Warm- up. IteraAve version, not recursive. class TreeNode TreeNode[] children() boolean isgoal() DFS(TreeNode start)

Size: px
Start display at page:

Download "Warm- up. IteraAve version, not recursive. class TreeNode TreeNode[] children() boolean isgoal() DFS(TreeNode start)"

Transcription

1 Warm- up We ll o-en have a warm- up exercise for the 10 minutes before class starts. Here s the first one Write the pseudo code for breadth first search and depth first search IteraAve version, not recursive class TreeNode TreeNode[] children() boolean isgoal() BFS(TreeNode start) DFS(TreeNode start)

2 Announcements Upcoming due dates F 5 pm Proj 0 M 11:59 pm HW 1 Be careful of edx Amezone (UTC)! Account forms Pick- up a-er lecture (if you like) Step- by- step videos Found in edx Courseware (linked on edx Syllabus)

3 CS 188: ArAficial Intelligence Search Instructors: Stuart Russell and Pat Virtue

4 Today Agents that Plan Ahead Search Problems Uninformed Search Methods Depth- First Search Breadth- First Search Uniform- Cost Search

5 Reflex agents: Choose acaon based on current percept (and maybe memory) May have memory or a model of the world s current state Do not consider the future consequences of their acaons Consider how the world IS Reflex Agents

6 Agents that Plan Ahead Planning agents: Decisions based on predicted consequences of acaons Must have a transi/on model: how the world evolves in response to acaons Must formulate a goal Consider how the world WOULD BE Spectrum of deliberaaveness: Generate complete, opamal plan offline, then execute Generate a simple, greedy plan, start execuang, replan when something goes wrong

7 Demo Mastermind

8 Demo Replanning

9 Search Problems

10 A search problem consists of: A state space Search Problems For each state, a set AcAons(s) of allowable acaons A transiaon model Result(s,a) {N, E} N 1 A step cost funcaon c(s,a,s ) E 1 A start state and a goal test A soluaon is a sequence of acaons (a plan) which transforms the start state to a goal state

11 Search Problems Are Models

12 Example: Travelling in Romania 71 Oradea Neamt State space: CiAes Arad Zerind 140 Timisoara Drobeta 151 Sibiu 99 Fagaras 80 Rimnicu Vilcea Lugoj Mehadia 120 Pitesti Bucharest 90 Craiova Giurgiu 87 Iasi Urziceni Vaslui Hirsova 86 Eforie AcAons: Go to adjacent city TransiAon model Result(A, Go(B)) = B Step cost Distance along road link Start state: Arad Goal test: Is state == Bucharest? SoluAon?

13 What s in a State Space? The real world state includes every last detail of the environment A search state abstracts away details not needed to solve the problem Problem: Pathing State representaaon: (x,y) locaaon AcAons: NSEW TransiAon model: update locaaon Goal test: is (x,y)=end MN states Problem: Eat- All- Dots State representaaon: {(x,y), dot booleans} AcAons: NSEW TransiAon model: update locaaon and possibly a dot boolean Goal test: dots all false MN2 MN states

14 Quiz: Safe Passage Problem: eat all dots while keeping the ghosts perma- scared What does the state representaaon have to specify? (agent posiaon, dot booleans, power pellet booleans, remaining scared Ame)

15 State Space Graphs and Search Trees

16 State Space Graphs State space graph: A mathemaacal representaaon of a search problem Nodes are (abstracted) world configuraaons Arcs represent transiaons resulang from acaons The goal test is a set of goal nodes (maybe only one) In a state space graph, each state occurs only once! We can rarely build this full graph in memory (it s too big), but it s a useful idea

17 More Examples 71 Oradea Neamt Arad Zerind 140 Timisoara 151 Sibiu 99 Fagaras 80 Rimnicu Vilcea 87 Iasi 92 Vaslui 111 Lugoj 97 Pitesti Drobeta Mehadia Bucharest 90 Craiova Giurgiu 98 Urziceni Hirsova 86 Eforie

18 More Examples L R L R S S R R L R L R L L S S S S R L R L S S

19 Search Trees This is now / start N, 1.0 E, 1.0 Possible futures A search tree: A what if tree of plans and their outcomes The start state is the root node Children correspond to possible acaon outcomes Nodes show states, but correspond to PLANS that achieve those states For most problems, we can never actually build the whole tree

20 Quiz: State Space Graphs vs. Search Trees Consider this 4- state graph: How big is its search tree (from S)? S a a b S G b G G a b G a b G Important: Lots of repeated structure in the search tree!

