Graph similarity. Laura Zager and George Verghese EECS, MIT. March 2005

Size: px
Start display at page:

Download "Graph similarity. Laura Zager and George Verghese EECS, MIT. March 2005"

Transcription

1 Graph similarity Laura Zager and George Verghese EECS, MIT March 2005

2 Words you won t hear today impedance matching thyristor oxide layer VARs

3 Some quick definitions GV (, E) a graph G V the set of vertices or nodes E V V the set of edges can be directed or undirected. ex a directed graph and its node-node adjacency matrix

4 Graph theory: some perspective The Königsberg bridge problem (18 th c.) The Four Color Theorem (1976)

5 Graph theory: some perspective The Königsberg bridge problem (18 th c.) The Four Color Theorem (1976) Erdös and Rényi random graph models (1959)

6 Graph theory: some perspective The Königsberg bridge problem (18 th c.) The Four Color Theorem (1976) Erdös and Rényi random graph models (1959) present and future: graphs that arise in the natural world

7 Applications Comparing biological networks Deriving phylogenetic trees from metabolic pathway data [Heymans, Singh, 2003]. Social network mapping Small world phenomena [Milgram, 1967; Watts, 1999]. Web searching Improving searching results using WWW structure [Kleinberg, 1999]. Chemical structure matching Finding similar structures in a chemical database [Hattori et al., 2003].

8 Applications Comparing biological networks Deriving phylogenetic trees from metabolic pathway data [Heymans, Singh, 2003]. Social network mapping Small world phenomena [Milgram, 1967; Watts, 1999]. Web searching Improving searching results using WWW structure [Kleinberg, 1999]. Chemical structure matching Finding similar structures in a chemical database [Hattori et al., 2003]. one common thread: similarity

9 Notions of similarity Isomorphism identifying a bijection between the nodes of two graphs which preserves (directed) adjacency. Corneil & Gotlieb, Journal of the ACM, Pelillo, Neural Computation, Ullman, Journal of the Assoc. of Computing Machinery, 1976.

10 Notions of similarity Isomorphism identifying a bijection between the nodes of two graphs which preserves (directed) adjacency. a c a d c b d b Corneil & Gotlieb, Journal of the ACM, Pelillo, Neural Computation, Ullman, Journal of the Assoc. of Computing Machinery, 1976.

11 Notions of similarity isomorphism Edit distance given a cost function on edit operations (e.g. addition/deletion of nodes and edges), determine the minimum cost transformation from one graph to another. Bunke, IEEE Trans. Pattern Analysis and Machine Int., Messmer & Bunke, IEEE Trans. Pattern Analysis and Machine Int., 1998.

12 Notions of similarity edit distance isomorphism Maximum common subgraph identifying the `largest isomorphic subgraphs of two graphs. Minimum common supergraph identifying the `smallest graph that contains both graphs. max. com. sub Fernandez & Valiente, Pattern Recognition Letters, Bunke, Jiang & Candel, Computing, 2000.

13 Notions of similarity edit distance isomorphism max (min) common sub(super)graph Statistical methods assessing aggregate measures of graph structure (e.g. degree distribution, diameter, betweenness measures). frequency degree Albert, Barabasi, Reviews of Modern Physics, 2002 Dill, Kumar, et al., ACM Transactions on Internet Technology, Watts, Small Worlds, 1999.

14 Notions of similarity edit distance? isomorphism max (min) common sub(super)graph? statistical comparison Iterative methods: Two graph elements (e.g., edges or nodes) are similar if their neighborhoods are similar. Kleinberg, Journal of the ACM, Blondel, Van Dooren, et al., SIAM Review, Jeh & Widom, 8 th Intl. Conf. on Knowledge Discovery and Data Mining, Melnik, Garcia-Molina, 18 th Intl. Conf. on Data Engineering, Heymans & Singh, Bioinformatics, 2003.

15 Kleinberg, 1999 * Motivated by demands of web searching Step 1: Use text-based search methods to identify a candidate graph containing relevant websites and their neighbors. text-based search results plus the local neighborhood leinberg, J.M. Authoritative sources in a hyperlinked environment. Journal of the ACM. 1999

16 Kleinberg, 1999 Relevant search results might be: Hubs pages which point to many good authorities Authorities pages which are pointed to by many good hubs } good hubs } good authorities Step 2: Compute hub and authority scores for every node in the candidate graph.

