Simple and Practical Algorithm for the Sparse Fourier Transform

Size: px
Start display at page:

Download "Simple and Practical Algorithm for the Sparse Fourier Transform"

Transcription

1 Simple and Practical Algorithm for the Sparse Fourier Transform Haitham Hassanieh Piotr Indyk Dina Katabi Eric Price MIT Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

2 Outline 1 Introduction 2 Algorithm 3 Experiments Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

3 The Dicrete Fourier Transform Discrete Fourier transform: given x C n, find x i = x j ω ij Fundamental tool Compression (audio, image, video) Signal processing Data analysis... FFT: O(n log n) time. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

4 Sparse Fourier Transform Often the Fourier transform is dominated by a small number of peaks Precisely the reason to use for compression. If most of mass in k locations, can we compute FFT faster? Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

5 Previous work Boolean cube: [KM92], [GL89]. What about C? [Mansour-92]: k c log c n. Long list of other work [GGIMS02, AGS03, Iwen10, Aka10] Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log 4 n. All have poor constants, many logs. Need n/k > 40,000 or ω(log 3 n) to beat FFTW. Our goal: beat FFTW for smaller n/k in theory and practice. Result: n/k > 2, 000 or ω(log n) to beat FFTW. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

6 Our result Simple, practical algorithm with good constants. Compute the k-sparse Fourier transform in O( kn log 3/2 n) time. Get x with approximation error x x 2 1 k x x k 2 2 If x is sparse, recover it exactly. Caveats: Additional x 2 /n Θ(1) error. n must be a power of 2. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

7 Structure of this section If x is k-sparse with known support S, find x S exactly in O(k log 2 n) time. In general, estimate x approximately in Õ( nk) time. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

8 Intuition Original signal (time) Original signal (freq) n-dimensional DFT Cutoff signal (time) Cutoff signal (freq) n-dimensional DFT of first B terms. Cutoff signal (time) Cutoff signal, subsampled (freq) B-dimensional DFT of first B terms. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

9 Framework Cutoff signal (time) Cutoff subsampled signals (freq) Hashes into B buckets in B log B time. Issues: Hashing needs a random hash function Access x t = ω at x σt, so x t = x σ 1 t+a [GMS-05] Collisions Have B > 4k, repeat O(log n) times and take median. [Count-Sketch, CCF02] Leakage Finding the support. [Porat-Strauss-12], talk at 9:45am. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

10 Leakage Cutoff signal (time) Cutoff, subsampled signals (freq) { 1 i < B Let F i = 0 otherwise [GGIMS02,GMS05]) Observe be the boxcar filter. (Used in DFT(F x, B) = subsample(dft(f x, n), B) = subsample( F x, B). DFT F of boxcar filter is sinc, decays as 1/i. Need a better filter F! Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

11 Filters 2.0 Filter (time) 25 Filter (freq) Bin Observe subsample( F x, B) in O(B log B) time. Needs for F: supp(f) [0, B] F < δ = 1/n Θ(1) except near 0. F 1 over [ n/2b, n/2b]. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

12 Filters 1.0 Filter (time) 18 Filter (freq) Bin Observe subsample( F x, B) in O(B log B) time. Needs for F: supp(f) [0, B] F < δ = 1/n Θ(1) except near 0. F 1 over [ n/2b, n/2b]. Gaussians: Standard deviation σ = B/ log n DFT has σ = (n/b) log n Nontrivial leakage into O(log n) buckets. But likely trivial contribution to correct bucket. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

13 Filters 1.0 Filter (time) 80 Filter (freq) Bin Observe subsample( F x, B) in O(B log B) time. Needs for F: supp(f) [0, B log n] F < δ = 1/n Θ(1) except near 0. F 1 over [ n/2b, n/2b]. Gaussians: Standard deviation σ = B/ log n B log n DFT has σ = (n/b) log n (n/b)/ log n Nontrivial leakage into 0 buckets. But likely trivial contribution to correct bucket. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

14 Filters 1.0 Filter (time) 80 Filter (freq) Bin Let G be Gaussian with σ = B log n H be box-car filter of length n/b. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

15 Filters 0.10 Filter (time) 1.2 Filter (freq) Bin Let G be Gaussian with σ = B log n H be box-car filter of length n/b. Use F = Ĝ H. F = G Ĥ, so supp(f) [0, B log n]. F < 1/n Θ(1) outside n/b, n/b. F = 1 ± 1/n Θ(1) within n/2b, n/b. Hashes correctly to one bucket, leaks to at most 1 bucket. Replace Gaussians with Dolph-Chebyshev window functions : factor 2 improvement. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

