Betweenness and the Crossbar Theorem. Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C.

Size: px
Start display at page:

Download "Betweenness and the Crossbar Theorem. Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C."

Transcription

1 Betweenness and the Crossbar Theorem Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C. Suppose that both A*B*C and A*C*B. Thus AB+BC =AC, and AC +CB = AB. From this we get AB + BC +CB = AB, or in other words, AB + 2BC = AB, so BC=0, a contradiction. An exactly analogous proof works if we assume B*A*C. Theorem (Betweenness Theorem for Points): Let l be a line with distinct points A, B, and C. Let a, b, and c be the coordinates of points A, B, and C, respectively, under a coordinate function for l. Then A*B*C iff or. Suppose or. If, then,, and. Then:. Therefore, A*B*C. If, then,, and, and the same results follow. For the second half of the proof, suppose A*B*C. If either or, then part 1 of our proof would give B*A*C, a contradiction to the Lemma. Similarly, if or, we would have B*C*A, again a contradiction. The only possibilities left are or. Corollary: Let A, B, and C be three points such that B lies on. Then A*B*C if and only if AB < AC. (Mistake in Book) Let a, b, and c be the ruler coordinates for points A, B, and C, respectively. If A*B*C, then either or. If, then, so AB < AC. If, then, so and again we have AC > AB. For the second half of the proof, assume AB < AC. Since B lies on, by definition either A*B*C or A*C*B. If A*C*B, then AC +CB = AB, which is impossible since AB <AC and all distances are positive. Thus A*B*C.

2 Corollary: If A, B, and C are three distinct collinear points, then exactly one of them lies between the other two. There is a coordinate function for the line that points A, B, and C lie on. Their coordinates are distinct, and can be ordered. Thus exactly one of the three coordinates lies between the other two, and so exactly one of the points lies between the other two. Definition: Let A and B be two distinct points. The point M is a midpoint for segment if A*M*B and AM=MB. Theorem: If A and B are distinct points, there exists a unique point M such that M is the midpoint of. Let a and b be the ruler coordinates of A and B, respectively, on line. Use the ruler placement theorem to make a=0 and b>0. By the rule postulate there is a point on corresponding to coordinate. Let that point be M. Since we have A*M*B. Also,. Note that this is a typical use of the Ruler postulate to get points anywhere you want on a line, say a given distance from one end of a segment. This allows you to get a copy of one segment on another segment or on a line. You can trisect a segment, divide it into fifths, find a point away from a given point, etc.

3 Relationships Between Betweenness and PSP Theorem: Let l be a line, A be a point on l, and B be a point external to l. If A*C*B, then B and C are on the same side of l. Given a line l, and points A, B, and C with. For contradiction, suppose that B and C were on different sides of l. By PSP, l would have to intersect the segment. But since A*C*B, A is not between C and B, so A is not on the segment. Since l and intersect at only one point (namely, A), l cannot intersect on the same side of l., a contradiction. Thus B and C are Corollary: Let l be a line, A a point on l, and B a point external to l. If C is a point on and C A, then B and C are on the same side of l. Given a line l, and points A, B, and C with. Since, and C is not A, either C = B, A*C*B, or A*B*C. If C = B then the conclusion follows immediately. If A*C*B, the conclusion follows from the previous theorem. If A*B*C, the conclusion follows from the previous theorem as well, with the roles of B and C reversed. Note: These two results essentially say that if a segment or a ray has an endpoint A on a line l, then the entire segment or ray lies on one side of the line. Corollary: If a point D is in the interior of angle BAC, then the entire ray (except for point A) lies in the interior of BAC. Thus betweenness for rays is well-defined, i.e., it does not depend on the particular point D chosen to name the ray. Since D is in the interior of BAC, D is on the B-side of the C-side of. The above corollary guarantees that the entire and ray (except for A) is then on the B-side of and the C-side of, and therefore lies in the interior of of BAC.

4 Useful Little Corollary: Given angle BAC, and a point D interior to, D is interior to BAC. The first corollary above implies that D and C are on the same side of and that D and B are on the same side of, which is the definition of D being interior to the angle. Note that this implies that any crossbar of an angle lies in its interior (with the exception of its endpoints). Corollary (The Z Theorem): If points B and D lie on opposite sides of line l and distinct points A and C lie on line l, then rays have no points in common. and B and D are in separate half-planes, and by the previous corollary all of, except for A, lies in the same half-plane as B. Similarly, all of lies in the same half-plane as D. Since the two half-planes are disjoint, and since A and C are distinct, the two rays can have no points in common. Note: Because the rays have no points in common, neither do the appropriate segments that are subsets of the rays, such as and. We will use the theorem for both rays and segments as needed without further comment.

