Autoorganised Structures for Extraction of Perceptual Primitives

Size: px
Start display at page:

Download "Autoorganised Structures for Extraction of Perceptual Primitives"

Transcription

1 Autoorganised Structures for Extraction of Perceptual Primitives M. Penas, M.G.Penedo Dept. Computer Science Univ. of A Coruña, SPAIN M.J.Carreira Dept. Electronics and Computer Science Univ. of Santiago de Compostela, SPAIN

2 Contents Introduction to perceptual organisation. Efficient Spatial-Domain Implementation of Gabor Wavelets. Auto-organised Structures for Extraction of Perceptual Primitives. Self-Organised Maps (SOM). Growing-Cell Structures (GCS). Growing Neural Gas (GNG). Results. Discussion and Conclusion. Autoorganised Structures for Extraction of Perceptual Primitives 1

3 Introduction to Perceptual Organisation Perceptual Organisation in human enables detection of such relationships as symmetry, proximity, closure, collinearity, parallelism and repetition. Perceptual Organisation in Computer Vision is the study of how features are clustered prior to object recognition. Sarkar and Boyer considered organisation in layers of abstraction: signal level, primitive level, structural level and assembly level. Signal level. Extraction of directional primitives by means of Gabor filters. Data dimensionality reduction by means of auto-organised structures. Autoorganised Structures for Extraction of Perceptual Primitives 2

4 Efficient Spatial-Domain Implementation of Gabor Wavelets (I) Gabor Wavelets: Complex exponential signals modulated by gaussians. Applications to image processing. Maximisation of conjoint localisation in spatial and frequency domains. Mathematical expression: where g x0,y 0,f 0,θ 0 = exp {i [2πf 0 (x cos θ 0 + y sin θ 0 ) + φ]}gauss (x x 0, y y 0 ) (1) gauss(x, y) = a exp { π [ a 2 (x cos θ 0 + y sin θ 0 ) 2 + b 2 (x sin θ 0 y cos θ 0 ) 2] } (2) a, b shape of the wavelet; x 0, y 0 localisation in spatial domain; f 0, θ 0 localisation in frequency domain and φ is the phase. Gabor wavelets centred in origin (x 0 = 0, y 0 = 0), symmetric (a = b) and null phase (φ = 0). Autoorganised Structures for Extraction of Perceptual Primitives 3

5 Efficient Spatial-Domain Implementation of Gabor Wavelets (II) Implementations: Frequency domain. Multi-resolution frequency domain. Multi-resolution spatial domain: convolution of reduced versions of the image with unidimensional 11 component filters obtained from the decomposition of two dimensional Gabor filters. Complexity reduction. Autoorganised Structures for Extraction of Perceptual Primitives 4

6 Auto-organised Structures for Extraction of Perceptual Primitives (I) Reduction of input space dimensionality that leads to generalisation of results so that feature grouping is independent of the kind of images to process. Classified output space must maintain the topology of the input space. Auto-organised structures Self-Organised Maps (SOM). Growing-Cell Structures (GCS). Growing Neural Gas (GNG). Autoorganised Structures for Extraction of Perceptual Primitives 5

7 Auto-organised Structures for Extraction of Perceptual Primitives (II) Self-Organised Maps (SOM) Size and structure fixed prior to training. Processing elements represents clusters of patterns in the training set. Topological order in the output map. Performance: Initialisation: fix structure s size, weights, learning parameters, region of interest and maximum number of iterations. Learning: weights of the winning neuron and its neighbourhood are updated. Autoorganised Structures for Extraction of Perceptual Primitives 6

8 Auto-organised Structures for Extraction of Perceptual Primitives (III) Growing-Cell Structures (GCS) Based on SOM. Adds processing elements maintaining network topology. Performance: Initialisation process: create K-dimensional structure of K + 1 nodes and (K +1)K/2 connections, initialise weights, learning rate and resource value. Training process: repeat until stop criterion is satisfied. Learning phase: present P patterns to the map, for each of them determine winning neuron and update its weights and resource value, as those of its direct neurons. Repeat Q times. Growing phase: add new processing element, stablish and update weights and neighbourhood relations. Autoorganised Structures for Extraction of Perceptual Primitives 7