16 Algorithm to estimate x S For O(log n) different permutations of x, compute subsample( F x, B). Estimate each x i as median of values it maps to. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

17 Algorithm to estimate x S For O(log n) different permutations of x, compute subsample( F x, B). Estimate each x i as median of values it maps to. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

18 Algorithm to estimate x S For O(log n) different permutations of x, compute subsample( F x, B). Estimate each x i as median of values it maps to. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

19 Algorithm to estimate x S For O(log n) different permutations of x, compute subsample( F x, B). Estimate each x i as median of values it maps to. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

20 Algorithm in general For O(log n) different permutations of x, compute subsample( F x, B). Estimate each x i as median of values it maps to. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

21 Algorithm in general For O(log n) different permutations of x, compute subsample( F x, B). Estimate each x i as median of values it maps to. To find S: choose all that map to the top 2k values. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

22 Algorithm in general For O(log n) different permutations of x, compute subsample( F x, B). Estimate each x i as median of values it maps to. To find S: choose all that map to the top 2k values. nk/b candidates to update at each iteration: total time. ( nk B + B log n) log n = nk log 3/2 n Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

23 Empirical Performance: runtime 10 sfft 1.0 Run Time vs Signal Size (k=50) Run Time vs Sparsity (n=2 22 ) sfft 2.0 FFTW 10 1 FFTW OPT AAFFT 0.9 Run Time (sec) Run Time (sec) sfft 1.0 sfft FFTW FFTW OPT AAFFT Signal Size (n) Number of Non-Zero Frequencies (k) Compare to FFTW, previous best sublinear algorithm (AAFFT). Offer a heuristic that improves time to Õ(n1/3 k 2/3 ). Filter from [Mansour 92]. Can t rerandomize, might miss elements. Faster than FFTW for n/k > 2,000. Faster than AAFFT for n/k < 1,000,000. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

24 Empirical Performance: noise Robustness vs SNR (n=2 22, k=50) Average L1 Error per Enrty e-05 sfft 1.0 sfft 2.0 AAFFT 0.9 1e-06 1e SNR (db) Just like in Count-Sketch, algorithm is noise tolerant. Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

25 Conclusions Roughly: fastest algorithm for n/k [2 10 3, 10 6 ]. Recent improvements [HIKP12b?] O(k log n) for exactly sparse x O(k log n k log n) for approximation. Beats FFTW for n/k > 400 (in the exact case). Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

26 Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform / 19

SDP Memo 048: Two Dimensional Sparse Fourier Transform Algorithms

SDP Memo 048: Two Dimensional Sparse Fourier Transform Algorithms SDP Memo 048: Two Dimensional Sparse Fourier Transform Algorithms Document Number......................................................... SDP Memo 048 Document Type.....................................................................

More information

High performance Sparse Fast Fourier Transform

High performance Sparse Fast Fourier Transform Research Collection Master Thesis High performance Sparse Fast Fourier Transform Author(s): Schumacher, Jörn Publication Date: 2013 Permanent Link: https://doi.org/10.3929/ethz-a-009779087 Rights / License:

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

SFFT Documentation. Release 0.1. Jörn Schumacher

SFFT Documentation. Release 0.1. Jörn Schumacher SFFT Documentation Release 0.1 Jörn Schumacher June 11, 2013 CONTENTS 1 Introduction 3 1.1 When Should I use the SFFT library?.................................. 3 1.2 Target Platform..............................................

More information

Sublinear Algorithms for Big Data Analysis

Sublinear Algorithms for Big Data Analysis Sublinear Algorithms for Big Data Analysis Michael Kapralov Theory of Computation Lab 4 EPFL 7 September 2017 The age of big data: massive amounts of data collected in various areas of science and technology

More information

Fast and Efficient Sparse 2D Discrete Fourier Transform using Sparse-Graph Codes

Fast and Efficient Sparse 2D Discrete Fourier Transform using Sparse-Graph Codes Fast and Efficient Sparse 2D Discrete Fourier Transform using Sparse-Graph Codes Frank Ong, Sameer Pawar, and Kannan Ramchandran Department of Electrical Engineering and Computer Sciences University of

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE23 Digital Signal Processing Lecture 8 FFT II Lab based on slides by JM Kahn M Lustig, EECS UC Berkeley Announcements Last time: Started FFT Today Lab Finish FFT Read Ch 002 Midterm : Feb 22nd M Lustig,