5 Useful Corollary Not in the Book (The X-Theorem): Suppose distinct points A and C are on line l and points B and D are not on l. If and intersect, then B and D are on the same side of l. Note that if and intersect, it will not be at points A or C. By the above corollary all of as B. Similarly, all of, except for A, lies in the same half-plane lies in the same half-plane as D. If point E (distinct from A or C) is in both and, then it must be in the same half-plane as D and in the same half-plane as B. Thus E, B, and D are all together in the same half-plane.

6 Theorem: Let A, B, and C be three noncollinear points and let D be a point on the line. The point D is between the points B and C if and only if the ray is between the rays and. Let A, B, and C be three noncollinear points and let D be a point on the line. Suppose that B*D*C. Then C and D are on the same side of line, and B and D are on the same side of. But this is just the definition of D being in the interior of BAC, which is the definition of being between the rays and. For the converse, suppose that ray is between the rays and. This means that D must be in the interior of BAC. So D is on the C side of and on the B side of. Since D and C are together on one side of, the line cannot intersect the segment, so no point of the line (in particular, point B) is between D and C. Similarly, since B and D are on the same side of, C cannot be on the segment, and C is not between B and D. Since B, C, and D are collinear, and one point must be between the other two, we are left with B*D*C.

7 Lemma: If A, B, C, and D are four distinct points such that C and D are on the same side of and D is not on, then either C is in the interior of BAD or D is in the interior of BAC. We will prove the or statement by assuming one case is not true and proving the other must be. So, assume D is not in the interior of BAC. We need to show C is in the interior of BAD. We already know C is on the D-side of that C is on the B-side of. Since C and D are on the same side of the B-side of and D are on opposite sides, the line, so our goal in life is now to show, it must be that D is not on (otherwise it would be interior to BAC). Since B must intersect the segment at a point we will call C. Thus the rays and intersect, and the X Theorem guarantees that C and B are on the same side of.

8 Theorem (The Betweenness Theorem for Rays): Let A, B, C, and D be four distinct points such that C and D lie on the same side of. Then µ( BAD) < µ( BAC) if and only if is between rays and. To prove one direction, assume is between rays and. Then D is in the interior of BAC. Thus, we have. Since we must have. To prove the other direction, we use the contrapositive. Assume is not between rays and. Our goal is to prove that. If it happens that D is on ray, then, and we are done. Otherwise, since D is not interior to BAC, the above lemma gives us that C is interior to BAD. In this case, we do something that feels like cheating, but isn t. We duplicate the first part of the proof with the roles of C and D exchanged, since is now between rays and. The result is that we have. This completes the proof of the contrapositive.

9 Definition: Let A, B, and C be three noncollinear points. A ray is an angle bisector of BAC if D is in the interior of BAC and µ( BAD) = µ( DAC). Theorem: If A, B and C are three noncollinear points then there exists a unique angle bisector for BAC. Exercise

10 Theorem (The Crossbar Theorem): If a point D lies in the interior of BAC, then ray meets segment at some point G interior to. Note: This is the first of our theorems that isn t pretty straightforward. We will prove it by extending the ray to a whole line and applying Pasch; but in order to do this we need to have the line go through the interior point of a segment; so we must also extend the side of the angle and create a triangle with as one side. Use the ruler postulate to find points E and F with E*A*B and F*A*D. For convenience, call the line l. Since D is interior to BAC we know that D does not lie on line or on line. Thus line l cannot intersect point C, B, or E. If it did, then it would have to be one of these two lines that cannot contain D. Moreover, since E*A*B we know A is an interior point of and l intersects at an interior point. Thus, Pasch applies to points E, C, and B and to line l. We know that l intersects either or. We must show three things to complete the proof:

11 1. is the part of l that meets either or ; that is, a) does not meet, and b) does not meet, and we show 2. does not meet. We tackle each in turn: 1a: Since F*A*D, F and D are on opposite sides of. Since D is interior to A, D is on the C-side of, so C and D are on the same side of. Thus C and F are on opposite sides of, and so by the Z Theorem, does not meet. 1b: We just showed that C and F are on opposite sides of, so another application of the Z Theorem gives us that does not meet. 2: Because E*A*B, E and B are on opposite sides of. Because D is interior to A, D is on the B-side of. Thus, D and B are on the same side, and E on the opposite side of. Since E and D are on opposite sides of, the Z theorem once again gives us that does not meet. The only remaining possibility is that ray meets segment at some point G interior to. T. I. J* * Stands for That s It, Jack! Signifies the end of a proof.

12 The book points out that the Crossbar Theorem and the theorem proved above immediately after the X Theorem can be combined into a single theorem called the Continuity Theorem. Of course, from it you can prove another theorem that was adopted as an axiom in Birkhoff s system.

13

Transformations Part If then, the identity transformation.