9 Auto-organised Structures for Extraction of Perceptual Primitives (IV) Growing Neural Gas (GNG) Insertion of new processing elements, modification and elimination of neighbourhood relations. Represent faithfully input space. Eliminate processing elements in areas of input space where probability is almost null. Performance: Initialisation process: two disconnected processing elements. Training process: repeat until stop criterion is satisfied. Learning phase: present P patterns in groups of Q (P >> Q). Determine two closest elements. Create or update the connection between them. Update connection between the winner and its direct neighbours. Remove connections and isolated elements. Growing phase: insertion of new processing elements as in GCS. Autoorganised Structures for Extraction of Perceptual Primitives 8

10 Results (I) Net input: IMAGE GABOR WAVELET 8 COMPONENT VECTOR ADD NINTH COMPONENT SCALE VECTOR INPUT TO THE NETWORK Response: Resp = arctan ( ( x x ) x π ) (3) where x is the modulus of the 8 component vector, x is the media of all the modulus and x is the typical deviation of all the modulus. Autoorganised Structures for Extraction of Perceptual Primitives 9

11 Results (II) Images Synthetic image Corridor Bridge Autoorganised Structures for Extraction of Perceptual Primitives 10

12 Results (III) SOM Training set: artificial images, lines in each main direction, same proportion, background not included. Topology: processing elements, rectangular vicinity. Training process: SOM-PAK. Ordering phase, learning rate 0.05 and neighbourhood size 12. Training phase, learning rate 0.02 and neighbourhood size 4. Autoorganised Structures for Extraction of Perceptual Primitives 11

13 Results (IV) GCS Training set: like SOM, including background. Objective: set of clusters, similar proportion of processing units. Topology and training: GCS map 200 processing units, P = input patterns, Q = 6000 adaption steps, 0.06 factor for winning element weight s updates, for neighbour weight s updates and 0.05 for resource values update. Autoorganised Structures for Extraction of Perceptual Primitives 12

14 Results (V) GNG Training set: Artificial images with or without background. Real images with the same proportion of all directional features. Topology and training: two dimensional GNG map with 100 processing units, Q = 3000 adaption steps, 0.2 winning neuron learning rate, direct neighbours learning rate, T = 50 age for deletion and for resource value reduction. Autoorganised Structures for Extraction of Perceptual Primitives 13

15 Discussion and conclusion (I) SOM High vicinity between clusters, background not enough separated from other directions. Noise presence, lost of some directional features. GCS Formation of clusters around winning elements of different main orientations or background, lower vicinity between clusters. GNG Excessive separation between clusters. primitives, bad generalisation capacity. Lost of intermediate directional D67.5 V D112.5 D67.5 V D112.5 D45 BG D135 D45 BG D135 D22.5 H D167.5 D22.5 H D167.5 SOM GCS GNG Autoorganised Structures for Extraction of Perceptual Primitives 14

16 Discussion and conclusion (II) Noise presence Directional primitives detection Example SOM Yes Quite good GCS No Good GNG No Quite good Autoorganised Structures for Extraction of Perceptual Primitives 15

Controlling the spread of dynamic self-organising maps

Controlling the spread of dynamic self-organising maps Neural Comput & Applic (2004) 13: 168 174 DOI 10.1007/s00521-004-0419-y ORIGINAL ARTICLE L. D. Alahakoon Controlling the spread of dynamic self-organising maps Received: 7 April 2004 / Accepted: 20 April

More information

Topological Correlation

Topological Correlation Topological Correlation K.A.J. Doherty, R.G. Adams and and N. Davey University of Hertfordshire, Department of Computer Science College Lane, Hatfield, Hertfordshire, UK Abstract. Quantifying the success

More information

Artificial Neural Networks Unsupervised learning: SOM

Artificial Neural Networks Unsupervised learning: SOM Artificial Neural Networks Unsupervised learning: SOM 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001

More information

Representation of 2D objects with a topology preserving network

Representation of 2D objects with a topology preserving network Representation of 2D objects with a topology preserving network Francisco Flórez, Juan Manuel García, José García, Antonio Hernández, Departamento de Tecnología Informática y Computación. Universidad de

More information

Extract an Essential Skeleton of a Character as a Graph from a Character Image

Extract an Essential Skeleton of a Character as a Graph from a Character Image Extract an Essential Skeleton of a Character as a Graph from a Character Image Kazuhisa Fujita University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan k-z@nerve.pc.uec.ac.jp

More information

Online labelling strategies for growing neural gas

Online labelling strategies for growing neural gas Online labelling strategies for growing neural gas Oliver Beyer and Philipp Cimiano Semantic Computing Group, CITEC, Bielefeld University, obeyer@cit-ec.uni-bielefeld.de http://www.sc.cit-ec.uni-bielefeld.de