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

High-Throughput Implementation of a Million-Point Sparse Fourier Transform

High-Throughput Implementation of a Million-Point Sparse Fourier Transform High-Throughput Implementation of a Million-Point Sparse Fourier Transform Abhinav Agarwal, Haitham Hassanieh, Omid Abari, Ezz Hamed, Dina Katabi & Arvind Computer Science & Artificial Intelligence Laboratory,

More information

Randomized sampling strategies

Randomized sampling strategies Randomized sampling strategies Felix J. Herrmann SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia SLIM Drivers & Acquisition costs impediments Full-waveform inversion

More information

Mining for Patterns and Anomalies in Data Streams. Sampath Kannan University of Pennsylvania

Mining for Patterns and Anomalies in Data Streams. Sampath Kannan University of Pennsylvania Mining for Patterns and Anomalies in Data Streams Sampath Kannan University of Pennsylvania The Problem Data sizes too large to fit in primary memory Devices with small memory Access times to secondary

More information

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13. Announcements Edge and Corner Detection HW3 assigned CSE252A Lecture 13 Efficient Implementation Both, the Box filter and the Gaussian filter are separable: First convolve each row of input image I with

More information

Parallel Algorithms for Geometric Graph Problems Grigory Yaroslavtsev

Parallel Algorithms for Geometric Graph Problems Grigory Yaroslavtsev Parallel Algorithms for Geometric Graph Problems Grigory Yaroslavtsev http://grigory.us Appeared in STOC 2014, joint work with Alexandr Andoni, Krzysztof Onak and Aleksandar Nikolov. The Big Data Theory

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

Locality- Sensitive Hashing Random Projections for NN Search

Locality- Sensitive Hashing Random Projections for NN Search Case Study 2: Document Retrieval Locality- Sensitive Hashing Random Projections for NN Search Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 18, 2017 Sham Kakade

More information

PARALLEL FFT PROGRAM OPTIMIZATION ON HETEROGENEOUS COMPUTERS. Shuo Chen

PARALLEL FFT PROGRAM OPTIMIZATION ON HETEROGENEOUS COMPUTERS. Shuo Chen PARALLEL FFT PROGRAM OPTIMIZATION ON HETEROGENEOUS COMPUTERS by Shuo Chen A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree

More information

Robust image recovery via total-variation minimization

Robust image recovery via total-variation minimization Robust image recovery via total-variation minimization Rachel Ward University of Texas at Austin (Joint work with Deanna Needell, Claremont McKenna College) February 16, 2012 2 Images are compressible

More information

Lecture 19. Lecturer: Aleksander Mądry Scribes: Chidambaram Annamalai and Carsten Moldenhauer

Lecture 19. Lecturer: Aleksander Mądry Scribes: Chidambaram Annamalai and Carsten Moldenhauer CS-621 Theory Gems November 21, 2012 Lecture 19 Lecturer: Aleksander Mądry Scribes: Chidambaram Annamalai and Carsten Moldenhauer 1 Introduction We continue our exploration of streaming algorithms. First,

More information

The Sensitivity Matrix

The Sensitivity Matrix The Sensitivity Matrix Integrating Perception into the Flexcode Project Jan Plasberg Flexcode Seminar Lannion June 6, 2007 SIP - Sound and Image Processing Lab, EE, KTH Stockholm 1 SIP - Sound and Image

More information

Analyzing Data Streams by Online DFT

Analyzing Data Streams by Online DFT Analyzing Data Streams by Online DFT Alexander Hinneburg 1, Dirk Habich 2, and Marcel Karnstedt 3 1 Martin-Luther University of Halle-Wittenberg, Germany hinneburg@informatik.uni-halle.de 2 Dresden University

More information

ECE 598HH: Advanced Wireless Networks and Sensing Systems. Lecture 8: MIMO Part 1 Haitham Hassanieh

ECE 598HH: Advanced Wireless Networks and Sensing Systems. Lecture 8: MIMO Part 1 Haitham Hassanieh ECE 598HH: Advanced Wireless Networks and Sensing Systems Lecture 8: MIMO Part 1 Haitham Hassanieh MIMO: Multiple Input Multiple Output So far: single input single output This lecture: multiple input multiple

More information

Compact Data Representations and their Applications. Moses Charikar Princeton University

Compact Data Representations and their Applications. Moses Charikar Princeton University Compact Data Representations and their Applications Moses Charikar Princeton University Lots and lots of data AT&T Information about who calls whom What information can be got from this data? Network router

More information

Question 7.11 Show how heapsort processes the input:

Question 7.11 Show how heapsort processes the input: Question 7.11 Show how heapsort processes the input: 142, 543, 123, 65, 453, 879, 572, 434, 111, 242, 811, 102. Solution. Step 1 Build the heap. 1.1 Place all the data into a complete binary tree in the

More information

Compressive Parameter Estimation with Earth Mover s Distance via K-means Clustering. Dian Mo and Marco F. Duarte

Compressive Parameter Estimation with Earth Mover s Distance via K-means Clustering. Dian Mo and Marco F. Duarte Compressive Parameter Estimation with Earth Mover s Distance via K-means Clustering Dian Mo and Marco F. Duarte Compressive Sensing (CS) Integrates linear acquisition with dimensionality reduction linear

More information

Denoising of Fingerprint Images

Denoising of Fingerprint Images 100 Chapter 5 Denoising of Fingerprint Images 5.1 Introduction Fingerprints possess the unique properties of distinctiveness and persistence. However, their image contrast is poor due to mixing of complex

More information

2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing

2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing Progress In Electromagnetics Research M, Vol. 46, 47 56, 206 2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing Berenice Verdin * and Patrick Debroux Abstract The measurement

More information

Introduction to Analysis of Algorithms

Introduction to Analysis of Algorithms Introduction to Analysis of Algorithms Analysis of Algorithms To determine how efficient an algorithm is we compute the amount of time that the algorithm needs to solve a problem. Given two algorithms

More information

BOOLEAN MATRIX FACTORIZATIONS. with applications in data mining Pauli Miettinen

BOOLEAN MATRIX FACTORIZATIONS. with applications in data mining Pauli Miettinen BOOLEAN MATRIX FACTORIZATIONS with applications in data mining Pauli Miettinen MATRIX FACTORIZATIONS BOOLEAN MATRIX FACTORIZATIONS o THE BOOLEAN MATRIX PRODUCT As normal matrix product, but with addition

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Formal Loop Merging for Signal Transforms

Formal Loop Merging for Signal Transforms Formal Loop Merging for Signal Transforms Franz Franchetti Yevgen S. Voronenko Markus Püschel Department of Electrical & Computer Engineering Carnegie Mellon University This work was supported by NSF through

More information

Cuckoo Linear Algebra

Cuckoo Linear Algebra Cuckoo Linear Algebra Li Zhou, CMU Dave Andersen, CMU and Mu Li, CMU and Alexander Smola, CMU and select advertisement p(click user, query) = logist (hw, (user, query)i) select advertisement find weight

More information

Diffusion Wavelets for Natural Image Analysis

Diffusion Wavelets for Natural Image Analysis Diffusion Wavelets for Natural Image Analysis Tyrus Berry December 16, 2011 Contents 1 Project Description 2 2 Introduction to Diffusion Wavelets 2 2.1 Diffusion Multiresolution............................

More information

3.2 Cache Oblivious Algorithms

3.2 Cache Oblivious Algorithms 3.2 Cache Oblivious Algorithms Cache-Oblivious Algorithms by Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. In the 40th Annual Symposium on Foundations of Computer Science,

More information

Data Streaming Algorithms for Geometric Problems

Data Streaming Algorithms for Geometric Problems Data Streaming Algorithms for Geometric roblems R.Sharathkumar Duke University 1 Introduction A data stream is an ordered sequence of points that can be read only once or a small number of times. Formally,

More information

Rectangle-Efficient Aggregation in Spatial Data Streams

Rectangle-Efficient Aggregation in Spatial Data Streams Rectangle-Efficient Aggregation in Spatial Data Streams Srikanta Tirthapura Iowa State David Woodruff IBM Almaden The Data Stream Model Stream S of additive updates (i, Δ) to an underlying vector v: v

More information

Digital Image Fundamentals

Digital Image Fundamentals Digital Image Fundamentals Image Quality Objective/ subjective Machine/human beings Mathematical and Probabilistic/ human intuition and perception 6 Structure of the Human Eye photoreceptor cells 75~50

More information

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data e.g., occupation = noisy: containing

More information

Routing v.s. Spanners

Routing v.s. Spanners Routing v.s. Spanners Spanner et routage compact : similarités et différences Cyril Gavoille Université de Bordeaux AlgoTel 09 - Carry-Le-Rouet June 16-19, 2009 Outline Spanners Routing The Question and

More information

EE538 - Final Report Design of Antenna Arrays using Windows

EE538 - Final Report Design of Antenna Arrays using Windows EE538 - Final Report Design of Antenna Arrays using Windows Mahadevan Srinivasan April 29, 2010 Abstract The Design of Uniformly-spaced Antenna Arrays has a significant similarity to the Design of FIR