17 Kleinberg, 1999 Denote: x 1p (k) = hub score of node p at iteration k x 2p (k) = authority score of node p at iteration k Update rule: x ( k + 1) = x ( k) 2p 1q q:( q, p) E i.e. the sum of hub scores of nodes that point to node p x ( k + 1) = x ( k) 1p 2q q:( p, q) E i.e. the sum of authority scores of nodes that are pointed to by node p Normalize the scores so that p x ip = 1 and repeat.

18 Kleinberg, 1999 Denote: x 1p (k) = hub score of node p at iteration k x 2p (k) = authority score of node p at iteration k Update rule: x ( k + 1) = x ( k) 2p 1q q:( q, p) E i.e. the sum of hub scores of nodes that point to node p x ( k + 1) = x ( k) 1p 2q q:( p, q) E i.e. the sum of authority scores of nodes that are pointed to by node p Normalize the scores so that p x ip = 1 and repeat.

19 Kleinberg, 1999 Denote: x 1p (k) = hub score of node p at iteration k x 2p (k) = authority score of node p at iteration k Update rule: Stack the scores x 1p (k) into a vector [x 1 ] k, then stack [x 1 ] k and [x 2 ] k. Let B be the node-node adjacency matrix of the candidate graph. Then: x x 1 = 2 k+ 1 0 B B x 0 x 1 2 k

20 Kleinberg, 1999 Ex nodes x 1 hub scores x 2 authority scores for a good read, see The Ongoing Search for Efficient Web Search Algorithms, SIAM News, November 2004.

21 Blondel, Van Dooren, et al., 2004 * Views Kleinberg s iteration as a comparison between the web graph and a hub-authority graph: 1 hub node 2 authority node A = Observe that the matrix form of Kleinberg s update can be written as follows: x x 1 = 0 B B x 0 x 1 ( A B A B ) x = + x 2 k+ 1 2 k 2 k Is this generalizable to any two graphs G A and G B? 1 * Blondel, V., Gajardo, A., Heymans, M., Senellart, P., Van Dooren, P. A measure of similarity between graph vertices: applications to synonym extraction and web searching. SIAM Review, v. 46(4),

22 Blondel, Van Dooren, et al., 2004 A first step toward generalizing Kleinberg s approach: consider comparing the graph G B to the following graph using a similar update: hub node central node authority node A = x ( k + 1) = x ( k) 1p 2q q:( p, q) E p x ( k + 1) = x ( k) + x ( k) 2p 1q 3q q:( q, p) E q:( p, q) E x ( k + 1) = x ( k) 3p 2q q:( q, p) E

23 Blondel, Van Dooren, et al., 2004 A first step toward generalizing Kleinberg s approach: consider comparing the graph G B to the following graph using a similar update: hub node central node authority node A = x ( k + 1) = x ( k) 1p 2q q:( p, q) E p x ( k + 1) = x ( k) + x ( k) 2p 1q 3q q:( q, p) E q:( p, q) E x ( k + 1) = x ( k) 3p 2q q:( q, p) E

24 Blondel, Van Dooren, et al., 2004 A first step toward generalizing Kleinberg s approach: consider comparing the graph G B to the following graph using a similar update: hub node central node authority node A = x ( k + 1) = x ( k) 1p 2q q:( p, q) E p x ( k + 1) = x ( k) + x ( k) 2p 1q 3q q:( q, p) E q:( p, q) E x ( k + 1) = x ( k) 3p 2q q:( q, p) E

25 Blondel, Van Dooren, et al., 2004 A first step toward generalizing Kleinberg s approach: consider comparing the graph G B to the following graph using a similar update: hub node central node authority node A = x ( k + 1) = x ( k) 1p 2q q:( p, q) E p x ( k + 1) = x ( k) + x ( k) 2p 1q 3q q:( q, p) E q:( p, q) E x ( k + 1) = x ( k) 3p 2q q:( q, p) E