More information

5.6 Self-organizing maps (SOM) [Book, Sect. 10.3]

5.6 Self-organizing maps (SOM) [Book, Sect. 10.3] Ch.5 Classification and Clustering 5.6 Self-organizing maps (SOM) [Book, Sect. 10.3] The self-organizing map (SOM) method, introduced by Kohonen (1982, 2001), approximates a dataset in multidimensional

More information

Texture Image Segmentation using FCM

Texture Image Segmentation using FCM Proceedings of 2012 4th International Conference on Machine Learning and Computing IPCSIT vol. 25 (2012) (2012) IACSIT Press, Singapore Texture Image Segmentation using FCM Kanchan S. Deshmukh + M.G.M

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks If you try and take a cat apart to see how it works, the first thing you have on your hands is a non-working cat. Life is a level of complexity that almost lies outside our vision.

More information

Image Enhancement Techniques for Fingerprint Identification

Image Enhancement Techniques for Fingerprint Identification March 2013 1 Image Enhancement Techniques for Fingerprint Identification Pankaj Deshmukh, Siraj Pathan, Riyaz Pathan Abstract The aim of this paper is to propose a new method in fingerprint enhancement

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

A novel firing rule for training Kohonen selforganising

A novel firing rule for training Kohonen selforganising A novel firing rule for training Kohonen selforganising maps D. T. Pham & A. B. Chan Manufacturing Engineering Centre, School of Engineering, University of Wales Cardiff, P.O. Box 688, Queen's Buildings,

More information

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1 Wavelet Applications Texture analysis&synthesis Gloria Menegaz 1 Wavelet based IP Compression and Coding The good approximation properties of wavelets allow to represent reasonably smooth signals with

More information

Growing Neural Gas A Parallel Approach

Growing Neural Gas A Parallel Approach Growing Neural Gas A Parallel Approach Lukáš Vojáček 1 and JiříDvorský 2 1 IT4Innovations Centre of Excellence Ostrava, Czech Republic lukas.vojacek@vsb.cz 2 Department of Computer Science, VŠB Technical

More information

Two Dimensional Wavelet and its Application

Two Dimensional Wavelet and its Application RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Two Dimensional Wavelet and its Application Iman Makaremi 1 2 RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Outline

More information

Figure (5) Kohonen Self-Organized Map

Figure (5) Kohonen Self-Organized Map 2- KOHONEN SELF-ORGANIZING MAPS (SOM) - The self-organizing neural networks assume a topological structure among the cluster units. - There are m cluster units, arranged in a one- or two-dimensional array;

More information

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism)

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism) Artificial Neural Networks Analogy to biological neural systems, the most robust learning systems we know. Attempt to: Understand natural biological systems through computational modeling. Model intelligent

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

Function approximation using RBF network. 10 basis functions and 25 data points.

Function approximation using RBF network. 10 basis functions and 25 data points. 1 Function approximation using RBF network F (x j ) = m 1 w i ϕ( x j t i ) i=1 j = 1... N, m 1 = 10, N = 25 10 basis functions and 25 data points. Basis function centers are plotted with circles and data

More information

Extending the Growing Neural Gas Classifier for Context Recognition

Extending the Growing Neural Gas Classifier for Context Recognition Extending the Classifier for Context Recognition Eurocast 2007, Workshop on Heuristic Problem Solving, Paper #9.24 14. February 2007, 10:30 Rene Mayrhofer Lancaster University, UK Johannes Kepler University

More information

Analysis and Synthesis of Texture

Analysis and Synthesis of Texture Analysis and Synthesis of Texture CMPE 264: Image Analysis and Computer Vision Spring 02, Hai Tao 31/5/02 Extracting image structure by filter banks Q Represent image textures using the responses of a

More information

3D Model Reconstruction using Neural Gas Accelerated on GPU

3D Model Reconstruction using Neural Gas Accelerated on GPU 3D Model Reconstruction using Neural Gas Accelerated on GPU Sergio Orts-Escolano, Jose Garcia-Rodriguez, Antonio Jimeno-Morenilla, Jose Antonio Serra-Perez, Alberto Garcia Department of Computing Technology

More information

Hierarchical Clustering 4/5/17

Hierarchical Clustering 4/5/17 Hierarchical Clustering 4/5/17 Hypothesis Space Continuous inputs Output is a binary tree with data points as leaves. Useful for explaining the training data. Not useful for making new predictions. Direction