More information

THREE NOVEL EDGE DETECTION METHODS FOR INCOMPLETE AND NOISY SPECTRAL DATA

THREE NOVEL EDGE DETECTION METHODS FOR INCOMPLETE AND NOISY SPECTRAL DATA THREE NOVEL EDGE DETECTION METHODS FOR INCOMPLETE AND NOISY SPECTRAL DATA EITAN TADMOR AND JING ZOU Abstract. We propose three novel methods for recovering edges in piecewise smooth functions from their

More information

Bandwidth Selection for Kernel Density Estimation Using Total Variation with Fourier Domain Constraints

Bandwidth Selection for Kernel Density Estimation Using Total Variation with Fourier Domain Constraints IEEE SIGNAL PROCESSING LETTERS 1 Bandwidth Selection for Kernel Density Estimation Using Total Variation with Fourier Domain Constraints Alexander Suhre, Orhan Arikan, Member, IEEE, and A. Enis Cetin,

More information

Quickest Search Over Multiple Sequences with Mixed Observations

Quickest Search Over Multiple Sequences with Mixed Observations Quicest Search Over Multiple Sequences with Mixed Observations Jun Geng Worcester Polytechnic Institute Email: geng@wpi.edu Weiyu Xu Univ. of Iowa Email: weiyu-xu@uiowa.edu Lifeng Lai Worcester Polytechnic

More information

KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense

KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense John R Hott University of Virginia May 11, 2012 1 / 62 Motivation Epidemiology: Clinical Trials Phase II and III pre-market trials

More information

Sparse Reconstruction / Compressive Sensing

Sparse Reconstruction / Compressive Sensing Sparse Reconstruction / Compressive Sensing Namrata Vaswani Department of Electrical and Computer Engineering Iowa State University Namrata Vaswani Sparse Reconstruction / Compressive Sensing 1/ 20 The

More information

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs Measurements and Bits: Compressed Sensing meets Information Theory Dror Baron ECE Department Rice University dsp.rice.edu/cs Sensing by Sampling Sample data at Nyquist rate Compress data using model (e.g.,

More information

Mining Data Streams. From Data-Streams Management System Queries to Knowledge Discovery from continuous and fast-evolving Data Records.

Mining Data Streams. From Data-Streams Management System Queries to Knowledge Discovery from continuous and fast-evolving Data Records. DATA STREAMS MINING Mining Data Streams From Data-Streams Management System Queries to Knowledge Discovery from continuous and fast-evolving Data Records. Hammad Haleem Xavier Plantaz APPLICATIONS Sensors

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

Separating Speech From Noise Challenge

Separating Speech From Noise Challenge Separating Speech From Noise Challenge We have used the data from the PASCAL CHiME challenge with the goal of training a Support Vector Machine (SVM) to estimate a noise mask that labels time-frames/frequency-bins

More information

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks Compressive Sensing for Multimedia 1 Communications in Wireless Sensor Networks Wael Barakat & Rabih Saliba MDDSP Project Final Report Prof. Brian L. Evans May 9, 2008 Abstract Compressive Sensing is an

More information

Approximation Algorithms for NP-Hard Clustering Problems

Approximation Algorithms for NP-Hard Clustering Problems Approximation Algorithms for NP-Hard Clustering Problems Ramgopal R. Mettu Dissertation Advisor: Greg Plaxton Department of Computer Science University of Texas at Austin What Is Clustering? The goal of

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

A Non-Iterative Approach to Frequency Estimation of a Complex Exponential in Noise by Interpolation of Fourier Coefficients

A Non-Iterative Approach to Frequency Estimation of a Complex Exponential in Noise by Interpolation of Fourier Coefficients A on-iterative Approach to Frequency Estimation of a Complex Exponential in oise by Interpolation of Fourier Coefficients Shahab Faiz Minhas* School of Electrical and Electronics Engineering University

More information

Course : Data mining

Course : Data mining Course : Data mining Lecture : Mining data streams Aristides Gionis Department of Computer Science Aalto University visiting in Sapienza University of Rome fall 2016 reading assignment LRU book: chapter

More information

Introduction. Wavelets, Curvelets [4], Surfacelets [5].

