The presence of links are statistically independent event The degree distribution is then p k = n 1 k p k (1 p) n 1 k mean degree: (n 1)p ; standard deviation: p (n 1)p(1 p) If the average of nodes s steps away from a random node is number of steps necessary to reach any node is diameter: D ln n ln c c s, the average 25

26 Random graph models Erdos-Renyii Giant component (asymptotic behavior) Let us denote by u the fraction of nodes not belonging to a giant component For a vertex i not to belong to the giant component it must not be connected to the giant component via any other vertex For every other vertex j in the graph, either (a) i is not connected to j by an edge, or (b) i is connected to j but j is itself not a member of the giant component The total probability of not being connected to the giant component via vertex j is 1 p + pu u =(1 p + pu) n 1 26

27 Random graph models Erdos-Renyii Giant component (asymptotic behavior) The fraction S of nodes in the giant component satisfies where c =(n 1)p S =1 e cs Size of the giant component S Mean degree c Note: transition phase

28 Random graph models Phase transition in random graphs Random graphs often exhibit phase transition phenomena as many physical systems, like water-ice transition, magnetism, Phase transitions are often regulated by small variations of a single parameter, e.g. average degree, 28

29 Random graph models Small world networks Motivation Purely random graphs exhibit a small average shortest path length (varying typically as the logarithm of the number of nodes) along with a small clustering coefficient However, many real-world networks have a small average shortest path length, but also a clustering coefficient significantly higher than expected by chance Milgram experiment (six degrees of separation) A small-world network is a graph with high clustering coefficient, where most nodes are not neighbors of each other, but they can be reached from every other by a small number of hops 29

30 Random graph models Watts and Strogatz model: (i) a small average shortest path length, (ii) a large clustering coefficient - starting from a regular graph regular small-world (uncorrelated) random - rewiring edges with equal and independent probability p r p r = 0 increasing p r = 1 randomness 30

31 Random graph models Watts and Strogatz model: (i) a small average shortest path length, (ii) a large clustering coefficient 1 for intermediate values of p r : 0.5 small-world behavior: average clustering (C) high 0 p r = average distance (L) low 31

32 Random graph models Scale-free model In most real networks, the degree distribution follows a polynomial law decay, as opposed to exponential decay of purely random networks Scale-free networks exhibit polynomial decay Scale-free networks can be grown through a preferential attachment rule random networks scale-free networks 32

33 Random graph models Scale-free model The distinguishing characteristic of scale-free networks is that their degree distribution follows a power law relationship defined by P (k) k In words, some nodes act as "highly connected hubs" (high degree), but most nodes have a low degree The scale-free model has a systematically shorter average path length than a random graph (thanks to the hub nodes) 33

34 Random graph models Network building rules (dynamic) 1. The network begins with an initial network of m0 (>1) nodes 2. Growth: New nodes are added to the network one at a time 3. Preferential attachment: Each new node is connected to m of the existing nodes with a probability proportional to the number of links that the existing node already has. Formally, the probability that the new node is connected to node i is where is the degree of node i (rich get richer) 34

35 Random graph models Random geometric graphs A random geometric graph is a random undirected graph drawn on a bounded region It is generated by: 1. Placing vertices at random uniformly and independently on the region 2. Connecting two vertices, u, v if and only if the distance between them is smaller than a threshold r 35

36 Random graph models Random geometric graphs Def.: A graph is said to be k connected (k=1,2,3,...) if for each node pair there exist at least k mutually independent paths connecting them Equivalently, a graph is k connected if and only if no set of (k 1)nodes exists whose removal would disconnect the graph The maximum value of k for which a connected graph is k connected is the connectivity κ of G. It is the smallest number of nodes whose failure would disconnect G As r0 increases, the resulting graph becomes k connected at the moment it achieves a minimum degree d min equal to k 36

37 Random graph models Random geometric graphs Thm (Gupta & Kumar): Given a graph G(n, r n ), with r n = r log n + cn n the graph is connected with probability one as n goes to infinity if and only if lim c n = 1 n!1 Example: r n = r 2 log n n 37

38 Operations on graphs Graph partitioning Given a graph, split in two complementary subsets S and S c, let us associate different labels to nodes belonging to different subsets: Note s i = 1, if i belongs to S, s i = -1, if i belongs to S c 0.5 (1-s i s j ) = 0, if i and j belong to the same set, 0.5 (1-s i s j ) = 1, if i and j belong to different sets DefiniGon: Cut size = R = 1 X X A ij (1 s i s j ) 4 i j Problem: Split a graph in two subsets in such a way that the cut size is minimum 38