21 Tree Search

22 Search Example: Romania 71 Oradea Neamt Arad Zerind Timisoara Sibiu 99 Fagaras 80 Rimnicu Vilcea 87 Iasi 92 Vaslui 111 Lugoj 97 Pitesti Drobeta Mehadia Bucharest 90 Craiova Giurgiu Urziceni 98 Hirsova 86 Eforie

23 Searching with a Search Tree Search: Expand out potenaal plans (tree nodes) Maintain a fronaer of paraal plans under consideraaon Try to expand as few tree nodes as possible

24 General Tree Search function TREE-SEARCH(problem) returns a solution, or failure initialize the frontier using the initial state of problem loop do if the frontier is empty then return failure choose a leaf node and remove it from the frontier if the node contains a goal state then return the corresponding solution expand the chosen node, adding the resulting nodes to the frontier Important ideas: FronAer Expansion ExploraAon strategy Main quesaon: which fronaer nodes to explore?

25 A Note on ImplementaAon Nodes have state, parent, acaon, path- cost A child of node by acaon a has state = result(node.state,a) 5 4 Node PARENT ACTION = Right PATH-COST = 6 parent acaon = node = a STATE path- cost = node.path- cost + step- cost(node.state, a, self.state) Extract soluaon by tracing back parent pointers, collecang acaons

26 Depth- First Search

27 Depth- First Search S a b d p a c e p h f r q q c G a q e p h f r q q c G a S G d b p q c e h a f r q p h f d b a c e r Strategy: expand a deepest node first Implementa4on: Fron/er is a LIFO stack

28 Search Algorithm ProperAes

29 Search Algorithm ProperAes Complete: Guaranteed to find a soluaon if one exists? OpAmal: Guaranteed to find the least cost path? Time complexity? Space complexity? b 1 node b nodes Cartoon of search tree: b is the branching factor m tiers b 2 nodes m is the maximum depth soluaons at various depths b m nodes Number of nodes in enare tree? 1 + b + b 2 +. b m = O(b m )

30 Depth- First Search (DFS) ProperAes What nodes does DFS expand? Some le- prefix of the tree. Could process the whole tree! If m is finite, takes Ame O(b m ) b 1 node b nodes b 2 nodes How much space does the fronaer take? Only has siblings on path to root, so O(bm) m tiers Is it complete? m could be infinite, so only if we prevent cycles (more later) b m nodes Is it opamal? No, it finds the le-most soluaon, regardless of depth or cost

31 Breadth- First Search

32 Breadth- First Search Strategy: expand a shallowest node first Implementa4on: Fron/er is a FIFO queue S b p a d q c h e r f G S Search Tiers b a d c a h e r p h q e r f p q p q f q c G q c G a a

33 Breadth- First Search (BFS) ProperAes What nodes does BFS expand? Processes all nodes above shallowest soluaon Let depth of shallowest soluaon be s Search takes Ame O(b s ) s tiers b 1 node b nodes b 2 nodes How much space does the fronaer take? b s nodes Has roughly the last Aer, so O(b s ) Is it complete? s must be finite if a soluaon exists, so yes! b m nodes Is it opamal? Only if costs are all 1 (more on costs later)

34 Quiz: DFS vs BFS

35 Quiz: DFS vs BFS When will BFS outperform DFS? When will DFS outperform BFS? [Demo: dfs/bfs maze water (L2D6)]

36 Video of Demo Maze Water DFS/BFS (part 1)

37 Video of Demo Maze Water DFS/BFS (part 2)

38 IteraAve Deepening Idea: get DFS s space advantage with BFS s Ame / shallow- soluaon advantages Run a DFS with depth limit 1. If no soluaon Run a DFS with depth limit 2. If no soluaon Run a DFS with depth limit 3... b Isn t that wastefully redundant? Generally most work happens in the lowest level searched, so not so bad!

39 Finding a Least- Cost Path b a d 2 c e GOAL 2 f START 1 p 4 15 q 4 h r 2 BFS finds the shortest path in terms of number of acaons. It does not find the least- cost path. We will now cover a similar algorithm which does find the least- cost path.

40 Uniform Cost Search

41 Uniform Cost Search Strategy: expand a cheapest node first: Frontier is a priority queue (priority: cumulative cost) b 3 S 1 2 p 1 a d q 2 c h e 8 2 r f G 2 1 S 0 d 3 e 9 p 1 b 4 c 11 e 5 h 17 r 11 q 16 Cost contours a 6 a h 13 r 7 p q f p q f 8 q c G q 11 c G a 10 a

42 Uniform Cost Search (UCS) ProperAes What nodes does UCS expand? Processes all nodes with cost less than cheapest soluaon! If that soluaon costs C* and arcs cost at least ε, then the effecave depth is roughly C*/ε Takes Ame O(b C*/ε ) (exponenaal in effecave depth) C*/ε tiers b c 1 c 2 c 3 How much space does the fronaer take? Has roughly the last Aer, so O(b C*/ε ) Is it complete? Assuming best soluaon has a finite cost and minimum arc cost is posiave, yes! Is it opamal? Yes! (Proof next lecture via A*)

43 Uniform Cost Issues Remember: UCS explores increasing cost contours The good: UCS is complete and opamal! c 1 c 2 c 3 The bad: Explores opaons in every direcaon No informaaon about goal locaaon Start Goal We ll fix that soon!