26 Blondel, Van Dooren, et al., 2004 A first step toward generalizing Kleinberg s approach: consider comparing the graph G B to the following graph using a similar update: hub node central node authority node A = x x x B 0 x = B 0 B x 0 B 0 x 1 2 ( ) = A B + A B x x x 3 k+ 1 3 k 3 k 1 2 (use this construction for automatic synonym extraction)

27 Blondel, Van Dooren, et al., 2004 In general, the nodes of two graphs G A and G B can be compared via the following update: ( ) xk+ 1 = A B + A B x k Ex. G A G B similarity scores nodes

28 Coupled edge and node scoring Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores. Couple the definitions in the following manner: x ij = similarity between node i in G B and node j in G A = sum of pairwise similarities between adjacent edges y ij = similarity between edge i in G B and edge j in G A. = sum of similarities of source and terminal nodes

29 Coupled edge and node scoring Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores. Couple the definitions in the following manner: x ij = similarity between node i in G B and node j in G A = sum of pairwise similarities between adjacent edges y ij = similarity between edge i in G B and edge j in G A. = sum of similarities of source and terminal nodes

30 Coupled edge and node scoring Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores. Couple the definitions in the following manner: x ij = similarity between node i in G B and node j in G A = sum of pairwise similarities between adjacent edges y ij = similarity between edge i in G B and edge j in G A. = sum of similarities of source and terminal nodes

31 Coupled edge and node scoring Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores. Couple the definitions in the following manner: x ij = similarity between node i in G B and node j in G A = sum of pairwise similarities between adjacent edges y ij = similarity between edge i in G B and edge j in G A. = sum of similarities of source and terminal nodes [ ] x + 1 = A B + A B y k S S T T k [ ] + y A B A B x k+ 1 = S S T T k [ A ] S ij = 1 0 s( j) = else i [ A ] T ij = 1 0 t( j) = else i

32 Example 1 G A G B Blondel, Van Dooren, et al. similarity scores nodes Coupled model similarity scores nodes

33 Application: Graph Matching Assign a correspondence between nodes and/or edges of each graph to maximize some performance criteria. The Approach: apply Hungarian algorithm to node similarity matrix to maximize the sum of matched scores

34 Application: Graph Matching Task: subgraph matching Generate a random graph, G. Select a subgraph, S. Compute the node similarity matrices between G and S. Apply the Hungarian algorithm to `best match the nodes of S to those in G by finding a matching the maximizes the sum of matched scores. Record successes for nodes that are matched with their original identifier. G d c a b d S c a b

35 Application: Graph Matching Task: subgraph matching Generate a random graph, G Select a subgraph, S Compute the node similarity matrices between G and S Apply the Hungarian algorithm to `best match the nodes of S to those in G by finding a matching the maximizes the sum of matched weights. Record successes for nodes that are matched with their original identifier G a* a S d c Yields a lower bound on the success of the matching process b d c a b

36 Application: Graph Matching Using local edge similarity to improve scores: perform a a local edge matching a a x aa x aa * = x aa + m aa

37 Application: Graph Matching

38 Application: Graph Matching Exploring the impact of node labeling: cannot be matched

39 Application: Graph Matching

40 Current/future work How does graph structure (e.g., cycles, paths, completeness) impact similarity scores? What can be inferred about a pair of graphs from a similarity measurement? What kinds of tasks is this measure appropriate for?

41 Acknowledgments George Verghese, MIT Sandip Roy, WSU Paul Van Dooren, Université catholique de Louvain Work supported by a NSF Graduate Research Fellowship.

Trust-Based Recommendation Based on Graph Similarity

Trust-Based Recommendation Based on Graph Similarity Trust-Based Recommendation Based on Graph Similarity Chung-Wei Hang and Munindar P. Singh Department of Computer Science North Carolina State University Raleigh, NC 27695-8206, USA {chang,singh}@ncsu.edu

More information

Measuring Similarity of Graph Nodes by Neighbor Matching

Measuring Similarity of Graph Nodes by Neighbor Matching Measuring Similarity of Graph Nodes by Neighbor Matching Mladen Nikolić Faculty of Mathematics, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia e-mail: nikolic@matf.bg.ac.rs Tel. +381648650064