More information

TEXTURE ANALYSIS USING GABOR FILTERS FIL

TEXTURE ANALYSIS USING GABOR FILTERS FIL TEXTURE ANALYSIS USING GABOR FILTERS Texture Types Definition of Texture Texture types Synthetic ti Natural Stochastic < Prev Next > Texture Definition Texture: the regular repetition of an element or

More information

Modification of the Growing Neural Gas Algorithm for Cluster Analysis

Modification of the Growing Neural Gas Algorithm for Cluster Analysis Modification of the Growing Neural Gas Algorithm for Cluster Analysis Fernando Canales and Max Chacón Universidad de Santiago de Chile; Depto. de Ingeniería Informática, Avda. Ecuador No 3659 - PoBox 10233;

More information

TreeGNG - Hierarchical Topological Clustering

TreeGNG - Hierarchical Topological Clustering TreeGNG - Hierarchical Topological lustering K..J.Doherty,.G.dams, N.Davey Department of omputer Science, University of Hertfordshire, Hatfield, Hertfordshire, L10 9, United Kingdom {K..J.Doherty,.G.dams,

More information

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS Toomas Kirt Supervisor: Leo Võhandu Tallinn Technical University Toomas.Kirt@mail.ee Abstract: Key words: For the visualisation

More information

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning CS325 Artificial Intelligence Cengiz Spring 2013 Unsupervised Learning Missing teacher No labels, y Just input data, x What can you learn with it? Unsupervised Learning Missing teacher No labels, y Just

More information

Applying Kohonen Network in Organising Unstructured Data for Talus Bone

Applying Kohonen Network in Organising Unstructured Data for Talus Bone 212 Third International Conference on Theoretical and Mathematical Foundations of Computer Science Lecture Notes in Information Technology, Vol.38 Applying Kohonen Network in Organising Unstructured Data

More information

11/14/2010 Intelligent Systems and Soft Computing 1

11/14/2010 Intelligent Systems and Soft Computing 1 Lecture 8 Artificial neural networks: Unsupervised learning Introduction Hebbian learning Generalised Hebbian learning algorithm Competitive learning Self-organising computational map: Kohonen network

More information

Neuro-Fuzzy Comp. Ch. 8 May 12, 2005

Neuro-Fuzzy Comp. Ch. 8 May 12, 2005 Neuro-Fuzzy Comp. Ch. 8 May, 8 Self-Organizing Feature Maps Self-Organizing Feature Maps (SOFM or SOM) also known as Kohonen maps or topographic maps were first introduced by von der Malsburg (97) and

More information

Clustering with Reinforcement Learning

Clustering with Reinforcement Learning Clustering with Reinforcement Learning Wesam Barbakh and Colin Fyfe, The University of Paisley, Scotland. email:wesam.barbakh,colin.fyfe@paisley.ac.uk Abstract We show how a previously derived method of

More information

Fourier Transform and Texture Filtering

Fourier Transform and Texture Filtering Fourier Transform and Texture Filtering Lucas J. van Vliet www.ph.tn.tudelft.nl/~lucas Image Analysis Paradigm scene Image formation sensor pre-processing Image enhancement Image restoration Texture filtering

More information

Looming Motion Segmentation in Vehicle Tracking System using Wavelet Transforms

Looming Motion Segmentation in Vehicle Tracking System using Wavelet Transforms Looming Motion Segmentation in Vehicle Tracking System using Wavelet Transforms K. SUBRAMANIAM, S. SHUKLA, S.S. DLAY and F.C. RIND Department of Electrical and Electronic Engineering University of Newcastle-Upon-Tyne

More information

Tight Clusters and Smooth Manifolds with the Harmonic Topographic Map.

Tight Clusters and Smooth Manifolds with the Harmonic Topographic Map. Proceedings of the th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August -9, (pp8-) Tight Clusters and Smooth Manifolds with the Harmonic Topographic Map. MARIAN PEÑA AND

More information

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED 05 MELBOURNE, AUGUST 15-18, 2005

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED 05 MELBOURNE, AUGUST 15-18, 2005 INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED MELBOURNE, AUGUST -, METHOD USING A SELF-ORGANISING MAP FOR DRIVER CLASSIFI- CATION AS A PRECONDITION FOR CUSTOMER ORIENTED DESIGN Albert Albers and