39 Operations on graphs Graph partitioning Cut size can be rewrixen as R = 1 4 st Ls Constraints: - number of nodes / cluster - bounded norm Problem formulagon: s = argmin s T Ls subject to s i 2 { 1, 1} This is a combinatorial problem NX s i = n 1 n 2 i=1 39

40 Operations on graphs Graph partitioning Relaxed problem: Lagrangian: L(s;,µ)= s = argmin s T Ls NX subject to s 2 i = N NX NX L jk s j s k + Se\ng the gradient to zero, we get i=1 NX s i = n 1 n 2 i=1 NX 1 0 X N A 1 n 2 s 2 j s j k=1 j=1 j=1 j=1 Ls= s + µ 1 1 A 40

41 Operations on graphs Graph partitioning Relaxed problem: MulGplying from the le^ side by 1 T, we get µ = n 2 n 1 N Introducing the vector x := s + µ 1 = s + n 2 n 1 N 1 we get Lx= x x is then an eigenvector of L The cut size can be rewrixen as R = n 1n 2 N 41

42 Operations on graphs Graph partitioning Relaxed problem: x is then the eigenvector associated to the second smallest eigenvalue of L : u 2 The (real) solugon is then s R = x + n 1 n 2 N 1 s T s R The closest binary solugon is obtained by maximizing the scalar product s The opgmal is achieved by assigning s i =+1 to the n 1 vergces with the largest x i +(n 1 n 2 )/N and s i = 1 to the other vergces 42

43 Operations on graphs Graph partitioning Example u

44 Operations on graphs Graph partitioning 2 u 2 u

45 References 1. M. Newman, Networks: An IntroducGon, Oxford Univ. Press, C. Godsil, and G. Royle, Algebraic Graph Theory, Springer, New York, M. Mesbahi, M. Egerstedt, Graph TheoreGc Methods in MulGagent Networks, Princeton Univ. Press, R. Albert and A.-L. Barabasi, StaGsGcal mechanics of complex networks," Reviews of Modern Physics, 74(1), pp.47-97,

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

Graph Theory Review. January 30, Network Science Analytics Graph Theory Review 1

Graph Theory Review. January 30, Network Science Analytics Graph Theory Review 1 Graph Theory Review Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ January 30, 2018 Network

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Summary: What We Have Learned So Far

Summary: What We Have Learned So Far Summary: What We Have Learned So Far small-world phenomenon Real-world networks: { Short path lengths High clustering Broad degree distributions, often power laws P (k) k γ Erdös-Renyi model: Short path

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Graphs Origins Definition Spectral Properties Type of

More information

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows)

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Average clustering coefficient of a graph Overall measure

More information

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell Nick Hamilton Institute for Molecular Bioscience Essential Graph Theory for Biologists Image: Matt Moores, The Visible Cell Outline Core definitions Which are the most important bits? What happens when

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Mathematics of Networks Manar Mohaisen Department of EEC Engineering Adjacency matrix Network types Edge list Adjacency list Graph representation 2 Adjacency matrix Adjacency matrix

More information

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno Wednesday, March 8, 2006 Complex Networks Presenter: Jirakhom Ruttanavakul CS 790R, University of Nevada, Reno Presented Papers Emergence of scaling in random networks, Barabási & Bonabeau (2003) Scale-free

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns Roadmap Next several lectures: universal structural properties of networks Each large-scale network is unique microscopically,

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

ECE 158A - Data Networks

ECE 158A - Data Networks ECE 158A - Data Networks Homework 2 - due Tuesday Nov 5 in class Problem 1 - Clustering coefficient and diameter In this problem, we will compute the diameter and the clustering coefficient of a set of

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 11/13/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2 Observations Models

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

A Generating Function Approach to Analyze Random Graphs

A Generating Function Approach to Analyze Random Graphs A Generating Function Approach to Analyze Random Graphs Presented by - Vilas Veeraraghavan Advisor - Dr. Steven Weber Department of Electrical and Computer Engineering Drexel University April 8, 2005 Presentation

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 2 Part 4: Dividing Networks into Clusters The problem l Graph partitioning

More information

V2: Measures and Metrics (II)

V2: Measures and Metrics (II) - Betweenness Centrality V2: Measures and Metrics (II) - Groups of Vertices - Transitivity - Reciprocity - Signed Edges and Structural Balance - Similarity - Homophily and Assortative Mixing 1 Betweenness