More information

Using Metrics to Identify Design Patterns in Object-Oriented Software EPM

Using Metrics to Identify Design Patterns in Object-Oriented Software EPM Using Metrics to Identify Design Patterns in Object-Oriented Software G. Antoniol Outline Motivations; Design patterns concepts; Design patterns recovery approach; Experimental results; Conclusions. Motivations

More information

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

Recovery of Design Pattern from source code

Recovery of Design Pattern from source code Recovery of Design Pattern from source code Amit Kumar Gautam and T.Gayen Software Engineering, IIIT Allahabad tgayen@iiita.ac.in, Ise2008004@iiita.ac.in Abstract. The approach for detecting design pattern

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Graphs Origins Definition Spectral Properties Type of

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

Graph Similarity for Data Mining Lot 6 of Data Analytics FY17/18

Graph Similarity for Data Mining Lot 6 of Data Analytics FY17/18 Graph Similarity for Data Mining Lot 6 of Data Analytics FY17/18 Meeting Presentation Peter Rodgers Algorithms for the Comparison of Graphs Graph Isomorphism Graph Edit Distance Various Others Used in

More information

Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

Embedded Subgraph Isomorphism and Related Problems

Embedded Subgraph Isomorphism and Related Problems Embedded Subgraph Isomorphism and Related Problems Graph isomorphism, subgraph isomorphism, and maximum common subgraph can be solved in polynomial time when constrained by geometrical information, in

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

Graphs. Motivations: o Networks o Social networks o Program testing o Job Assignment Examples: o Code graph:

Graphs. Motivations: o Networks o Social networks o Program testing o Job Assignment Examples: o Code graph: Graphs Motivations: o Networks o Social networks o Program testing o Job Assignment Examples: o Code graph: S1: int x S2: If x > 0 then S3: X = x + 2; Else S4: X =x -1; End if S5: While x > 1 do S6: Print

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Laura Zager. B.A., Mathematics (2003) B.S., Engineering (2003) Swarthmore College. at the. May Professor of Electrical Engineering and

Laura Zager. B.A., Mathematics (2003) B.S., Engineering (2003) Swarthmore College. at the. May Professor of Electrical Engineering and Graph Similarity and Matching by Laura Zager B.A., Mathematics (2003) B.S., Engineering (2003) Swarthmore College Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

More information

Signal Processing for Big Data

Signal Processing for Big Data Signal Processing for Big Data Sergio Barbarossa 1 Summary 1. Networks 2.Algebraic graph theory 3. Random graph models 4. OperaGons on graphs 2 Networks The simplest way to represent the interaction between

More information

Lecture 3: Recap. Administrivia. Graph theory: Historical Motivation. COMP9020 Lecture 4 Session 2, 2017 Graphs and Trees

Lecture 3: Recap. Administrivia. Graph theory: Historical Motivation. COMP9020 Lecture 4 Session 2, 2017 Graphs and Trees Administrivia Lecture 3: Recap Assignment 1 due 23:59 tomorrow. Quiz 4 up tonight, due 15:00 Thursday 31 August. Equivalence relations: (S), (R), (T) Total orders: (AS), (R), (T), (L) Partial orders: (AS),

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Minimum-Cost Spanning Tree. as a. Path-Finding Problem. Laboratory for Computer Science MIT. Cambridge MA July 8, 1994.

Minimum-Cost Spanning Tree. as a. Path-Finding Problem. Laboratory for Computer Science MIT. Cambridge MA July 8, 1994. Minimum-Cost Spanning Tree as a Path-Finding Problem Bruce M. Maggs Serge A. Plotkin Laboratory for Computer Science MIT Cambridge MA 02139 July 8, 1994 Abstract In this paper we show that minimum-cost

More information

Lecture 2: From Structured Data to Graphs and Spectral Analysis

Lecture 2: From Structured Data to Graphs and Spectral Analysis Lecture 2: From Structured Data to Graphs and Spectral Analysis Radu Balan February 9, 2017 Data Sets Today we discuss type of data sets and graphs. The overarching problem is the following: Main Problem

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

Mathematics of Networks II

Mathematics of Networks II Mathematics of Networks II 26.10.2016 1 / 30 Definition of a network Our definition (Newman): A network (graph) is a collection of vertices (nodes) joined by edges (links). More precise definition (Bollobàs):