44 Video of Demo Empty UCS

45 Video of Demo Maze with Deep/Shallow Water DFS, BFS, or UCS? (part 1)

46 Video of Demo Maze with Deep/Shallow Water DFS, BFS, or UCS? (part 2)

47 Video of Demo Maze with Deep/Shallow Water DFS, BFS, or UCS? (part 3)

48 Tree Search vs Graph Search

49 Tree Search: Extra Work! Failure to detect repeated states can cause exponenaally more work. State Graph Search Tree O(2 m ) O(m)

50 Tree Search: Extra Work! Failure to detect repeated states can cause exponenaally more work. State Graph Search Tree O(2m 2 ) O(4 m ) m=20: 800 states 1,099,511,627,776 tree nodes

51 General Tree Search function TREE-SEARCH(problem) returns a solution, or failure initialize the frontier using the initial state of problem loop do if the frontier is empty then return failure choose a leaf node and remove it from the frontier if the node contains a goal state then return the corresponding solution expand the chosen node, adding each child to the frontier

52 General Graph Search function GRAPH-SEARCH(problem) returns a solution, or failure initialize the frontier using the initial state of problem initialize the explored set to be empty loop do if the frontier is empty then return failure choose a leaf node and remove it from the frontier if the node contains a goal state then return the corresponding solution add the node to the explored set expand the chosen node, adding each child to the frontier but only if the child is not already in the frontier or explored set Theorem: each state appears at most once in the search tree constructed

53 Tree Search vs Graph Search Graph search Avoids infinite loops: m is finite in a finite state space Eliminates exponenaally many redundant paths Requires memory proporaonal to its runame!

54 Search Gone Wrong?

PEAS: Medical diagnosis system

PEAS: Medical diagnosis system PEAS: Medical diagnosis system Performance measure Patient health, cost, reputation Environment Patients, medical staff, insurers, courts Actuators Screen display, email Sensors Keyboard/mouse Environment

More information

Announcements. Project 0: Python Tutorial Due last night

Announcements. Project 0: Python Tutorial Due last night Announcements Project 0: Python Tutorial Due last night HW1 officially released today, but a few people have already started on it Due Monday 2/6 at 11:59 pm P1: Search not officially out, but some have

More information

CSC 2114: Artificial Intelligence Search

CSC 2114: Artificial Intelligence Search CSC 2114: Artificial Intelligence Search Ernest Mwebaze emwebaze@cit.ac.ug Office: Block A : 3 rd Floor [Slide Credit Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. Reference materials

More information

Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics,

Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics, Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics, performance data Pattern DBs? General Tree Search function

More information

CSE 473: Ar+ficial Intelligence

CSE 473: Ar+ficial Intelligence CSE 473: Ar+ficial Intelligence Search Instructor: Luke Ze=lemoyer University of Washington [These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

CS 188: Ar)ficial Intelligence

CS 188: Ar)ficial Intelligence CS 188: Ar)ficial Intelligence Search Instructors: Pieter Abbeel & Anca Dragan University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Search Algorithms Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Today Agents that Plan Ahead Search Problems

More information

CS 4100 // artificial intelligence

CS 4100 // artificial intelligence CS 4100 // artificial intelligence instructor: byron wallace Search I Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks to John DeNero

More information

521495A: Artificial Intelligence

521495A: Artificial Intelligence 521495A: Artificial Intelligence Search Lectured by Abdenour Hadid Associate Professor, CMVS, University of Oulu Slides adopted from http://ai.berkeley.edu Agent An agent is an entity that perceives the

More information

AGENTS AND ENVIRONMENTS. What is AI in reality?

AGENTS AND ENVIRONMENTS. What is AI in reality? AGENTS AND ENVIRONMENTS What is AI in reality? AI is our attempt to create a machine that thinks (or acts) humanly (or rationally) Think like a human Cognitive Modeling Think rationally Logic-based Systems

More information

AGENTS AND ENVIRONMENTS. What is AI in reality?