More information

TEXTURE ANALYSIS USING GABOR FILTERS

TEXTURE ANALYSIS USING GABOR FILTERS TEXTURE ANALYSIS USING GABOR FILTERS Texture Types Definition of Texture Texture types Synthetic Natural Stochastic < Prev Next > Texture Definition Texture: the regular repetition of an element or pattern

More information

CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves

CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves CS443: Digital Imaging and Multimedia Perceptual Grouping Detecting Lines and Simple Curves Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines Perceptual Grouping and Segmentation

More information

Cartographic Selection Using Self-Organizing Maps

Cartographic Selection Using Self-Organizing Maps 1 Cartographic Selection Using Self-Organizing Maps Bin Jiang 1 and Lars Harrie 2 1 Division of Geomatics, Institutionen för Teknik University of Gävle, SE-801 76 Gävle, Sweden e-mail: bin.jiang@hig.se

More information

A Neural Classifier for Anomaly Detection in Magnetic Motion Capture

A Neural Classifier for Anomaly Detection in Magnetic Motion Capture A Neural Classifier for Anomaly Detection in Magnetic Motion Capture Iain Miller 1 and Stephen McGlinchey 2 1 University of Paisley, Paisley. PA1 2BE, UK iain.miller@paisley.ac.uk, 2 stephen.mcglinchey@paisley.ac.uk

More information

Artifacts and Textured Region Detection

Artifacts and Textured Region Detection Artifacts and Textured Region Detection 1 Vishal Bangard ECE 738 - Spring 2003 I. INTRODUCTION A lot of transformations, when applied to images, lead to the development of various artifacts in them. In

More information

DB-GNG: A constructive Self-Organizing Map based on density

DB-GNG: A constructive Self-Organizing Map based on density DB-GNG: A constructive Self-Organizing Map based on density Alexander Ocsa, Carlos Bedregal, Ernesto Cuadros-Vargas Abstract Nowadays applications require efficient and fast techniques due to the growing

More information

Texture Segmentation Using Multichannel Gabor Filtering

Texture Segmentation Using Multichannel Gabor Filtering IOSR Journal of Electronics and Communication Engineering (IOSRJECE) ISSN : 2278-2834 Volume 2, Issue 6 (Sep-Oct 2012), PP 22-26 Texture Segmentation Using Multichannel Gabor Filtering M. Sivalingamaiah

More information

Neural Networks. Neural Network. Neural Network. Neural Network 2/21/2008. Andrew Kusiak. Intelligent Systems Laboratory Seamans Center

Neural Networks. Neural Network. Neural Network. Neural Network 2/21/2008. Andrew Kusiak. Intelligent Systems Laboratory Seamans Center Neural Networks Neural Network Input Andrew Kusiak Intelligent t Systems Laboratory 2139 Seamans Center Iowa City, IA 52242-1527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Tel. 319-335

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37 Extended Contents List Preface... xi About the authors... xvii CHAPTER 1 Introduction 1 1.1 Overview... 1 1.2 Human and Computer Vision... 2 1.3 The Human Vision System... 4 1.3.1 The Eye... 5 1.3.2 The

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Support Vector Machines + Classification for IR

Support Vector Machines + Classification for IR Support Vector Machines + Classification for IR Pierre Lison University of Oslo, Dep. of Informatics INF3800: Søketeknologi April 30, 2014 Outline of the lecture Recap of last week Support Vector Machines

More information

5. Feature Extraction from Images

5. Feature Extraction from Images 5. Feature Extraction from Images Aim of this Chapter: Learn the Basic Feature Extraction Methods for Images Main features: Color Texture Edges Wie funktioniert ein Mustererkennungssystem Test Data x i

More information

Bio-inspired Binocular Disparity with Position-Shift Receptive Field

Bio-inspired Binocular Disparity with Position-Shift Receptive Field Bio-inspired Binocular Disparity with Position-Shift Receptive Field Fernanda da C. e C. Faria, Jorge Batista and Helder Araújo Institute of Systems and Robotics, Department of Electrical Engineering and

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

A Comparative Study of Conventional and Neural Network Classification of Multispectral Data

A Comparative Study of Conventional and Neural Network Classification of Multispectral Data A Comparative Study of Conventional and Neural Network Classification of Multispectral Data B.Solaiman & M.C.Mouchot Ecole Nationale Supérieure des Télécommunications de Bretagne B.P. 832, 29285 BREST

More information

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING Luca Bortolussi Department of Mathematics and Geosciences University of Trieste Office 238, third floor, H2bis luca@dmi.units.it Trieste, Winter Semester