More information

Lecture 2: Geometric Graphs, Predictive Graphs and Spectral Analysis

Lecture 2: Geometric Graphs, Predictive Graphs and Spectral Analysis Lecture 2: Geometric Graphs, Predictive Graphs and Spectral Analysis Radu Balan February 8, 2018 Data Graphs Today we discuss construction of dynamical data graphs and spectral analysis. The overarching

More information

Social Data Management Communities

Social Data Management Communities Social Data Management Communities Antoine Amarilli 1, Silviu Maniu 2 January 9th, 2018 1 Télécom ParisTech 2 Université Paris-Sud 1/20 Table of contents Communities in Graphs 2/20 Graph Communities Communities

More information

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12. AMS 550.47/67: Graph Theory Homework Problems - Week V Problems to be handed in on Wednesday, March : 6, 8, 9,,.. Assignment Problem. Suppose we have a set {J, J,..., J r } of r jobs to be filled by a

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

Alignment of Trees and Directed Acyclic Graphs

Alignment of Trees and Directed Acyclic Graphs Alignment of Trees and Directed Acyclic Graphs Gabriel Valiente Algorithms, Bioinformatics, Complexity and Formal Methods Research Group Technical University of Catalonia Computational Biology and Bioinformatics

More information

Unit 2: Graphs and Matrices. ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie

Unit 2: Graphs and Matrices. ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie Unit 2: Graphs and Matrices ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie Four main ways to notate a social network There are a variety of ways to mathematize a social network,

More information

Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 16th, 2014 Outline n Network Science A Random History n Network Analysis Network

More information

NETWORK ANALYSIS. Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging

NETWORK ANALYSIS. Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging NETWORK ANALYSIS Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu What is a network? - Complex web-like structures

More information

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena CSE 190 Lecture 16 Data Mining and Predictive Analytics Small-world phenomena Another famous study Stanley Milgram wanted to test the (already popular) hypothesis that people in social networks are separated

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Giri Iyengar Cornell University gi43@cornell.edu March 14, 2018 Giri Iyengar (Cornell Tech) Social Network Analysis March 14, 2018 1 / 24 Overview 1 Social Networks 2 HITS 3 Page

More information

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS.

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS. Graph Theory COURSE: Introduction to Biological Networks LECTURE 1: INTRODUCTION TO NETWORKS Arun Krishnan Koenigsberg, Russia Is it possible to walk with a route that crosses each bridge exactly once,

More information

Paths, Circuits, and Connected Graphs

Paths, Circuits, and Connected Graphs Paths, Circuits, and Connected Graphs Paths and Circuits Definition: Let G = (V, E) be an undirected graph, vertices u, v V A path of length n from u to v is a sequence of edges e i = {u i 1, u i} E for

More information

arxiv:cs/ v1 [cs.ir] 26 Apr 2002

arxiv:cs/ v1 [cs.ir] 26 Apr 2002 Navigating the Small World Web by Textual Cues arxiv:cs/0204054v1 [cs.ir] 26 Apr 2002 Filippo Menczer Department of Management Sciences The University of Iowa Iowa City, IA 52242 Phone: (319) 335-0884

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Triadic closure; strong & weak ties

CSE 158 Lecture 11. Web Mining and Recommender Systems. Triadic closure; strong & weak ties CSE 158 Lecture 11 Web Mining and Recommender Systems Triadic closure; strong & weak ties Triangles So far we ve seen (a little about) how networks can be characterized by their connectivity patterns What

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Lecture 7 Networks Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow The Bridges of Königsberg The town of Konigsberg in 18 th century

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

Scalable Clustering of Signed Networks Using Balance Normalized Cut

Scalable Clustering of Signed Networks Using Balance Normalized Cut Scalable Clustering of Signed Networks Using Balance Normalized Cut Kai-Yang Chiang,, Inderjit S. Dhillon The 21st ACM International Conference on Information and Knowledge Management (CIKM 2012) Oct.