Transformations Part If then, the identity transformation. Transformations Part 2 Definition: Given rays with common endpoint O, we define the rotation with center O and angle as follows: 1. If then, the identity transformation. 2. If A, O, and B are noncollinear,

More information

An Approach to Geometry (stolen in part from Moise and Downs: Geometry)

An Approach to Geometry (stolen in part from Moise and Downs: Geometry) An Approach to Geometry (stolen in part from Moise and Downs: Geometry) Undefined terms: point, line, plane The rules, axioms, theorems, etc. of elementary algebra are assumed as prior knowledge, and apply

More information

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points.

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13t1.tex 1 Solution of Test I Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Definition

More information

The statement implies that any three intersection points of two distinct planes lie on a line.

The statement implies that any three intersection points of two distinct planes lie on a line. Math 3181 Dr. Franz Rothe February 23, 2015 All3181\3181_spr15ts1.tex 1 Solution of Test Name: Problem 1.1. The second part of Hilbert s Proposition 1 states: Any two different planes have either no point

More information

Transformations and Isometries

Transformations and Isometries Transformations and Isometries Definition: A transformation in absolute geometry is a function f that associates with each point P in the plane some other point P in the plane such that (1) f is one-to-one

More information

Proving Triangles and Quadrilaterals Satisfy Transformational Definitions

Proving Triangles and Quadrilaterals Satisfy Transformational Definitions Proving Triangles and Quadrilaterals Satisfy Transformational Definitions 1. Definition of Isosceles Triangle: A triangle with one line of symmetry. a. If a triangle has two equal sides, it is isosceles.

More information

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false. Chapter 1 Line and Angle Relationships 1.1 Sets, Statements and Reasoning Definitions 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

More information

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line.

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line. GEOMETRY POSTULATES AND THEOREMS Postulate 1: Through any two points, there is exactly one line. Postulate 2: The measure of any line segment is a unique positive number. The measure (or length) of AB

More information

Mth 97 Winter 2013 Sections 4.3 and 4.4

Mth 97 Winter 2013 Sections 4.3 and 4.4 Section 4.3 Problem Solving Using Triangle Congruence Isosceles Triangles Theorem 4.5 In an isosceles triangle, the angles opposite the congruent sides are congruent. A Given: ABC with AB AC Prove: B C

More information

Some Comments on Leaving Certificate Geometry Work in Progress

Some Comments on Leaving Certificate Geometry Work in Progress Some Comments on Leaving Certificate Geometry Work in Progress D. R. Wilkins April 23, 2016 i Axioms for Leaving Certificate Geometry In 1932, George D. Birkhoff published a paper entitled A set of postulates

More information

(1) Page #1 24 all. (2) Page #7-21 odd, all. (3) Page #8 20 Even, Page 35 # (4) Page #1 8 all #13 23 odd

(1) Page #1 24 all. (2) Page #7-21 odd, all. (3) Page #8 20 Even, Page 35 # (4) Page #1 8 all #13 23 odd Geometry/Trigonometry Unit 1: Parallel Lines Notes Name: Date: Period: # (1) Page 25-26 #1 24 all (2) Page 33-34 #7-21 odd, 23 28 all (3) Page 33-34 #8 20 Even, Page 35 #40 44 (4) Page 60 61 #1 8 all #13

More information

Definition (Axiomatic System). An axiomatic system (a set of axioms and their logical consequences) consists of:

Definition (Axiomatic System). An axiomatic system (a set of axioms and their logical consequences) consists of: Course Overview Contents 1 AxiomaticSystems.............................. 1 2 Undefined Terms............................... 2 3 Incidence................................... 2 4 Distance....................................

More information

8 Standard Euclidean Triangle Geometry

8 Standard Euclidean Triangle Geometry 8 Standard Euclidean Triangle Geometry 8.1 The circum-center Figure 8.1: In hyperbolic geometry, the perpendicular bisectors can be parallel as shown but this figure is impossible in Euclidean geometry.

More information

Euclid. Father of Geometry Euclidean Geometry Euclid s Elements

Euclid. Father of Geometry Euclidean Geometry Euclid s Elements Euclid Father of Geometry Euclidean Geometry Euclid s Elements Point Description Indicates a location and has no size. How to Name it You can represent a point by a dot and name it by a capital letter.

More information

Solutions to the Test. Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written?

Solutions to the Test. Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written? Solutions to the Test Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written? Answer: The first comprehensive text on geometry is called The Elements

More information

Segment Addition Postulate: If B is BETWEEN A and C, then AB + BC = AC. If AB + BC = AC, then B is BETWEEN A and C.

Segment Addition Postulate: If B is BETWEEN A and C, then AB + BC = AC. If AB + BC = AC, then B is BETWEEN A and C. Ruler Postulate: The points on a line can be matched one to one with the REAL numbers. The REAL number that corresponds to a point is the COORDINATE of the point. The DISTANCE between points A and B, written

More information

Definitions. You can represent a point by a dot and name it by a capital letter.