AGENTS AND ENVIRONMENTS. What is AI in reality? AGENTS AND ENVIRONMENTS What is AI in reality? AI is our attempt to create a machine that thinks (or acts) humanly (or rationally) Think like a human Cognitive Modeling Think rationally Logic-based Systems

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching CS486/686 University of Waterloo Sept 11, 2008 1 Outline Problem solving agents and search Examples Properties of search algorithms Uninformed search Breadth first Depth first

More information

CS486/686 Lecture Slides (c) 2015 P.Poupart

CS486/686 Lecture Slides (c) 2015 P.Poupart 1 2 Solving Problems by Searching [RN2] Sec 3.1-3.5 [RN3] Sec 3.1-3.4 CS486/686 University of Waterloo Lecture 2: May 7, 2015 3 Outline Problem solving agents and search Examples Properties of search algorithms

More information

CS486/686 Lecture Slides (c) 2014 P.Poupart

CS486/686 Lecture Slides (c) 2014 P.Poupart 1 2 1 Solving Problems by Searching [RN2] Sec 3.1-3.5 [RN3] Sec 3.1-3.4 CS486/686 University of Waterloo Lecture 2: January 9, 2014 3 Outline Problem solving agents and search Examples Properties of search

More information

Week 3: Path Search. COMP9414/ 9814/ 3411: Artificial Intelligence. Motivation. Example: Romania. Romania Street Map. Russell & Norvig, Chapter 3.

Week 3: Path Search. COMP9414/ 9814/ 3411: Artificial Intelligence. Motivation. Example: Romania. Romania Street Map. Russell & Norvig, Chapter 3. COMP9414/9814/3411 17s1 Search 1 COMP9414/ 9814/ 3411: Artificial Intelligence Week 3: Path Search Russell & Norvig, Chapter 3. Motivation Reactive and Model-Based Agents choose their actions based only

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 Chapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems Uninformed search algorithms Informed search algorithms Chapter 3 2 Restricted

More information

4. Solving Problems by Searching

4. Solving Problems by Searching COMP9414/9814/3411 15s1 Search 1 COMP9414/ 9814/ 3411: Artificial Intelligence 4. Solving Problems by Searching Russell & Norvig, Chapter 3. Motivation Reactive and Model-Based Agents choose their actions

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair, COMP9414/ 9814/ 3411: Artificial Intelligence 5. Informed Search Russell & Norvig, Chapter 3. COMP9414/9814/3411 15s1 Informed Search 1 Search Strategies General Search algorithm: add initial state to

More information

Graph Search. Chris Amato Northeastern University. Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA

Graph Search. Chris Amato Northeastern University. Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA Graph Search Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA What is graph search? Start state Goal state Graph search: find a path from start

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence S:4420 rtificial Intelligence Spring 2018 Uninformed Search esare Tinelli The University of Iowa opyright 2004 18, esare Tinelli and Stuart Russell a a These notes were originally developed by Stuart Russell

More information

Introduction to Artificial Intelligence. Informed Search

Introduction to Artificial Intelligence. Informed Search Introduction to Artificial Intelligence Informed Search Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Best-first search A search Heuristics B. Beckert:

More information

Robot Programming with Lisp

Robot Programming with Lisp 6. Search Algorithms Gayane Kazhoyan (Stuart Russell, Peter Norvig) Institute for University of Bremen Contents Problem Definition Uninformed search strategies BFS Uniform-Cost DFS Depth-Limited Iterative

More information

Overview. Path Cost Function. Real Life Problems. COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

Overview. Path Cost Function. Real Life Problems. COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search Overview Last time Depth-limited, iterative deepening and bi-directional search Avoiding repeated states Today Show how applying knowledge

More information

Solving Problems using Search

Solving Problems using Search Solving Problems using Search Artificial Intelligence @ Allegheny College Janyl Jumadinova September 11, 2018 Janyl Jumadinova Solving Problems using Search September 11, 2018 1 / 35 Example: Romania On

More information

Informed search algorithms

Informed search algorithms Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

COSC343: Artificial Intelligence

COSC343: Artificial Intelligence COSC343: Artificial Intelligence Lecture 18: Informed search algorithms Alistair Knott Dept. of Computer Science, University of Otago Alistair Knott (Otago) COSC343 Lecture 18 1 / 1 In today s lecture

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Informed Search Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu. Lecture 2: Search 1.

Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu. Lecture 2: Search 1. rtificial Intelligence, S, Nanjing University Spring, 2018, Yang Yu Lecture 2: Search 1 http://lamda.nju.edu.cn/yuy/course_ai18.ashx Problem in the lecture 7 2 4 51 2 3 5 6 4 5 6 8 3 1 7 8 Start State

More information

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search 1 Class Tests Class Test 1 (Prolog): Tuesday 8 th November (Week 7) 13:00-14:00 LIFS-LT2 and LIFS-LT3 Class Test 2 (Everything but Prolog)

More information

Artificial Intelligence: Search Part 1: Uninformed graph search

Artificial Intelligence: Search Part 1: Uninformed graph search rtificial Intelligence: Search Part 1: Uninformed graph search Thomas Trappenberg January 8, 2009 ased on the slides provided by Russell and Norvig, hapter 3 Search outline Part 1: Uninformed search (tree

More information

Informed search algorithms. Chapter 4, Sections 1 2 1

Informed search algorithms. Chapter 4, Sections 1 2 1 Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

Artificial Intelligence. Informed search methods

Artificial Intelligence. Informed search methods Artificial Intelligence Informed search methods In which we see how information about the state space can prevent algorithms from blundering about in the dark. 2 Uninformed vs. Informed Search Uninformed

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 Chapter 3 1 How to Solve a (Simple) Problem 7 2 4 1 2 5 6 3 4 5 8 3 1 6 7 8 Start State Goal State Chapter 3 2 Introduction Simple goal-based agents can solve problems

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03 p.1/47 Informed Search and Exploration Sections 3.5 and 3.6 Ch. 03 p.2/47 Outline Best-first search A search Heuristics, pattern databases IDA search (Recursive Best-First Search (RBFS), MA and

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Agents, Goal-Based Agents, Problem-Solving Agents Search Problems Blind Search Strategies Agents sensors environment percepts actions? agent effectors Definition. An agent

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Agents, Goal-Based Agents, Problem-Solving Agents Search Problems Blind Search Strategies Agents sensors environment percepts actions? agent effectors Definition. An agent

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu 1 /1 Outline Problem-solving agents Problem types Problem formulation Example problems Basic

More information

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search 1 Class Tests Class Test 1 (Prolog): Friday 17th November (Week 8), 15:00-17:00. Class Test 2 (Everything but Prolog) Friday 15th December

More information

Searching and NetLogo

Searching and NetLogo Searching and NetLogo Artificial Intelligence @ Allegheny College Janyl Jumadinova September 6, 2018 Janyl Jumadinova Searching and NetLogo September 6, 2018 1 / 21 NetLogo NetLogo the Agent Based Modeling

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03b p.1/51 Informed Search and Exploration Sections 3.5 and 3.6 Nilufer Onder Department of Computer Science Michigan Technological University Ch. 03b p.2/51 Outline Best-first search A search Heuristics,

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 3 Restricted form of general agent: Problem-solving

More information

Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu. Lecture 3: Search 2.

Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu. Lecture 3: Search 2. Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu Lecture 3: Search 2 http://cs.nju.edu.cn/yuy/course_ai18.ashx Previously... function Tree-Search( problem, fringe) returns a solution,

More information

COMP219: Artificial Intelligence. Lecture 7: Search Strategies

COMP219: Artificial Intelligence. Lecture 7: Search Strategies COMP219: Artificial Intelligence Lecture 7: Search Strategies 1 Overview Last time basic ideas about problem solving; state space; solutions as paths; the notion of solution cost; the importance of using

More information

Solving Problems by Searching. Artificial Intelligence Santa Clara University 2016

Solving Problems by Searching. Artificial Intelligence Santa Clara University 2016 Solving Problems by Searching Artificial Intelligence Santa Clara University 2016 Problem Solving Agents Problem Solving Agents Use atomic representation of states Planning agents Use factored or structured

More information

Informed search algorithms

Informed search algorithms Artificial Intelligence Topic 4 Informed search algorithms Best-first search Greedy search A search Admissible heuristics Memory-bounded search IDA SMA Reading: Russell and Norvig, Chapter 4, Sections

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 3 Informed Search Sarah Gaggl Dresden, 22th April 2014 Agenda 1 Introduction 2 Uninformed Search

More information

CS414-Artificial Intelligence

CS414-Artificial Intelligence CS414-Artificial Intelligence Lecture 6: Informed Search Algorithms Waheed Noor Computer Science and Information Technology, University of Balochistan, Quetta, Pakistan Waheed Noor (CS&IT, UoB, Quetta)

More information

Artificial Intelligence: Search Part 2: Heuristic search

Artificial Intelligence: Search Part 2: Heuristic search Artificial Intelligence: Search Part 2: Heuristic search Thomas Trappenberg January 16, 2009 Based on the slides provided by Russell and Norvig, Chapter 4, Section 1 2,(4) Outline Best-first search A search