More information

Critical Phenomena in Complex Networks

Critical Phenomena in Complex Networks Critical Phenomena in Complex Networks Term essay for Physics 563: Phase Transitions and the Renormalization Group University of Illinois at Urbana-Champaign Vikyath Deviprasad Rao 11 May 2012 Abstract

More information

Assessing and Safeguarding Network Resilience to Nodal Attacks

Assessing and Safeguarding Network Resilience to Nodal Attacks Assessing and Safeguarding Network Resilience to Nodal Attacks Pin-Yu Chen and Alfred O. Hero III, Fellow, IEEE Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,

More information

Zhibin Huang 07. Juni Zufällige Graphen

Zhibin Huang 07. Juni Zufällige Graphen Zhibin Huang 07. Juni 2010 Seite 2 Contents The Basic Method The Probabilistic Method The Ramsey Number R( k, l) Linearity of Expectation Basics Splitting Graphs The Probabilistic Lens: High Girth and

More information

Graph Theory and Network Measurment

Graph Theory and Network Measurment Graph Theory and Network Measurment Social and Economic Networks MohammadAmin Fazli Social and Economic Networks 1 ToC Network Representation Basic Graph Theory Definitions (SE) Network Statistics and

More information

My favorite application using eigenvalues: partitioning and community detection in social networks

My favorite application using eigenvalues: partitioning and community detection in social networks My favorite application using eigenvalues: partitioning and community detection in social networks Will Hobbs February 17, 2013 Abstract Social networks are often organized into families, friendship groups,

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1. Define Graph. A graph G = (V, E) consists

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral Clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Survey Survey Survey Competition I Out! Preliminary report of

More information

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Lecture 7 Networks Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow The Bridges of Königsberg The town of Konigsberg in 18 th century

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Special-topic lecture bioinformatics: Mathematics of Biological Networks

Special-topic lecture bioinformatics: Mathematics of Biological Networks Special-topic lecture bioinformatics: Leistungspunkte/Credit points: 5 (V2/Ü1) This course is taught in English language. The material (from books and original literature) are provided online at the course

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Using Complex Network in Wireless Sensor Networks Abstract Keywords: 1. Introduction

Using Complex Network in Wireless Sensor Networks Abstract Keywords: 1. Introduction Using Complex Network in Wireless Sensor Networks Amit Munjal, Anurag Singh, Yatindra Nath Singh Electrical Engineering Department Indian Institute of Technology Kanpur Kanpur, India Email: {amitm, anuragsg,

More information

Machine Learning and Modeling for Social Networks

Machine Learning and Modeling for Social Networks Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1 Introduction to Networks Computational Social Science D-GESS Olivia Woolley Meza

More information

Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior

Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior Who? Prof. Aris Anagnostopoulos Prof. Luciana S. Buriol Prof. Guido Schäfer What will We Cover? Topics: Network properties

More information

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge Centralities (4) By: Ralucca Gera, NPS Excellence Through Knowledge Some slide from last week that we didn t talk about in class: 2 PageRank algorithm Eigenvector centrality: i s Rank score is the sum

More information

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS.

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS. Graph Theory COURSE: Introduction to Biological Networks LECTURE 1: INTRODUCTION TO NETWORKS Arun Krishnan Koenigsberg, Russia Is it possible to walk with a route that crosses each bridge exactly once,

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Graph drawing in spectral layout

Graph drawing in spectral layout Graph drawing in spectral layout Maureen Gallagher Colleen Tygh John Urschel Ludmil Zikatanov Beginning: July 8, 203; Today is: October 2, 203 Introduction Our research focuses on the use of spectral graph

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University, y http://cs224w.stanford.edu Due in 1 week: Oct 4 in class! The idea of the reaction papers is: To familiarize yourselves

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates CSE 51: Design and Analysis of Algorithms I Spring 016 Lecture 11: Clustering and the Spectral Partitioning Algorithm Lecturer: Shayan Oveis Gharan May nd Scribe: Yueqi Sheng Disclaimer: These notes have

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 8 Luca Trevisan March 3, 20 Lecture 8 In which we prove properties of expander graphs. Quasirandomness of Expander Graphs Recall that

More information

CS-E5740. Complex Networks. Scale-free networks

CS-E5740. Complex Networks. Scale-free networks CS-E5740 Complex Networks Scale-free networks Course outline 1. Introduction (motivation, definitions, etc. ) 2. Static network models: random and small-world networks 3. Growing network models: scale-free