More information

Examples of Complex Networks

Examples of Complex Networks Examples of Complex Networks Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li

DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li Welcome to DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li Time: 6:00pm 8:50pm R Location: AK232 Fall 2016 Graph Data: Social Networks Facebook social graph 4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna,

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Graphs and Isomorphisms

Graphs and Isomorphisms Graphs and Isomorphisms Discrete Structures (CS 173) Backyards of Old Houses in Antwerp in the Snow Van Gogh Madhusudan Parthasarathy, University of Illinois Proof techniques: Direct Contrapositive Disproving

More information

V10 Metabolic networks - Graph connectivity

V10 Metabolic networks - Graph connectivity V10 Metabolic networks - Graph connectivity Graph connectivity is related to analyzing biological networks for - finding cliques - edge betweenness - modular decomposition that have been or will be covered

More information

PageRank and related algorithms

PageRank and related algorithms PageRank and related algorithms PageRank and HITS Jacob Kogan Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, Maryland 21250 kogan@umbc.edu May 15, 2006 Basic

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 15 Graphs: Motivations

More information

Assoc.Department of Computer Applications Professor SVCET, Chittoor, Andhra Pradesh, India

Assoc.Department of Computer Applications Professor SVCET, Chittoor, Andhra Pradesh, India International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 4 ISSN : 2456-3307 Social Network Security Based on Trust Agent and

More information

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

An Edge-Swap Heuristic for Finding Dense Spanning Trees

An Edge-Swap Heuristic for Finding Dense Spanning Trees Theory and Applications of Graphs Volume 3 Issue 1 Article 1 2016 An Edge-Swap Heuristic for Finding Dense Spanning Trees Mustafa Ozen Bogazici University, mustafa.ozen@boun.edu.tr Hua Wang Georgia Southern

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

Case Studies in Complex Networks

Case Studies in Complex Networks Case Studies in Complex Networks Introduction to Scientific Modeling CS 365 George Bezerra 08/27/2012 The origin of graph theory Königsberg bridge problem Leonard Euler (1707-1783) The Königsberg Bridge

More information

Machine Learning and Modeling for Social Networks

Machine Learning and Modeling for Social Networks Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1 Introduction to Networks Computational Social Science D-GESS Olivia Woolley Meza

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

The 3-Steiner Root Problem

The 3-Steiner Root Problem The 3-Steiner Root Problem Maw-Shang Chang 1 and Ming-Tat Ko 2 1 Department of Computer Science and Information Engineering National Chung Cheng University, Chiayi 621, Taiwan, R.O.C. mschang@cs.ccu.edu.tw

More information

Searching the Web [Arasu 01]

Searching the Web [Arasu 01] Searching the Web [Arasu 01] Most user simply browse the web Google, Yahoo, Lycos, Ask Others do more specialized searches web search engines submit queries by specifying lists of keywords receive web

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA PhD course in Electronics, Automation and Complex Systems Control-XXIV Cycle DIPARTIMENTO DI INGEGNERIA ELETTRICA ELETTRONICA E DEI SISTEMI ing.

More information

Graph Theory and Network Measurment

Graph Theory and Network Measurment Graph Theory and Network Measurment Social and Economic Networks MohammadAmin Fazli Social and Economic Networks 1 ToC Network Representation Basic Graph Theory Definitions (SE) Network Statistics and

More information

COMP5331: Knowledge Discovery and Data Mining

COMP5331: Knowledge Discovery and Data Mining COMP5331: Knowledge Discovery and Data Mining Acknowledgement: Slides modified based on the slides provided by Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd, Jon M. Kleinberg 1 1 PageRank

More information

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

Decreasing the Diameter of Bounded Degree Graphs

Decreasing the Diameter of Bounded Degree Graphs Decreasing the Diameter of Bounded Degree Graphs Noga Alon András Gyárfás Miklós Ruszinkó February, 00 To the memory of Paul Erdős Abstract Let f d (G) denote the minimum number of edges that have to be

More information

Response Network Emerging from Simple Perturbation

Response Network Emerging from Simple Perturbation Journal of the Korean Physical Society, Vol 44, No 3, March 2004, pp 628 632 Response Network Emerging from Simple Perturbation S-W Son, D-H Kim, Y-Y Ahn and H Jeong Department of Physics, Korea Advanced