More information

CS-E4800 Artificial Intelligence

CS-E4800 Artificial Intelligence CS-E4800 Artificial Intelligence Jussi Rintanen Department of Computer Science Aalto University January 12, 2017 Transition System Models The decision-making and planning at the top-level of many intelligent

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Academic year 2016/2017 Giorgio Fumera http://pralab.diee.unica.it fumera@diee.unica.it Pattern Recognition and Applications Lab Department of Electrical and Electronic Engineering

More information

Introduction to Artificial Intelligence (G51IAI)

Introduction to Artificial Intelligence (G51IAI) Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu Heuristic Searches Blind Search vs. Heuristic Searches Blind search Randomly choose where to search in the search tree When problems get large,

More information

Planning and search. Lecture 1: Introduction and Revision of Search. Lecture 1: Introduction and Revision of Search 1

Planning and search. Lecture 1: Introduction and Revision of Search. Lecture 1: Introduction and Revision of Search 1 Planning and search Lecture 1: Introduction and Revision of Search Lecture 1: Introduction and Revision of Search 1 Lecturer: Natasha lechina email: nza@cs.nott.ac.uk ontact and web page web page: http://www.cs.nott.ac.uk/

More information

Informed Search Algorithms. Chapter 4

Informed Search Algorithms. Chapter 4 Informed Search Algorithms Chapter 4 Outline Informed Search and Heuristic Functions For informed search, we use problem-specific knowledge to guide the search. Topics: Best-first search A search Heuristics

More information

Seminar: Search and Optimization

Seminar: Search and Optimization Seminar: Search and Optimization 4. asic Search lgorithms Martin Wehrle Universität asel October 4, 2012 asics lind Search lgorithms est-first Search Summary asics asics lind Search lgorithms est-first

More information

Informed Search. Topics. Review: Tree Search. What is Informed Search? Best-First Search

Informed Search. Topics. Review: Tree Search. What is Informed Search? Best-First Search Topics Informed Search Best-First Search Greedy Search A* Search Sattiraju Prabhakar CS771: Classes,, Wichita State University 3/6/2005 AI_InformedSearch 2 Review: Tree Search What is Informed Search?

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 16. State-Space Search: Greedy BFS, A, Weighted A Malte Helmert University of Basel March 28, 2018 State-Space Search: Overview Chapter overview: state-space search

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence hapter 1 hapter 1 1 Iterative deepening search function Iterative-Deepening-Search( problem) returns a solution inputs: problem, a problem for depth 0 to do result Depth-Limited-Search(

More information

Outline. Solving Problems by Searching. Introduction. Problem-solving agents

Outline. Solving Problems by Searching. Introduction. Problem-solving agents Outline Solving Problems by Searching S/ University of Waterloo Sept 7, 009 Problem solving agents and search Examples Properties of search algorithms Uninformed search readth first Depth first Iterative

More information

Informed search algorithms

Informed search algorithms CS 580 1 Informed search algorithms Chapter 4, Sections 1 2, 4 CS 580 2 Outline Best-first search A search Heuristics Hill-climbing Simulated annealing CS 580 3 Review: General search function General-Search(

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 3: Problem Solving and Search Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes The

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 04 p.1/39 Informed Search and Exploration Chapter 4 Ch. 04 p.2/39 Outline Best-first search A search Heuristics IDA search Hill-climbing Simulated annealing Ch. 04 p.3/39 Review: Tree search function

More information

16.1 Introduction. Foundations of Artificial Intelligence Introduction Greedy Best-first Search 16.3 A Weighted A. 16.

16.1 Introduction. Foundations of Artificial Intelligence Introduction Greedy Best-first Search 16.3 A Weighted A. 16. Foundations of Artificial Intelligence March 28, 2018 16. State-Space Search: Greedy BFS, A, Weighted A Foundations of Artificial Intelligence 16. State-Space Search: Greedy BFS, A, Weighted A Malte Helmert

More information

ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING

ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING BY SEARCH Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Problem solving by searching Problem formulation Example problems Search

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel Albert-Ludwigs-Universität

More information

Automated Planning & Artificial Intelligence

Automated Planning & Artificial Intelligence Automated Planning & Artificial Intelligence Uninformed and Informed search in state space Humbert Fiorino Humbert.Fiorino@imag.fr http://membres-lig.imag.fr/fiorino Laboratory of Informatics of Grenoble

More information

Search. Intelligent agents. Problem-solving. Problem-solving agents. Road map of Romania. The components of a problem. that will take me to the goal!