Introduction. Wavelets, Curvelets [4], Surfacelets [5]. Introduction Signal reconstruction from the smallest possible Fourier measurements has been a key motivation in the compressed sensing (CS) research [1]. Accurate reconstruction from partial Fourier data

More information

Review. CSE 143 Java. A Magical Strategy. Hash Function Example. Want to implement Sets of objects Want fast contains( ), add( )

Review. CSE 143 Java. A Magical Strategy. Hash Function Example. Want to implement Sets of objects Want fast contains( ), add( ) Review CSE 143 Java Hashing Want to implement Sets of objects Want fast contains( ), add( ) One strategy: a sorted list OK contains( ): use binary search Slow add( ): have to maintain list in sorted order

More information

Fourier Transformation Methods in the Field of Gamma Spectrometry

Fourier Transformation Methods in the Field of Gamma Spectrometry International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 3 Number 1 (2007) pp. 132 141 Research India Publications http://www.ripublication.com/ijpap.htm Fourier Transformation Methods in

More information

Summarizing and mining inverse distributions on data streams via dynamic inverse sampling

Summarizing and mining inverse distributions on data streams via dynamic inverse sampling Summarizing and mining inverse distributions on data streams via dynamic inverse sampling Presented by Graham Cormode cormode@bell-labs.com S. Muthukrishnan muthu@cs.rutgers.edu Irina Rozenbaum rozenbau@paul.rutgers.edu

More information

Collaborative Sparsity and Compressive MRI

Collaborative Sparsity and Compressive MRI Modeling and Computation Seminar February 14, 2013 Table of Contents 1 T2 Estimation 2 Undersampling in MRI 3 Compressed Sensing 4 Model-Based Approach 5 From L1 to L0 6 Spatially Adaptive Sparsity MRI

More information

One image is worth 1,000 words

One image is worth 1,000 words Image Databases Prof. Paolo Ciaccia http://www-db. db.deis.unibo.it/courses/si-ls/ 07_ImageDBs.pdf Sistemi Informativi LS One image is worth 1,000 words Undoubtedly, images are the most wide-spread MM

More information

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University Image restoration Lecture 14 Milan Gavrilovic milan@cb.uu.se Centre for Image Analysis Uppsala University Computer Assisted Image Analysis 2009-05-08 M. Gavrilovic (Uppsala University) L14 Image restoration

More information

INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM

INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM Course Outline Course Outline INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM Introduction Fast Fourier Transforms have revolutionized digital signal processing What is the FFT? A collection of tricks

More information

Time-jittered ocean bottom seismic acquisition Haneet Wason and Felix J. Herrmann

Time-jittered ocean bottom seismic acquisition Haneet Wason and Felix J. Herrmann Time-jittered ocean bottom seismic acquisition Haneet Wason and Felix J. Herrmann SLIM University of British Columbia Challenges Need for full sampling - wave-equation based inversion (RTM & FWI) - SRME/EPSI

More information

Parallel Peeling Algorithms. Justin Thaler, Yahoo Labs Joint Work with: Michael Mitzenmacher, Harvard University Jiayang Jiang

Parallel Peeling Algorithms. Justin Thaler, Yahoo Labs Joint Work with: Michael Mitzenmacher, Harvard University Jiayang Jiang Parallel Peeling Algorithms Justin Thaler, Yahoo Labs Joint Work with: Michael Mitzenmacher, Harvard University Jiayang Jiang The Peeling Paradigm Many important algorithms for a wide variety of problems

More information

Parallel Peeling Algorithms. Justin Thaler, Yahoo Labs Joint Work with: Michael Mitzenmacher, Harvard University Jiayang Jiang

Parallel Peeling Algorithms. Justin Thaler, Yahoo Labs Joint Work with: Michael Mitzenmacher, Harvard University Jiayang Jiang Parallel Peeling Algorithms Justin Thaler, Yahoo Labs Joint Work with: Michael Mitzenmacher, Harvard University Jiayang Jiang The Peeling Paradigm Many important algorithms for a wide variety of problems

More information

Advances In Industrial Logic Synthesis

Advances In Industrial Logic Synthesis Advances In Industrial Logic Synthesis Luca Amarù, Patrick Vuillod, Jiong Luo Design Group, Synopsys Inc., Sunnyvale, California, USA Design Group, Synopsys, Grenoble, FR Logic Synthesis Y

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

CS 521 Data Mining Techniques Instructor: Abdullah Mueen

CS 521 Data Mining Techniques Instructor: Abdullah Mueen CS 521 Data Mining Techniques Instructor: Abdullah Mueen LECTURE 2: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major Tasks