Definitions. You can represent a point by a dot and name it by a capital letter. Definitions Name Block Term Definition Notes Sketch Notation Point A location in space that is represented by a dot and has no dimension You can represent a point by a dot and name it by a capital letter.

More information

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles.

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles. Geometry Definitions, Postulates, and Theorems Chapter : Parallel and Perpendicular Lines Section.1: Identify Pairs of Lines and Angles Standards: Prepare for 7.0 Students prove and use theorems involving

More information

2 Solution of Homework

2 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 6, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Solution of Homework

More information

Geometry Reasons for Proofs Chapter 1

Geometry Reasons for Proofs Chapter 1 Geometry Reasons for Proofs Chapter 1 Lesson 1.1 Defined Terms: Undefined Terms: Point: Line: Plane: Space: Postulate 1: Postulate : terms that are explained using undefined and/or other defined terms

More information

Honors 213. Third Hour Exam. Name

Honors 213. Third Hour Exam. Name Honors 213 Third Hour Exam Name Monday, March 27, 2000 100 points Page 1 Please note: Because of multiple exams given Monday, this exam will be returned by Thursday, March 30. 1. (5 pts.) Define what it

More information

Chapter 1-2 Points, Lines, and Planes

Chapter 1-2 Points, Lines, and Planes Chapter 1-2 Points, Lines, and Planes Undefined Terms: A point has no size but is often represented by a dot and usually named by a capital letter.. A A line extends in two directions without ending. Lines

More information

Preparing High School Geometry Teachers to Teach the Common Core

Preparing High School Geometry Teachers to Teach the Common Core Preparing High School Geometry Teachers to Teach the Common Core NCTM Regional Meeting Atlantic City, NJ October 22, 2014 Timothy Craine, Central Connecticut State University crainet@ccsu.edu Edward DePeau,

More information

Mth 97 Fall 2013 Chapter 4

Mth 97 Fall 2013 Chapter 4 4.1 Reasoning and Proof in Geometry Direct reasoning or reasoning is used to draw a conclusion from a series of statements. Conditional statements, if p, then q, play a central role in deductive reasoning.

More information

Geometry 1-1. Non-collinear Points not on the same line. Need at least 3 points to be non-collinear since two points are always collinear

Geometry 1-1. Non-collinear Points not on the same line. Need at least 3 points to be non-collinear since two points are always collinear Name Geometry 1-1 Undefined terms terms which cannot be defined only described. Point, line, plane Point a location in space Line a series of points that extends indefinitely in opposite directions. It

More information

Warm-Up. Find the domain and range:

Warm-Up. Find the domain and range: Warm-Up Find the domain and range: Geometry Vocabulary & Notation Point Name: Use only the capital letter, without any symbol. Line Name: Use any two points on the line with a line symbol above. AB Line

More information

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms:

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms: Math 3181 Name: Dr. Franz Rothe January 30, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Homework 1 Definition

More information

DE to a line parallel to Therefore

DE to a line parallel to Therefore Some Proofs 1. In the figure below segment DE cuts across triangle ABC, and CD/CA = CE/CB. Prove that DE is parallel to AB. Consider the dilation with center C and scaling factor CA/CD. This dilation fixes

More information

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry FIGURES FOR SOLUTIONS TO SELECTED EXERCISES V : Introduction to non Euclidean geometry V.1 : Facts from spherical geometry V.1.1. The objective is to show that the minor arc m does not contain a pair of

More information

2-5 Postulates and Paragraph Proofs

2-5 Postulates and Paragraph Proofs Determine whether each statement is always, sometimes, or never true. Explain your reasoning. 7. The intersection of three planes is a line. If three planes intersect, then their intersection may be a

More information

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry Interpretations and Models Chapter 2.1-2.4 - Axiomatic Systems and Incidence Geometry Axiomatic Systems in Mathematics The gold standard for rigor in an area of mathematics Not fully achieved in most areas

More information

3 Solution of Homework

3 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 25, 2014 All3181\3181_spr14h3.tex Homework has to be turned in this handout. The homework can be done in groups up to three due March 11/12 3 Solution of Homework

More information

Saccheri Quadrilaterals

Saccheri Quadrilaterals Saccheri Quadrilaterals Definition: Let be any line segment, and erect two perpendiculars at the endpoints A and B. Mark off points C and D on these perpendiculars so that C and D lie on the same side

More information

Chapter 2 QUIZ. Section 2.1 The Parallel Postulate and Special Angles

Chapter 2 QUIZ. Section 2.1 The Parallel Postulate and Special Angles Chapter 2 QUIZ Section 2.1 The Parallel Postulate and Special Angles (1.) How many lines can be drawn through point P that are parallel to line? (2.) Lines and m are cut by transversal t. Which angle corresponds

More information

Chapter 2: Introduction to Proof. Assumptions from Diagrams

Chapter 2: Introduction to Proof. Assumptions from Diagrams Chapter 2: Introduction to Proof Name: 2.6 Beginning Proofs Objectives: Prove a conjecture through the use of a two-column proof Structure statements and reasons to form a logical argument Interpret geometric

More information

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( )

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( ) Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers (1879 1935) Investigation Exercise 3.1. (a) Construct a tessellation. (Directions for construction.)