More information

Exercise: Simulating spatial processing in the visual pathway with convolution

Exercise: Simulating spatial processing in the visual pathway with convolution Exercise: Simulating spatial processing in the visual pathway with convolution This problem uses convolution to simulate the spatial filtering performed by neurons in the early stages of the visual pathway,

More information

FACE RECOGNITION USING INDEPENDENT COMPONENT

FACE RECOGNITION USING INDEPENDENT COMPONENT Chapter 5 FACE RECOGNITION USING INDEPENDENT COMPONENT ANALYSIS OF GABORJET (GABORJET-ICA) 5.1 INTRODUCTION PCA is probably the most widely used subspace projection technique for face recognition. A major

More information

Associative Cellular Learning Automata and its Applications

Associative Cellular Learning Automata and its Applications Associative Cellular Learning Automata and its Applications Meysam Ahangaran and Nasrin Taghizadeh and Hamid Beigy Department of Computer Engineering, Sharif University of Technology, Tehran, Iran ahangaran@iust.ac.ir,

More information

Machine Learning : Clustering, Self-Organizing Maps

Machine Learning : Clustering, Self-Organizing Maps Machine Learning Clustering, Self-Organizing Maps 12/12/2013 Machine Learning : Clustering, Self-Organizing Maps Clustering The task: partition a set of objects into meaningful subsets (clusters). The

More information

arxiv: v1 [physics.data-an] 27 Sep 2007

arxiv: v1 [physics.data-an] 27 Sep 2007 Classification of Interest Rate Curves Using Self-Organising Maps arxiv:0709.4401v1 [physics.data-an] 27 Sep 2007 M.Kanevski a,, M.Maignan b, V.Timonin a,1, A.Pozdnoukhov a,1 a Institute of Geomatics and

More information

Face Recognition Using Gabor Wavelets

Face Recognition Using Gabor Wavelets PROCEEDINGS OF THE IEEE ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, IEEE ISBN: -444-0785-0/06/$0.00 Face Recognition Using Gabor Wavelets Vinay Kumar. B Department of Electronics and Communication

More information

Segmentation: Clustering, Graph Cut and EM

Segmentation: Clustering, Graph Cut and EM Segmentation: Clustering, Graph Cut and EM Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu

More information

Review: Final Exam CPSC Artificial Intelligence Michael M. Richter

Review: Final Exam CPSC Artificial Intelligence Michael M. Richter Review: Final Exam Model for a Learning Step Learner initially Environm ent Teacher Compare s pe c ia l Information Control Correct Learning criteria Feedback changed Learner after Learning Learning by

More information

Combining Gabor Features: Summing vs.voting in Human Face Recognition *

Combining Gabor Features: Summing vs.voting in Human Face Recognition * Combining Gabor Features: Summing vs.voting in Human Face Recognition * Xiaoyan Mu and Mohamad H. Hassoun Department of Electrical and Computer Engineering Wayne State University Detroit, MI 4822 muxiaoyan@wayne.edu

More information

The Traveling Salesman

The Traveling Salesman Neural Network Approach To Solving The Traveling Salesman Problem The Traveling Salesman The shortest route for a salesman to visit every city, without stopping at the same city twice. 1 Random Methods

More information

PATTERN RECOGNITION USING NEURAL NETWORKS

PATTERN RECOGNITION USING NEURAL NETWORKS PATTERN RECOGNITION USING NEURAL NETWORKS Santaji Ghorpade 1, Jayshree Ghorpade 2 and Shamla Mantri 3 1 Department of Information Technology Engineering, Pune University, India santaji_11jan@yahoo.co.in,

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

Line Simplification Using Self-Organizing Maps

Line Simplification Using Self-Organizing Maps Line Simplification Using Self-Organizing Maps Bin Jiang Division of Geomatics, Dept. of Technology and Built Environment, University of Gävle, Sweden. Byron Nakos School of Rural and Surveying Engineering,

More information

Self-Organizing Maps for cyclic and unbounded graphs

Self-Organizing Maps for cyclic and unbounded graphs Self-Organizing Maps for cyclic and unbounded graphs M. Hagenbuchner 1, A. Sperduti 2, A.C. Tsoi 3 1- University of Wollongong, Wollongong, Australia. 2- University of Padova, Padova, Italy. 3- Hong Kong

More information

A Survey on Image Segmentation Using Clustering Techniques

A Survey on Image Segmentation Using Clustering Techniques A Survey on Image Segmentation Using Clustering Techniques Preeti 1, Assistant Professor Kompal Ahuja 2 1,2 DCRUST, Murthal, Haryana (INDIA) Abstract: Image is information which has to be processed effectively.