More information

Advanced Algorithms and Models for Computational Biology -- a machine learning approach

Advanced Algorithms and Models for Computational Biology -- a machine learning approach Advanced Algorithms and Models for Computational Biology -- a machine learning approach Biological Networks & Network Evolution Eric Xing Lecture 22, April 10, 2006 Reading: Molecular Networks Interaction

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

Community Detection. Community

Community Detection. Community Community Detection Community In social sciences: Community is formed by individuals such that those within a group interact with each other more frequently than with those outside the group a.k.a. group,

More information

Erdős-Rényi Model for network formation

Erdős-Rényi Model for network formation Network Science: Erdős-Rényi Model for network formation Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Why model? Simpler representation

More information

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Symeon Papavassiliou (joint work with Eleni Stai and Vasileios Karyotis) National Technical University of Athens (NTUA) School of

More information

Intro to Random Graphs and Exponential Random Graph Models

Intro to Random Graphs and Exponential Random Graph Models Intro to Random Graphs and Exponential Random Graph Models Danielle Larcomb University of Denver Danielle Larcomb Random Graphs 1/26 Necessity of Random Graphs The study of complex networks plays an increasingly

More information

Algebraic Graph Theory- Adjacency Matrix and Spectrum

Algebraic Graph Theory- Adjacency Matrix and Spectrum Algebraic Graph Theory- Adjacency Matrix and Spectrum Michael Levet December 24, 2013 Introduction This tutorial will introduce the adjacency matrix, as well as spectral graph theory. For those familiar

More information

caution in interpreting graph-theoretic diagnostics

caution in interpreting graph-theoretic diagnostics April 17, 2013 What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network a collection of more or less identical agents or objects,

More information

Why is a power law interesting? 2. it begs a question about mechanism: How do networks come to have power-law degree distributions in the first place?

Why is a power law interesting? 2. it begs a question about mechanism: How do networks come to have power-law degree distributions in the first place? you ve got the power Why is a power law interesting? 1. it is scale-free 2. it begs a question about mechanism: How do networks come to have power-law degree distributions in the first place? powerful

More information

Graph Theory for Network Science

Graph Theory for Network Science Graph Theory for Network Science Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Networks or Graphs We typically

More information

Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks

Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks SaeedA.AldosariandJoséM.F.Moura Electrical and Computer Engineering Department Carnegie Mellon University 5000 Forbes

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

Graph-theoretic Properties of Networks

Graph-theoretic Properties of Networks Graph-theoretic Properties of Networks Bioinformatics: Sequence Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Graphs A graph is a set of vertices, or nodes, and edges that connect pairs

More information

Network Mathematics - Why is it a Small World? Oskar Sandberg

Network Mathematics - Why is it a Small World? Oskar Sandberg Network Mathematics - Why is it a Small World? Oskar Sandberg 1 Networks Formally, a network is a collection of points and connections between them. 2 Networks Formally, a network is a collection of points

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks CSE 258 Lecture 12 Web Mining and Recommender Systems Social networks Social networks We ve already seen networks (a little bit) in week 3 i.e., we ve studied inference problems defined on graphs, and

More information

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanfordedu) February 6, 2018 Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 In the

More information

Some Graph Theory for Network Analysis. CS 249B: Science of Networks Week 01: Thursday, 01/31/08 Daniel Bilar Wellesley College Spring 2008

Some Graph Theory for Network Analysis. CS 249B: Science of Networks Week 01: Thursday, 01/31/08 Daniel Bilar Wellesley College Spring 2008 Some Graph Theory for Network Analysis CS 9B: Science of Networks Week 0: Thursday, 0//08 Daniel Bilar Wellesley College Spring 008 Goals this lecture Introduce you to some jargon what we call things in

More information

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search Math 443/543 Graph Theory Notes 0: Small world phenomenon and decentralized search David Glickenstein November 0, 008 Small world phenomenon The small world phenomenon is the principle that all people

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Topic II: Graph Mining

Topic II: Graph Mining Topic II: Graph Mining Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13 T II.Intro-1 Topic II Intro: Graph Mining 1. Why Graphs? 2. What is Graph Mining 3.