More information

Path Analysis References: Ch.10, Data Mining Techniques By M.Berry, andg.linoff Dr Ahmed Rafea

Path Analysis References: Ch.10, Data Mining Techniques By M.Berry, andg.linoff  Dr Ahmed Rafea Path Analysis References: Ch.10, Data Mining Techniques By M.Berry, andg.linoff http://www9.org/w9cdrom/68/68.html Dr Ahmed Rafea Outline Introduction Link Analysis Path Analysis Using Markov Chains Applications

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

CSE 255 Lecture 13. Data Mining and Predictive Analytics. Triadic closure; strong & weak ties

CSE 255 Lecture 13. Data Mining and Predictive Analytics. Triadic closure; strong & weak ties CSE 255 Lecture 13 Data Mining and Predictive Analytics Triadic closure; strong & weak ties Monday Random models of networks: Erdos Renyi random graphs (picture from Wikipedia http://en.wikipedia.org/wiki/erd%c5%91s%e2%80%93r%c3%a9nyi_model)

More information

Chapter 2 Graphs. 2.1 Definition of Graphs

Chapter 2 Graphs. 2.1 Definition of Graphs Chapter 2 Graphs Abstract Graphs are discrete structures that consist of vertices and edges connecting some of these vertices. Graphs have many applications in Mathematics, Computer Science, Engineering,

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecturer: Mgr. Tereza Kovářová, Ph.D. tereza.kovarova@vsb.cz Guarantor: doc. Mgr. Petr Kovář, Ph.D. Department of Applied Mathematics, VŠB Technical University of Ostrava About this

More information

CSE 158 Lecture 13. Web Mining and Recommender Systems. Triadic closure; strong & weak ties

CSE 158 Lecture 13. Web Mining and Recommender Systems. Triadic closure; strong & weak ties CSE 158 Lecture 13 Web Mining and Recommender Systems Triadic closure; strong & weak ties Monday Random models of networks: Erdos Renyi random graphs (picture from Wikipedia http://en.wikipedia.org/wiki/erd%c5%91s%e2%80%93r%c3%a9nyi_model)

More information

HIPRank: Ranking Nodes by Influence Propagation based on authority and hub

HIPRank: Ranking Nodes by Influence Propagation based on authority and hub HIPRank: Ranking Nodes by Influence Propagation based on authority and hub Wen Zhang, Song Wang, GuangLe Han, Ye Yang, Qing Wang Laboratory for Internet Software Technologies Institute of Software, Chinese

More information

Random Generation of the Social Network with Several Communities

Random Generation of the Social Network with Several Communities Communications of the Korean Statistical Society 2011, Vol. 18, No. 5, 595 601 DOI: http://dx.doi.org/10.5351/ckss.2011.18.5.595 Random Generation of the Social Network with Several Communities Myung-Hoe

More information

Graph Theory Review. January 30, Network Science Analytics Graph Theory Review 1

Graph Theory Review. January 30, Network Science Analytics Graph Theory Review 1 Graph Theory Review Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ January 30, 2018 Network

More information

Topology Generation for Web Communities Modeling

Topology Generation for Web Communities Modeling Topology Generation for Web Communities Modeling György Frivolt and Mária Bieliková Institute of Informatics and Software Engineering Faculty of Informatics and Information Technologies Slovak University

More information

13: Betweenness Centrality

13: Betweenness Centrality 13: Betweenness Centrality Machine Learning and Real-world Data Ann Copestake and Simone Teufel Computer Laboratory University of Cambridge Lent 2017 Last session: some simple network statistics You measured

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

Graph Theory for Network Science

Graph Theory for Network Science Graph Theory for Network Science Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Networks or Graphs We typically

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

Graph Mining and Social Network Analysis

Graph Mining and Social Network Analysis Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References q Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann

More information

Mathematics of networks. Artem S. Novozhilov

Mathematics of networks. Artem S. Novozhilov Mathematics of networks Artem S. Novozhilov August 29, 2013 A disclaimer: While preparing these lecture notes, I am using a lot of different sources for inspiration, which I usually do not cite in the

More information

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge Centralities (4) By: Ralucca Gera, NPS Excellence Through Knowledge Some slide from last week that we didn t talk about in class: 2 PageRank algorithm Eigenvector centrality: i s Rank score is the sum