Search. Intelligent agents. Problem-solving. Problem-solving agents. Road map of Romania. The components of a problem. that will take me to the goal! Search Intelligent agents Reflex agent Problem-solving agent T65 rtificial intelligence and Lisp Peter alenius petda@ida.liu.se epartment of omputer and Information Science Linköping University Percept

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Search Marc Toussaint University of Stuttgart Winter 2015/16 (slides based on Stuart Russell s AI course) Outline Problem formulation & examples Basic search algorithms 2/100 Example:

More information

Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu. Blind Searches

Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu. Blind Searches Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu Blind Searches Blind Searches Function GENERAL-SEARCH (problem, QUEUING-FN) returns a solution or failure nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))

More information

Outline for today s lecture. Informed Search I. One issue: How to search backwards? Very briefly: Bidirectional search. Outline for today s lecture

Outline for today s lecture. Informed Search I. One issue: How to search backwards? Very briefly: Bidirectional search. Outline for today s lecture Outline for today s lecture Informed Search I Uninformed Search Briefly: Bidirectional Search (AIMA 3.4.6) Uniform Cost Search (UCS) Informed Search Introduction to Informed search Heuristics 1 st attempt:

More information

Planning, Execution & Learning 1. Heuristic Search Planning

Planning, Execution & Learning 1. Heuristic Search Planning Planning, Execution & Learning 1. Heuristic Search Planning Reid Simmons Planning, Execution & Learning: Heuristic 1 Simmons, Veloso : Fall 2001 Basic Idea Heuristic Search Planning Automatically Analyze

More information

Problem solving and search: Chapter 3, Sections 1 5

Problem solving and search: Chapter 3, Sections 1 5 Problem solving and search: hapter 3, Sections 1 5 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms 2 Problem-solving agents estricted form of

More information

Problem solving and search: Chapter 3, Sections 1 5

Problem solving and search: Chapter 3, Sections 1 5 Problem solving and search: hapter 3, Sections 1 5 S 480 2 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms Problem-solving agents estricted form

More information

Problem Solving and Search. Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel

Problem Solving and Search. Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel Problem Solving and Search Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel What is problem solving? An agent can act by establishing goals

More information

Outline. Informed search algorithms. Best-first search. Review: Tree search. A search Heuristics. Chapter 4, Sections 1 2 4

Outline. Informed search algorithms. Best-first search. Review: Tree search. A search Heuristics. Chapter 4, Sections 1 2 4 Outline Best-first search Informed search algorithms A search Heuristics Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

CS 5100: Founda.ons of Ar.ficial Intelligence

CS 5100: Founda.ons of Ar.ficial Intelligence CS 5100: Founda.ons of Ar.ficial Intelligence Search Problems and Solutions Prof. Amy Sliva October 6, 2011 Outline Review inference in FOL Most general unidiers Conversion to CNF UniDication algorithm

More information

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department (CHAPTER-3-PART3) PROBLEM SOLVING AND SEARCH Searching algorithm Uninformed

More information

Clustering (Un-supervised Learning)

Clustering (Un-supervised Learning) Clustering (Un-supervised Learning) Partition-based clustering: k-mean Goal: minimize sum of square of distance o Between each point and centers of the cluster. o Between each pair of points in the cluster

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 Some slide credits to Hwee Tou Ng (Singapore) Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Heuristics

More information

Lecture Plan. Best-first search Greedy search A* search Designing heuristics. Hill-climbing. 1 Informed search strategies. Informed strategies

Lecture Plan. Best-first search Greedy search A* search Designing heuristics. Hill-climbing. 1 Informed search strategies. Informed strategies Lecture Plan 1 Informed search strategies (KA AGH) 1 czerwca 2010 1 / 28 Blind vs. informed search strategies Blind search methods You already know them: BFS, DFS, UCS et al. They don t analyse the nodes

More information

CS 771 Artificial Intelligence. Problem Solving by Searching Uninformed search

CS 771 Artificial Intelligence. Problem Solving by Searching Uninformed search CS 771 Artificial Intelligence Problem Solving by Searching Uninformed search Complete architectures for intelligence? Search? Solve the problem of what to do. Learning? Learn what to do. Logic and inference?