More information

Image Theft Detection with Self-Organising Maps

Image Theft Detection with Self-Organising Maps Image Theft Detection with Self-Organising Maps Philip Prentis, Mats Sjöberg, Markus Koskela, and Jorma Laaksonen Czech Technical University in Prague, Helsinki University of Technology prentphi@fjfi.cvut.cz,

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Chapter 7: Competitive learning, clustering, and self-organizing maps

Chapter 7: Competitive learning, clustering, and self-organizing maps Chapter 7: Competitive learning, clustering, and self-organizing maps António R. C. Paiva EEL 6814 Spring 2008 Outline Competitive learning Clustering Self-Organizing Maps What is competition in neural

More information

Using the Forest to See the Trees: Context-based Object Recognition

Using the Forest to See the Trees: Context-based Object Recognition Using the Forest to See the Trees: Context-based Object Recognition Bill Freeman Joint work with Antonio Torralba and Kevin Murphy Computer Science and Artificial Intelligence Laboratory MIT A computer

More information

Accurate Image Registration from Local Phase Information

Accurate Image Registration from Local Phase Information Accurate Image Registration from Local Phase Information Himanshu Arora, Anoop M. Namboodiri, and C.V. Jawahar Center for Visual Information Technology, IIIT, Hyderabad, India { himanshu@research., anoop@,

More information

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION 6 NEURAL NETWORK BASED PATH PLANNING ALGORITHM 61 INTRODUCTION In previous chapters path planning algorithms such as trigonometry based path planning algorithm and direction based path planning algorithm

More information

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray Exploratory Data Analysis using Self-Organizing Maps Madhumanti Ray Content Introduction Data Analysis methods Self-Organizing Maps Conclusion Visualization of high-dimensional data items Exploratory data

More information

Ensembles. An ensemble is a set of classifiers whose combined results give the final decision. test feature vector

Ensembles. An ensemble is a set of classifiers whose combined results give the final decision. test feature vector Ensembles An ensemble is a set of classifiers whose combined results give the final decision. test feature vector classifier 1 classifier 2 classifier 3 super classifier result 1 * *A model is the learned

More information

Searching Image Databases Containing Trademarks

Searching Image Databases Containing Trademarks Searching Image Databases Containing Trademarks Sujeewa Alwis and Jim Austin Department of Computer Science University of York York, YO10 5DD, UK email: sujeewa@cs.york.ac.uk and austin@cs.york.ac.uk October

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

More on Learning. Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization

More on Learning. Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization More on Learning Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization Neural Net Learning Motivated by studies of the brain. A network of artificial

More information

A comparative study of local classifiers based on clustering techniques and one-layer neural networks

A comparative study of local classifiers based on clustering techniques and one-layer neural networks A comparative study of local classifiers based on clustering techniques and one-layer neural networks Yuridia Gago-Pallares, Oscar Fontenla-Romero and Amparo Alonso-Betanzos University of A Coruña, Department

More information

What is Computer Vision?

What is Computer Vision? Perceptual Grouping in Computer Vision Gérard Medioni University of Southern California What is Computer Vision? Computer Vision Attempt to emulate Human Visual System Perceive visual stimuli with cameras

More information

Deep Learning. Volker Tresp Summer 2014

Deep Learning. Volker Tresp Summer 2014 Deep Learning Volker Tresp Summer 2014 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

Texture Segmentation

Texture Segmentation Texture Segmentation Introduction to Signal and Image Processing Prof. Dr. Philippe Cattin MIAC, University of Basel 1 of 48 22.02.2016 09:20 Contents Contents Abstract 2 1 Introduction What is Texture?

More information

More Learning. Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA

More Learning. Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA More Learning Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA 1 Ensembles An ensemble is a set of classifiers whose combined results give the final decision. test feature vector

More information

1. AN.Valliyappan 2. Assistant Professor/ECE VCET, Madurai VCET, Madurai

1. AN.Valliyappan 2. Assistant Professor/ECE VCET, Madurai VCET, Madurai Gabor Features Based Classification of Multispectral Images Using Clustering with SVM Classifier.Gandhimathi@Usha 1 1 Assistant Professor/ECE VCET, Madurai ushadears@gmail.com AN.Valliyappan 2 2 U.G Student/ECE

More information

Texture Segmentation by using Haar Wavelets and K-means Algorithm

Texture Segmentation by using Haar Wavelets and K-means Algorithm Texture Segmentation by using Haar Wavelets and K-means Algorithm P. Ashok Babu Associate Professor, Narsimha Reddy Engineering College, Hyderabad, A.P., INDIA, ashokbabup2@gmail.com Dr. K. V. S. V. R.