More information

euclidean geometry given a line and a point P which is not on, how many lines pass through P and are parallel to?

euclidean geometry given a line and a point P which is not on, how many lines pass through P and are parallel to? euclidean geometry my goal with all of these lessons is to provide an introduction to both euclidean non-euclidean geometry. the two geometries share many features, but they also have very fundamental

More information

Chapter 1. Essentials of Geometry

Chapter 1. Essentials of Geometry Chapter 1 Essentials of Geometry 1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures so you can use geometry terms in the real world. Essential Question: How do you name

More information

Geometry Cheat Sheet

Geometry Cheat Sheet Geometry Cheat Sheet Chapter 1 Postulate 1-6 Segment Addition Postulate - If three points A, B, and C are collinear and B is between A and C, then AB + BC = AC. Postulate 1-7 Angle Addition Postulate -

More information

Plane Geometry: Reflection Across a Line Does It! at the Marin Math Circle 1

Plane Geometry: Reflection Across a Line Does It! at the Marin Math Circle 1 Plane Geometry: Reflection Across a Line Does It! at the Marin Math Circle 1 by Zvezdelina Stankova Berkeley Math Circle Director September 29 and October 13, 2010 Note: We shall work on the problems below

More information

1.1 IDENTIFY POINTS, LINES AND PLANES

1.1 IDENTIFY POINTS, LINES AND PLANES 1.1 IDENTIFY POINTS, LINES AND PLANES OBJECTIVE I WILL KNOW THESE DEFINITIONS AND BE ABLE TO SKETCH THEM: POINT LINE PLANE RAY OPPOSITE RAY COLLINEAR AND COPLANAR POINTS INTERSECTIONS OF TWO LINES AND

More information

Hyperbolic Geometry 8.2 Basic Theorems of Hyperbolic Geometry

Hyperbolic Geometry 8.2 Basic Theorems of Hyperbolic Geometry Hyperbolic Geometry 8.2 asic Theorems of Hyperbolic Geometry In these notes we explore the consequences of accepting the Hyperbolic Parallel Postulate: Given a line l and a point P not on l, there is more

More information

If B is the If two angles are

If B is the If two angles are If If B is between A and C, then 1 2 If P is in the interior of RST, then If B is the If two angles are midpoint of AC, vertical, then then 3 4 If angles are adjacent, then If angles are a linear pair,

More information

A Communications Network???

A Communications Network??? A Communications Network??? A Communications Network What are the desirable properties of the switching box? 1. Every two users must be connected at a switch. 2. Every switch must "look alike". 3. The

More information

LINES AND ANGLES CHAPTER 6. (A) Main Concepts and Results. (B) Multiple Choice Questions

LINES AND ANGLES CHAPTER 6. (A) Main Concepts and Results. (B) Multiple Choice Questions CHAPTER 6 LINES AND ANGLES (A) Main Concepts and Results Complementary angles, Supplementary angles, Adjacent angles, Linear pair, Vertically opposite angles. If a ray stands on a line, then the adjacent

More information

PLANE GEOMETRY SKILL BUILDER ELEVEN

PLANE GEOMETRY SKILL BUILDER ELEVEN PLANE GEOMETRY SKILL BUILDER ELEVEN Lines, Segments, and Rays The following examples should help you distinguish between lines, segments, and rays. The three undefined terms in geometry are point, line,

More information

Saccheri Quadrilaterals

Saccheri Quadrilaterals Saccheri Quadrilaterals efinition: Let be any line segment, and erect two perpendiculars at the endpoints and. ark off points and on these perpendiculars so that and lie on the same side of the line, and

More information

I can identify, name, and draw points, lines, segments, rays, and planes. I can apply basic facts about points, lines, and planes.

I can identify, name, and draw points, lines, segments, rays, and planes. I can apply basic facts about points, lines, and planes. Page 1 of 9 Are You Ready Chapter 1 Pretest & skills Attendance Problems Graph each inequality. 1. x > 3 2. 2 < x < 6 3. x > 1 or x < 0 Vocabulary undefined term point line plane collinear coplanar segment

More information

theorems & postulates & stuff (mr. ko)

theorems & postulates & stuff (mr. ko) theorems & postulates & stuff (mr. ko) postulates 1 ruler postulate The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the coordinate of

More information

On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points

On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points Hu Yuzhong Chen Luping Zhu Hui Ling Xiaofeng (Supervisor) Abstract Consider the following problem. Given n, k N,

More information

1stQuarterReview.nb If two parallel lines are cut by a transversal, 2. If point B is between points A and C, then AB + BC =.