More information

Going nonparametric: Nearest neighbor methods for regression and classification

Going nonparametric: Nearest neighbor methods for regression and classification Going nonparametric: Nearest neighbor methods for regression and classification STAT/CSE 46: Machine Learning Emily Fox University of Washington May 3, 208 Locality sensitive hashing for approximate NN

More information

Sublinear Algorithms Lectures 1 and 2. Sofya Raskhodnikova Penn State University

Sublinear Algorithms Lectures 1 and 2. Sofya Raskhodnikova Penn State University Sublinear Algorithms Lectures 1 and 2 Sofya Raskhodnikova Penn State University 1 Tentative Topics Introduction, examples and general techniques. Sublinear-time algorithms for graphs strings basic properties

More information

Assignment 3: Edge Detection

Assignment 3: Edge Detection Assignment 3: Edge Detection - EE Affiliate I. INTRODUCTION This assignment looks at different techniques of detecting edges in an image. Edge detection is a fundamental tool in computer vision to analyse

More information

SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR PRACTICAL COMPRESSED SENSING

SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR PRACTICAL COMPRESSED SENSING SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR PRACTICAL COMPRESSED SENSING Thong T. Do, Lu Gan, Nam Nguyen and Trac D. Tran Department of Electrical and Computer Engineering The Johns Hopkins University

More information

Source Coding Techniques

Source Coding Techniques Source Coding Techniques Source coding is based on changing the content of the original signal. Also called semantic-based coding. Compression rates may be higher but at a price of loss of information.

More information

Computational issues in linear programming

Computational issues in linear programming Computational issues in linear programming Julian Hall School of Mathematics University of Edinburgh 15th May 2007 Computational issues in linear programming Overview Introduction to linear programming

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Algorithms for Nearest Neighbors

Algorithms for Nearest Neighbors Algorithms for Nearest Neighbors Classic Ideas, New Ideas Yury Lifshits Steklov Institute of Mathematics at St.Petersburg http://logic.pdmi.ras.ru/~yura University of Toronto, July 2007 1 / 39 Outline

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

A Relationship between the Robust Statistics Theory and Sparse Compressive Sensed Signals Reconstruction

A Relationship between the Robust Statistics Theory and Sparse Compressive Sensed Signals Reconstruction THIS PAPER IS A POSTPRINT OF A PAPER SUBMITTED TO AND ACCEPTED FOR PUBLICATION IN IET SIGNAL PROCESSING AND IS SUBJECT TO INSTITUTION OF ENGINEERING AND TECHNOLOGY COPYRIGHT. THE COPY OF RECORD IS AVAILABLE

More information

High dynamic range imaging, computing & I/O load

High dynamic range imaging, computing & I/O load High dynamic range imaging, computing & I/O load RMS ~15µJy/beam RMS ~1µJy/beam S. Bhatnagar NRAO, Socorro Parameterized Measurement Equation Generalized Measurement Equation Obs [ S M V ij = J ij, t W

More information

Methods for Intelligent Systems

Methods for Intelligent Systems Methods for Intelligent Systems Lecture Notes on Clustering (II) Davide Eynard eynard@elet.polimi.it Department of Electronics and Information Politecnico di Milano Davide Eynard - Lecture Notes on Clustering

More information

Introduction to Sampled Signals and Fourier Transforms

Introduction to Sampled Signals and Fourier Transforms Introduction to Sampled Signals and Fourier Transforms Physics116C, 4/28/06 D. Pellett References: Essick, Advanced LabVIEW Labs Press et al., Numerical Recipes, Ch. 12 Brigham, The Fast Fourier Transform

More information

arxiv: v2 [cs.ds] 2 May 2016

arxiv: v2 [cs.ds] 2 May 2016 Towards Tight Bounds for the Streaming Set Cover Problem Sariel Har-Peled Piotr Indyk Sepideh Mahabadi Ali Vakilian arxiv:1509.00118v2 [cs.ds] 2 May 2016 Abstract We consider the classic Set Cover problem

More information

Welcome to CS166! Four handouts available up front. Today: Also available online! Why study data structures? The range minimum query problem.