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 15 Graphs: Motivations

More information

CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation

CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation Spring 2005 Ahmed Elgammal Dept of Computer Science CS 534 Segmentation II - 1 Outlines What is Graph cuts Graph-based clustering

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Associate Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection,

More information

Branching Distributional Equations and their Applications

Branching Distributional Equations and their Applications Branching Distributional Equations and their Applications Mariana Olvera-Cravioto UNC Chapel Hill molvera@unc.edu August 22nd, 2018 Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their

More information

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

1 More configuration model

1 More configuration model 1 More configuration model In the last lecture, we explored the definition of the configuration model, a simple method for drawing networks from the ensemble, and derived some of its mathematical properties.

More information

Complex-Network Modelling and Inference

Complex-Network Modelling and Inference Complex-Network Modelling and Inference Lecture 8: Graph features (2) Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/notes/ Network_Modelling/ School

More information

Spectral Clustering on Handwritten Digits Database

Spectral Clustering on Handwritten Digits Database October 6, 2015 Spectral Clustering on Handwritten Digits Database Danielle dmiddle1@math.umd.edu Advisor: Kasso Okoudjou kasso@umd.edu Department of Mathematics University of Maryland- College Park Advance

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

E6885 Network Science Lecture 5: Network Estimation and Modeling

E6885 Network Science Lecture 5: Network Estimation and Modeling E 6885 Topics in Signal Processing -- Network Science E6885 Network Science Lecture 5: Network Estimation and Modeling Ching-Yung Lin, Dept. of Electrical Engineering, Columbia University October 7th,

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6702 - GRAPH THEORY AND APPLICATIONS Anna University 2 & 16 Mark Questions & Answers Year / Semester: IV /

More information

V10 Metabolic networks - Graph connectivity

V10 Metabolic networks - Graph connectivity V10 Metabolic networks - Graph connectivity Graph connectivity is related to analyzing biological networks for - finding cliques - edge betweenness - modular decomposition that have been or will be covered

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

Exercise set #2 (29 pts)

Exercise set #2 (29 pts) (29 pts) The deadline for handing in your solutions is Nov 16th 2015 07:00. Return your solutions (one.pdf le and one.zip le containing Python code) via e- mail to Becs-114.4150@aalto.fi. Additionally,

More information

Restricted edge connectivity and restricted connectivity of graphs

Restricted edge connectivity and restricted connectivity of graphs Restricted edge connectivity and restricted connectivity of graphs Litao Guo School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.China ltguo2012@126.com Xiaofeng Guo

More information

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering is one of the fundamental and ubiquitous tasks in exploratory data analysis a first intuition about the

More information

Graph similarity. Laura Zager and George Verghese EECS, MIT. March 2005

Graph similarity. Laura Zager and George Verghese EECS, MIT. March 2005 Graph similarity Laura Zager and George Verghese EECS, MIT March 2005 Words you won t hear today impedance matching thyristor oxide layer VARs Some quick definitions GV (, E) a graph G V the set of vertices

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection, most

More information

Introduction to network metrics

Introduction to network metrics Universitat Politècnica de Catalunya Version 0.5 Complex and Social Networks (2018-2019) Master in Innovation and Research in Informatics (MIRI) Instructors Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Source. Sink. Chapter 10: Iterative Programming Maximum Flow Problem. CmSc250 Intro to Algorithms

Source. Sink. Chapter 10: Iterative Programming Maximum Flow Problem. CmSc250 Intro to Algorithms Chapter 10: Iterative Programming Maximum Flow Problem CmSc20 Intro to Algorithms A flow network is a model of a system where some material is produced at its source, travels through the system, and is

More information

Lecture 6: Spectral Graph Theory I

Lecture 6: Spectral Graph Theory I A Theorist s Toolkit (CMU 18-859T, Fall 013) Lecture 6: Spectral Graph Theory I September 5, 013 Lecturer: Ryan O Donnell Scribe: Jennifer Iglesias 1 Graph Theory For this course we will be working on

More information

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl Graph Theory ICT Theory Excerpt from various sources by Robert Pergl What can graphs model? Cost of wiring electronic components together. Shortest route between two cities. Finding the shortest distance

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks CSE 158 Lecture 11 Web Mining and Recommender Systems Social networks Assignment 1 Due 5pm next Monday! (Kaggle shows UTC time, but the due date is 5pm, Monday, PST) Assignment 1 Assignment 1 Social networks

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Networks and Discrete Mathematics

Networks and Discrete Mathematics Aristotle University, School of Mathematics Master in Web Science Networks and Discrete Mathematics Small Words-Scale-Free- Model Chronis Moyssiadis Vassilis Karagiannis 7/12/2012 WS.04 Webscience: lecture

More information