1stQuarterReview.nb If two parallel lines are cut by a transversal, 2. If point B is between points A and C, then AB + BC =. 1stQuarterReview.nb 1 Geometry (H) Review: First Quarter Test Part I Fill in the blank with the appropriate word or phrase. 1. If two parallel lines are cut by a transversal,. 2. If point B is between

More information

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry IMporTAnT TErMs, definitions And results l In geometry, we take a point, a line and a plane as undefined terms. l An axiom

More information

Videos, Constructions, Definitions, Postulates, Theorems, and Properties

Videos, Constructions, Definitions, Postulates, Theorems, and Properties Videos, Constructions, Definitions, Postulates, Theorems, and Properties Videos Proof Overview: http://tinyurl.com/riehlproof Modules 9 and 10: http://tinyurl.com/riehlproof2 Module 9 Review: http://tinyurl.com/module9livelesson-recording

More information

PROVE THEOREMS INVOLVING SIMILARITY

PROVE THEOREMS INVOLVING SIMILARITY PROVE THEOREMS INVOLVING SIMILARITY KEY IDEAS 1. When proving that two triangles are similar, it is sufficient to show that two pairs of corresponding angles of the triangles are congruent. This is called

More information

Geometry Midterm Review Vocabulary:

Geometry Midterm Review Vocabulary: Name Date Period Geometry Midterm Review 2016-2017 Vocabulary: 1. Points that lie on the same line. 1. 2. Having the same size, same shape 2. 3. These are non-adjacent angles formed by intersecting lines.

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

H.Geometry Chapter 3 Definition Sheet

H.Geometry Chapter 3 Definition Sheet Section 3.1 Measurement Tools Construction Tools Sketch Draw Construct Constructing the Duplicate of a Segment 1.) Start with a given segment. 2.) 3.) Constructing the Duplicate of an angle 1.) Start with

More information

Grade 5 Geometry. Answer the questions. For more such worksheets visit

Grade 5 Geometry. Answer the questions. For more such worksheets visit ID : ae-5-geometry [1] Grade 5 Geometry For more such worksheets visit www.edugain.com Answer the questions (1) A 4-sided flat shape with straight sides where the opposite sides are parallel is called

More information

Geometry Review for Semester 1 Final Exam

Geometry Review for Semester 1 Final Exam Name Class Test Date POINTS, LINES & PLANES: Geometry Review for Semester 1 Final Exam Use the diagram at the right for Exercises 1 3. Note that in this diagram ST plane at T. The point S is not contained

More information

Lesson 3.6 Overlapping Triangles

Lesson 3.6 Overlapping Triangles Lesson 3.6 Overlapping Triangles Getting Ready: Each division in the given triangle is 1 unit long. Hence, the side of the largest triangle is 4- unit long. Figure 3.6.1. Something to think about How many

More information

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

Geometry for Post-primary School Mathematics

Geometry for Post-primary School Mathematics 27 At a glance: Definitions, Axioms, Theorems and Corollaries Page Number 36 Axiom1. The two points axiom. Definition 1. Segment [AB]. Ray [AB. 37 Definition 2. Collinear. Definition 3. Triangle ABC, side,

More information

Chapter 4 - Lines in a Plane. Procedures for Detour Proofs

Chapter 4 - Lines in a Plane. Procedures for Detour Proofs Chapter 4 - Lines in a Plane 4.1 Detours and Midpoints Detour proofs - To solve some problems, it is necessary to prove pair of triangles congruent. These we call detour proofs because we have to prove

More information

HL Maths Junior Certificate Notes by Bronte Smith

HL Maths Junior Certificate Notes by Bronte Smith HL Maths Junior Certificate Notes by Bronte Smith Paper 1 Number Systems Applied Arithmetic Sets Algebra Functions Factorising 1. Highest Common Factor ab 2a 2 b + 3ab 2 Find the largest factor that can

More information

Postulates, Theorems, and Corollaries. Chapter 1

Postulates, Theorems, and Corollaries. Chapter 1 Chapter 1 Post. 1-1-1 Through any two points there is exactly one line. Post. 1-1-2 Through any three noncollinear points there is exactly one plane containing them. Post. 1-1-3 If two points lie in a

More information

Downloaded from

Downloaded from Lines and Angles 1.If two supplementary angles are in the ratio 2:7, then the angles are (A) 40, 140 (B) 85, 95 (C) 40, 50 (D) 60, 120. 2.Supplementary angle of 103.5 is (A) 70.5 (B) 76.5 (C) 70 (D)

More information

Postulate 1-1-2: Through any three noncollinear points there is exactly one plane containing them.