Welcome to CS166! Four handouts available up front. Today: Also available online! Why study data structures? The range minimum query problem. Welcome to CS166! Four handouts available up front. Also available online! Today: Why study data structures? The range minimum query problem. Why Study Data Structures? Why Study Data Structures? Explore

More information

RF Cloak: Securing RFID Cards Without Modifying them

RF Cloak: Securing RFID Cards Without Modifying them RF Cloak: Securing RFID Cards Without Modifying them Haitham Hassanieh Jue Wang, Dina Katabi, Tadayoshi Kohno RFIDs Are Used in Sensitive Applications Access Control Credit Cards Passports Pharmaceutical

More information

Approximation Basics

Approximation Basics Milestones, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Spring 2015 Spring, 2015 Xiaofeng Gao 1/53 Outline History NP Optimization

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Summary. Introduction. Source separation method

Summary. Introduction. Source separation method Separability of simultaneous source data based on distribution of firing times Jinkun Cheng, Department of Physics, University of Alberta, jinkun@ualberta.ca Summary Simultaneous source acquisition has

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Design and Analysis of Algorithms February 29, 2012 Massachusetts Institute of Technology 6.046J/18.410J Profs. Dana Moshovitz and Bruce Tidor Handout 10 Problem Set 3 Solutions This problem set is due

More information

Lecture 27: Fast Laplacian Solvers

Lecture 27: Fast Laplacian Solvers Lecture 27: Fast Laplacian Solvers Scribed by Eric Lee, Eston Schweickart, Chengrun Yang November 21, 2017 1 How Fast Laplacian Solvers Work We want to solve Lx = b with L being a Laplacian matrix. Recall

More information

Department of Computer Science

Department of Computer Science Yale University Department of Computer Science Pass-Efficient Algorithms for Facility Location Kevin L. Chang Department of Computer Science Yale University kchang@cs.yale.edu YALEU/DCS/TR-1337 Supported

More information

System Demonstration of Spiral: Generator for High-Performance Linear Transform Libraries

System Demonstration of Spiral: Generator for High-Performance Linear Transform Libraries System Demonstration of Spiral: Generator for High-Performance Linear Transform Libraries Yevgen Voronenko, Franz Franchetti, Frédéric de Mesmay, and Markus Püschel Department of Electrical and Computer

More information

Adaptive Reconstruction Methods for Low-Dose Computed Tomography

Adaptive Reconstruction Methods for Low-Dose Computed Tomography Adaptive Reconstruction Methods for Low-Dose Computed Tomography Joseph Shtok Ph.D. supervisors: Prof. Michael Elad, Dr. Michael Zibulevsky. Technion IIT, Israel, 011 Ph.D. Talk, Apr. 01 Contents of this

More information

JNTUWORLD. 4. Prove that the average value of laplacian of the equation 2 h = ((r2 σ 2 )/σ 4 ))exp( r 2 /2σ 2 ) is zero. [16]

JNTUWORLD. 4. Prove that the average value of laplacian of the equation 2 h = ((r2 σ 2 )/σ 4 ))exp( r 2 /2σ 2 ) is zero. [16] Code No: 07A70401 R07 Set No. 2 1. (a) What are the basic properties of frequency domain with respect to the image processing. (b) Define the terms: i. Impulse function of strength a ii. Impulse function

More information

PanORAMa: Oblivious RAM with Logarithmic Overhead

PanORAMa: Oblivious RAM with Logarithmic Overhead PanORAMa: Oblivious RAM with Logarithmic Overhead Sarvar Patel 1, Giuseppe Persiano 1,2, Mariana Raykova 1,3, and Kevin Yeo 1 1 Google LLC 2 Università di Salerno 3 Yale University Abstract We present

More information

Algorithms of Scientific Computing

Algorithms of Scientific Computing Algorithms of Scientific Computing Fast Fourier Transform (FFT) Michael Bader Technical University of Munich Summer 2018 The Pair DFT/IDFT as Matrix-Vector Product DFT and IDFT may be computed in the form

More information

Spectral Clustering and Community Detection in Labeled Graphs

Spectral Clustering and Community Detection in Labeled Graphs Spectral Clustering and Community Detection in Labeled Graphs Brandon Fain, Stavros Sintos, Nisarg Raval Machine Learning (CompSci 571D / STA 561D) December 7, 2015 {btfain, nisarg, ssintos} at cs.duke.edu

More information

Going nonparametric: Nearest neighbor methods for regression and classification

Going nonparametric: Nearest neighbor methods for regression and classification Going nonparametric: Nearest neighbor methods for regression and classification STAT/CSE 46: Machine Learning Emily Fox University of Washington May 8, 28 Locality sensitive hashing for approximate NN

More information

Digital Signal Processing. Soma Biswas

Digital Signal Processing. Soma Biswas Digital Signal Processing Soma Biswas 2017 Partial credit for slides: Dr. Manojit Pramanik Outline What is FFT? Types of FFT covered in this lecture Decimation in Time (DIT) Decimation in Frequency (DIF)

More information