More information

Segmentation of point clouds

Segmentation of point clouds Segmentation of point clouds George Vosselman INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Extraction of information from point clouds 1 Segmentation algorithms Extraction

More information

Turku PET Centre Modelling report TPCMOD Appendix C Marketta Hiissa. Pseudo-code for the Markov random field clustering algorithm

Turku PET Centre Modelling report TPCMOD Appendix C Marketta Hiissa. Pseudo-code for the Markov random field clustering algorithm Turku PET Centre Modelling report TPCMOD0029 2004-08-19 Appendix C Marketta Hiissa Pseudo-code for the Markov random field clustering algorithm The idea of the algorithm The aim of the clustering is to

More information

Font Identification Using the Grating Cell Texture Operator

Font Identification Using the Grating Cell Texture Operator Font Identification Using the Grating Cell Texture Operator Huanfeng Ma and David Doermann Language and Media Processing Laboratory Institute for Advanced Computer Studies University of Maryland, College

More information

Obtaining Feature Correspondences

Obtaining Feature Correspondences Obtaining Feature Correspondences Neill Campbell May 9, 2008 A state-of-the-art system for finding objects in images has recently been developed by David Lowe. The algorithm is termed the Scale-Invariant

More information

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map

Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map Texture Classification by Combining Local Binary Pattern Features and a Self-Organizing Map Markus Turtinen, Topi Mäenpää, and Matti Pietikäinen Machine Vision Group, P.O.Box 4500, FIN-90014 University

More information

Tools for texture/color based search of images

Tools for texture/color based search of images pp 496-507, SPIE Int. Conf. 3106, Human Vision and Electronic Imaging II, Feb. 1997. Tools for texture/color based search of images W. Y. Ma, Yining Deng, and B. S. Manjunath Department of Electrical and

More information

FACE DETECTION AND RECOGNITION USING BACK PROPAGATION NEURAL NETWORK AND FOURIER GABOR FILTERS

FACE DETECTION AND RECOGNITION USING BACK PROPAGATION NEURAL NETWORK AND FOURIER GABOR FILTERS FACE DETECTION AND RECOGNITION USING BACK PROPAGATION NEURAL NETWORK AND FOURIER GABOR FILTERS Anissa Bouzalmat 1, Naouar Belghini, Arsalane Zarghili 3 and Jamal Kharroubi 4 1 Department of Computer Sciences,

More information

Some Other Applications of the SOM algorithm : how to use the Kohonen algorithm for forecasting

Some Other Applications of the SOM algorithm : how to use the Kohonen algorithm for forecasting Some Other Applications of the SOM algorithm : how to use the Kohonen algorithm for forecasting Marie Cottrell SAMOS-MATISSE, CNRS UMR 8595, Université Paris 1 cottrell@univ-paris1.fr Abstract: The Kohonen

More information

Object Segmentation Using Growing Neural Gas and Generalized Gradient Vector Flow in the Geometric Algebra Framework

Object Segmentation Using Growing Neural Gas and Generalized Gradient Vector Flow in the Geometric Algebra Framework Object Segmentation Using Growing Neural Gas and Generalized Gradient Vector Flow in the Geometric Algebra Framework Jorge Rivera-Rovelo 1, Silena Herold 2, and Eduardo Bayro-Corrochano 1 1 CINVESTAV Unidad

More information

7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and

7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and Chapter 7 FACE RECOGNITION USING CURVELET 7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and computer vision, because of its ability to capture localized

More information

Filtering, scale, orientation, localization, and texture. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Filtering, scale, orientation, localization, and texture. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Filtering, scale, orientation, localization, and texture Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Beyond edges we have talked a lot about edges while they are important, it

More information

Growing Neural Gas A Parallel Approach

Growing Neural Gas A Parallel Approach Growing Neural Gas A Parallel Approach Lukáš Vojáček, Jiří Dvorský To cite this version: Lukáš Vojáček, Jiří Dvorský. Growing Neural Gas A Parallel Approach. Khalid Saeed; Rituparna Chaki; Agostino Cortesi;

More information