Postulate 1-1-2: Through any three noncollinear points there is exactly one plane containing them. Unit Definitions Term Labeling Picture Undefined terms Point Dot, place in space Line Plane Series of points that extends in two directions forever Infinite surface with no thickness Defined Terms Collinear

More information

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry Synthetic Geometry 1.1 Foundations 1.2 The axioms of projective geometry Foundations Def: A geometry is a pair G = (Ω, I), where Ω is a set and I a relation on Ω that is symmetric and reflexive, i.e. 1.

More information

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms Unit 1 asics of Geometry Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically looks

More information

3 Geometric inequalities in convex quadrilaterals Geometric inequalities of Erdős-Mordell type in the convex quadrilateral

3 Geometric inequalities in convex quadrilaterals Geometric inequalities of Erdős-Mordell type in the convex quadrilateral Contents 1 The quadrilateral 9 1.1 General notions........................... 9 1. Determining conditions...................... 10 1.3 Euler s Theorem and Leibniz-type relations........... 14 1.4 Ptolemy

More information

Inversive Plane Geometry

Inversive Plane Geometry Inversive Plane Geometry An inversive plane is a geometry with three undefined notions: points, circles, and an incidence relation between points and circles, satisfying the following three axioms: (I.1)

More information

B. Section 1.1. Chapter 1 Review Booklet A. Vocabulary Match the vocabulary term with its definition. 3. A pair of opposite rays on line p.

B. Section 1.1. Chapter 1 Review Booklet A. Vocabulary Match the vocabulary term with its definition. 3. A pair of opposite rays on line p. A. Vocabulary Match the vocabulary term with its definition. Point Polygon Angle Sides Postulate Collinear Opposite Rays Vertical angles Coplanar Linear Pair Complementary Vertex Line Adjacent Plane Distance

More information

Geometry, 2.1 Notes Perpendicularity

Geometry, 2.1 Notes Perpendicularity Geometry, 2.1 Notes Perpendicularity Parallel and perpendicular are opposite. Parallel = Perpendicular = Perpendicular, right angles, 90 angles, all go together. Do not assume something is perpendicular

More information

Objectives: (What You ll Learn) Identify and model points, lines, planes Identify collinear and coplanar points, intersecting lines and planes

Objectives: (What You ll Learn) Identify and model points, lines, planes Identify collinear and coplanar points, intersecting lines and planes Geometry Chapter 1 Outline: Points, Lines, Planes, & Angles A. 1-1 Points, Lines, and Planes (What You ll Learn) Identify and model points, lines, planes Identify collinear and coplanar points, intersecting

More information

2.2 pd 3 September 12, Chapter 2 - Openers and notes Resources (1) Theorem/postulate packet

2.2 pd 3 September 12, Chapter 2 - Openers and notes Resources (1) Theorem/postulate packet Chapter 2: Basic Concepts and Proof Chapter 2 - Openers and notes Resources (1) Theorem/postulate packet 2.1 perpendicularity (2) Vocabulary - download from website (3) Answer key to chapter 2 Review exercises

More information

2 Solution of Homework II

2 Solution of Homework II Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13h2.tex 2 Solution of Homework II 10 Problem 2.1. Prove the Four-point Theorem directly from the Three-point Theorem and the Plane separation Theorem. Answer.

More information

Geometry 1 st Semester Exam REVIEW Chapters 1-4, 6. Your exam will cover the following information:

Geometry 1 st Semester Exam REVIEW Chapters 1-4, 6. Your exam will cover the following information: Geometry 1 st Semester Exam REVIEW Chapters 1-4, 6 Your exam will cover the following information: Chapter 1 Basics of Geometry Chapter 2 Logic and Reasoning Chapter 3 Parallel & Perpendicular Lines Chapter

More information

CONSTRUCTIONS Introduction Division of a Line Segment

CONSTRUCTIONS Introduction Division of a Line Segment 216 MATHEMATICS CONSTRUCTIONS 11 111 Introduction In Class IX, you have done certain constructions using a straight edge (ruler) and a compass, eg, bisecting an angle, drawing the perpendicular bisector

More information

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes.