More information

On the edit distance from a cycle- and squared cycle-free graph

On the edit distance from a cycle- and squared cycle-free graph Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2013 On the edit distance from a cycle- and squared cycle-free graph Chelsea Peck Iowa State University Follow

More information

A visual analytics approach to compare propagation models in social networks

A visual analytics approach to compare propagation models in social networks London, April 11-12 2015 A visual analytics approach to compare propagation models in social networks J. Vallet, H. Kirchner, B. Pinaud, G. Melançon LaBRI, UMR 5800 Inria Bordeaux Univ. Bordeaux We want

More information

Lecture 17 November 7

Lecture 17 November 7 CS 559: Algorithmic Aspects of Computer Networks Fall 2007 Lecture 17 November 7 Lecturer: John Byers BOSTON UNIVERSITY Scribe: Flavio Esposito In this lecture, the last part of the PageRank paper has

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

Graph Grammars. Marc Provost McGill University February 18, 2004

Graph Grammars. Marc Provost McGill University February 18, 2004 Graph Grammars Marc Provost McGill University marc.provost@mail.mcgill.ca February 18, 2004 Abstract This presentation introduces graph transformations. Typeset by FoilTEX Structure of the talk Graph Theory

More information

A Relational View of Subgraph Isomorphism

A Relational View of Subgraph Isomorphism A Relational View of Subgraph Isomorphism J. Cortadella and G. Valiente Department of Software, Technical University of Catalonia, Barcelona, Spain Abstract. This paper presents a novel approach to the

More information

EFFECT OF VARYING THE DELAY DISTRIBUTION IN DIFFERENT CLASSES OF NETWORKS: RANDOM, SCALE-FREE, AND SMALL-WORLD. A Thesis BUM SOON JANG

EFFECT OF VARYING THE DELAY DISTRIBUTION IN DIFFERENT CLASSES OF NETWORKS: RANDOM, SCALE-FREE, AND SMALL-WORLD. A Thesis BUM SOON JANG EFFECT OF VARYING THE DELAY DISTRIBUTION IN DIFFERENT CLASSES OF NETWORKS: RANDOM, SCALE-FREE, AND SMALL-WORLD A Thesis by BUM SOON JANG Submitted to the Office of Graduate Studies of Texas A&M University

More information

A Community-Based Peer-to-Peer Model Based on Social Networks

A Community-Based Peer-to-Peer Model Based on Social Networks 272 IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008 A Community-Based Peer-to-Peer Model Based on Social Networks Amir Modarresi 1, Ali Mamat 2, Hamidah Ibrahim

More information

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han Chapter 1. Social Media and Social Computing October 2012 Youn-Hee Han http://link.koreatech.ac.kr 1.1 Social Media A rapid development and change of the Web and the Internet Participatory web application

More information

Data mining --- mining graphs

Data mining --- mining graphs Data mining --- mining graphs University of South Florida Xiaoning Qian Today s Lecture 1. Complex networks 2. Graph representation for networks 3. Markov chain 4. Viral propagation 5. Google s PageRank

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

Abstract. 1. Introduction

Abstract. 1. Introduction A Visualization System using Data Mining Techniques for Identifying Information Sources on the Web Richard H. Fowler, Tarkan Karadayi, Zhixiang Chen, Xiaodong Meng, Wendy A. L. Fowler Department of Computer

More information

Personalized Information Retrieval

Personalized Information Retrieval Personalized Information Retrieval Shihn Yuarn Chen Traditional Information Retrieval Content based approaches Statistical and natural language techniques Results that contain a specific set of words or

More information

6. Overview. L3S Research Center, University of Hannover. 6.1 Section Motivation. Investigation of structural aspects of peer-to-peer networks

6. Overview. L3S Research Center, University of Hannover. 6.1 Section Motivation. Investigation of structural aspects of peer-to-peer networks , University of Hannover Random Graphs, Small-Worlds, and Scale-Free Networks Wolf-Tilo Balke and Wolf Siberski 05.12.07 * Original slides provided by K.A. Lehmann (University Tübingen, Germany) 6. Overview

More information