More information

ARTIFICIAL INTELLIGENCE. Pathfinding and search

ARTIFICIAL INTELLIGENCE. Pathfinding and search INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Pathfinding and search Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

TDT4136 Logic and Reasoning Systems

TDT4136 Logic and Reasoning Systems TDT4136 Logic and Reasoning Systems Chapter 3 & 4.1 - Informed Search and Exploration Lester Solbakken solbakke@idi.ntnu.no Norwegian University of Science and Technology 18.10.2011 1 Lester Solbakken

More information

Why Search. Things to consider. Example, a holiday in Jamaica. CSE 3401: Intro to Artificial Intelligence Uninformed Search

Why Search. Things to consider. Example, a holiday in Jamaica. CSE 3401: Intro to Artificial Intelligence Uninformed Search CSE 3401: Intro to Artificial Intelligence Uninformed Search Why Search Required Readings: R & N Chapter 3, Sec. 1-4. Lecture slides adapted from those of Fahiem Bacchus. Successful Success in game playing

More information

Artificial Intelligence CS 6364

Artificial Intelligence CS 6364 Artificial Intelligence CS 6364 Professor Dan Moldovan Section 4 Informed Search and Adversarial Search Outline Best-first search Greedy best-first search A* search Heuristics revisited Minimax search

More information

Solving Problem by Searching. Chapter 3

Solving Problem by Searching. Chapter 3 Solving Problem by Searching Chapter 3 Outline Problem-solving agents Problem formulation Example problems Basic search algorithms blind search Heuristic search strategies Heuristic functions Problem-solving

More information

Algorithm. December 7, Shortest path using A Algorithm. Phaneendhar Reddy Vanam. Introduction. History. Components of A.

Algorithm. December 7, Shortest path using A Algorithm. Phaneendhar Reddy Vanam. Introduction. History. Components of A. December 7, 2011 1 2 3 4 5 6 7 The A is a best-first search algorithm that finds the least cost path from an initial configuration to a final configuration. The most essential part of the A is a good heuristic

More information

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3 9-04-2013 Uninformed (blind) search algorithms Breadth-First Search (BFS) Uniform-Cost Search Depth-First Search (DFS) Depth-Limited Search Iterative Deepening Best-First Search HW#1 due today HW#2 due

More information

Basic Search. Fall Xin Yao. Artificial Intelligence: Basic Search

Basic Search. Fall Xin Yao. Artificial Intelligence: Basic Search Basic Search Xin Yao Fall 2017 Fall 2017 Artificial Intelligence: Basic Search Xin Yao Outline Motivating Examples Problem Formulation From Searching to Search Tree Uninformed Search Methods Breadth-first

More information

Problem Solving and Search. Chapter 3

Problem Solving and Search. Chapter 3 Problem olving and earch hapter 3 Outline Problem-solving agents Problem formulation Example problems asic search algorithms In the simplest case, an agent will: formulate a goal and a problem; Problem-olving

More information

ARTIFICIAL INTELLIGENCE SOLVING PROBLEMS BY SEARCHING. Chapter 3

ARTIFICIAL INTELLIGENCE SOLVING PROBLEMS BY SEARCHING. Chapter 3 ARTIFICIAL INTELLIGENCE SOLVING PROBLEMS BY SEARCHING Chapter 3 1 PROBLEM SOLVING We want: To automatically solve a problem We need: A representation of the problem Algorithms that use some strategy to

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 3 Example: omania On holiday in omania;

More information

CAP 4630 Artificial Intelligence

CAP 4630 Artificial Intelligence CAP 4630 Artificial Intelligence Instructor: Sam Ganzfried sganzfri@cis.fiu.edu 1 http://www.ultimateaiclass.com/ https://moodle.cis.fiu.edu/ 2 Solving problems by search 3 8-puzzle 4 8-queens 5 Search

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 Chapter 3 1 Problem formulation & examples Basic search algorithms Outline Chapter 3 2 On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3 CS 4700: Foundations of Artificial Intelligence Bart Selman Search Techniques R&N: Chapter 3 Outline Search: tree search and graph search Uninformed search: very briefly (covered before in other prerequisite

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 3, 4/6/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes 4/6/2005 EE562 1 Today: Basic

More information

Informed search methods

Informed search methods CS 2710 Foundations of AI Lecture 5 Informed search methods Milos Hauskrecht milos@pitt.edu 5329 Sennott Square Announcements Homework assignment 2 is out Due on Tuesday, September 19, 2017 before the

More information

Uninformed search strategies (Section 3.4) Source: Fotolia

Uninformed search strategies (Section 3.4) Source: Fotolia Uninformed search strategies (Section 3.4) Source: Fotolia Uninformed search strategies A search strategy is defined by picking the order of node expansion Uninformed search strategies use only the information

More information

Optimal Control and Dynamic Programming

Optimal Control and Dynamic Programming Optimal Control and Dynamic Programming SC Q 7- Duarte Antunes Outline Shortest paths in graphs Dynamic programming Dijkstra s and A* algorithms Certainty equivalent control Graph Weighted Graph Nodes

More information

521495A: Artificial Intelligence

521495A: Artificial Intelligence 521495A: Artificial Intelligence Informed Search Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu Slides adopted from http://ai.berkeley.edu Today Informed Search Heuristics Greedy

More information