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. asics of Geometry Unit 1 - Notes Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically

More information

Geometry Advanced Fall Semester Exam Review Packet -- CHAPTER 1

Geometry Advanced Fall Semester Exam Review Packet -- CHAPTER 1 Name: Class: Date: Geometry Advanced Fall Semester Exam Review Packet -- CHAPTER Multiple Choice. Identify the choice that best completes the statement or answers the question.. Which statement(s) may

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Geometric Constructions

Geometric Constructions HISTORY OF MATHEMATICS Spring 2005 Geometric Constructions Notes, activities, assignment; #3 in a series. Note: I m not giving a specific due date for this somewhat vague assignment. The idea is that it

More information

the projective completion of the affine plane with four points

the projective completion of the affine plane with four points Math 3181 Dr. Franz Rothe November 23, 20 1 Test Name: 50 Problem 1.1. Here are once more: a highly symmetric illustration for the Fano plane based on an equilateral triangle the projective completion

More information

Geometry - Chapter 1 - Corrective #1

Geometry - Chapter 1 - Corrective #1 Class: Date: Geometry - Chapter 1 - Corrective #1 Short Answer 1. Sketch a figure that shows two coplanar lines that do not intersect, but one of the lines is the intersection of two planes. 2. Name two

More information

Tools of Geometry 1. X + 9 = 24 2. 25 X = 15 3. X + 3 = -2X -10 4. 3X + 4Y = 2 Place in slope intercept form. 5. Y = ½ X 2 What is the slope? What is the Y- Intercept? Inductive Reasoning is reasoning

More information

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters..

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters.. Chapter 1 Points, Lines & Planes s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess that you might already be pretty familiar with many

More information

46 Congruence of Triangles

46 Congruence of Triangles 46 Congruence of Triangles Two triangles are congruent if one can be moved on top of the other, so that edges and vertices coincide. The corresponding sides have the same lengths, and corresponding angles

More information

Geometry Basics of Geometry Precise Definitions Unit CO.1 OBJECTIVE #: G.CO.1

Geometry Basics of Geometry Precise Definitions Unit CO.1 OBJECTIVE #: G.CO.1 OBJECTIVE #: G.CO.1 OBJECTIVE Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance

More information

M2 GEOMETRY REVIEW FOR MIDTERM EXAM

M2 GEOMETRY REVIEW FOR MIDTERM EXAM M2 GEOMETRY REVIEW FOR MIDTERM EXAM #1-11: True or false? If false, replace the underlined word or phrase to make a true sentence. 1. Two lines are perpendicular if they intersect to form a right angle.

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

9.4. Inscribed Angles

9.4. Inscribed Angles 9.4. Inscribed Angles www.ck12.org 9.4 Inscribed Angles Learning Objectives Find the measure of inscribed angles and the arcs they intercept. Review Queue We are going to use #14 from the homework in the

More information

Geometry Lesson 1-1: Identify Points, Lines, and Planes Name Hr Pg. 5 (1, 3-22, 25, 26)

Geometry Lesson 1-1: Identify Points, Lines, and Planes Name Hr Pg. 5 (1, 3-22, 25, 26) Geometry Lesson 1-1: Identify Points, Lines, and Planes Name Hr Pg. 5 (1, 3-22, 25, 26) Learning Target: At the end of today s lesson we will be able to successfully name and sketch geometric figures.

More information

Lesson 9: Coordinate Proof - Quadrilaterals Learning Targets

Lesson 9: Coordinate Proof - Quadrilaterals Learning Targets Lesson 9: Coordinate Proof - Quadrilaterals Learning Targets Using coordinates, I can find the intersection of the medians of a triangle that meet at a point that is two-thirds of the way along each median

More information

Note: Definitions are always reversible (converse is true) but postulates and theorems are not necessarily reversible.

Note: Definitions are always reversible (converse is true) but postulates and theorems are not necessarily reversible. Honors Math 2 Deductive ing and Two-Column Proofs Name: Date: Deductive reasoning is a system of thought in which conclusions are justified by means of previously assumed or proven statements. Every deductive

More information

And Now From a New Angle Special Angles and Postulates LEARNING GOALS

And Now From a New Angle Special Angles and Postulates LEARNING GOALS And Now From a New Angle Special Angles and Postulates LEARNING GOALS KEY TERMS. In this lesson, you will: Calculate the complement and supplement of an angle. Classify adjacent angles, linear pairs, and

More information

Geometry Review for Test 3 January 13, 2016

Geometry Review for Test 3 January 13, 2016 Homework #7 Due Thursday, 14 January Ch 7 Review, pp. 292 295 #1 53 Test #3 Thurs, 14 Jan Emphasis on Ch 7 except Midsegment Theorem, plus review Betweenness of Rays Theorem Whole is Greater than Part

More information

MAKE GEOMETRIC CONSTRUCTIONS

MAKE GEOMETRIC CONSTRUCTIONS MAKE GEOMETRIC CONSTRUCTIONS KEY IDEAS 1. To copy a segment, follow the steps given: Given: AB Construct: PQ congruent to AB 1. Use a straightedge to draw a line, l. 2. Choose a point on line l and label

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point

More information

5. THE ISOPERIMETRIC PROBLEM

5. THE ISOPERIMETRIC PROBLEM Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

More information

Geometry: Semester 1 Midterm

Geometry: Semester 1 Midterm Class: Date: Geometry: Semester 1 Midterm Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The first two steps for constructing MNO that is congruent to

More information