Chapter 17: Wave Optics Solutions

Size: px
Start display at page:

Download "Chapter 17: Wave Optics Solutions"

Transcription

1 Chapter 17: Wave Optics Solutions Questions: 3, 7, 11, 15 Exercises & Probles: 4, 7, 8, 10, 1, 4, 44, 55 Q17.3: The wavelength of a light wave is 700 n in air; this light appears red. If this wave enters a pool of water, its wavelength becoes λ air /n = 530 n. If you were swiing underwater, the light would still appear red. Given this, what property of a wave deterines its color? Explain. ( λ Q17.3. Reason: The wavelength changes n λair/ n) when the light goes fro one ediu to another, but the frequency stays the sae. Since the color doesn t change, then it ust be associated with the frequency. Assess: Energy of the light is directly related to the frequency as well. = Q17.7: The figure shows the viewing screen in a double-slit experient with onochroatic light. Fringe C is the central axiu. a. What will happen to the fringe spacing if the wavelength of the light is decreased? b. What will happen to the fringe spacing if the spacing between the slits is decreased? c. What will happen to the fringe spacing if the distance to the screen is decreased? d. Suppose the wavelength of the light is 500 n. How uch farther is it fro the dot on the screen in the center of fringe E to the left slit than it is fro the dot to the right slit? Q17.7. Reason: The fringe separation for the light intensity pattern of a double slit is y=d /. deterined by We can answer this question by inspecting this relationship. (a) If λ y will decrease. (b) If d y will increase. (c) If L y will decrease. (d) Since the dot is in the = bright fringe, the path length difference fro the two slits is λ = 1000 n. Assess: The ability to inspect a relationship and answer what if questions is a skill that physics will help you develop. Q17.11: Why does light reflected fro peacock feathers change color when you see the feathers at a different angle? Explain. Q Reason: Peacock feathers consist of thin nearly parallel rods of elanin. Since they are thin, thin-fil interference is a factor. Since they are very sall and nearly parallel, they also act as a diffraction grating. As a result different wavelengths add up constructively at different locations and you will see different colors when viewing the feather fro different angles. 1

2 Assess: This effect is coon fro biological structures whose size is siilar to the wavelength of light. Q17.15: Should the antireflection coating of a icroscope objective lens designed for use with ultraviolet light be thinner, thicker, or the sae thickness as the coating on a lens designed for visible light? Explain. Q Reason: The wavelength of ultraviolet light is shorter than the wavelength of visible light. The forulas for the thickness of thin fils, such as those used as antireflection coatings, show the thickness is proportional to the wavelength. Hence, if the wavelength is shorter, then the fil needs to be thinner. Assess: It is difficult to ake antireflection coatings that work at a wide range of wavelengths, but it can be done soewhat with ultiple layers of fils of different indices of refraction. P17.4: A light wave has a 670 n wavelength in air. Its wavelength in a transparent is 40 n. a) What is the speed of light in this? b) What is the light s frequency in the? P17.4. Prepare: Light rays travel in straight lines and light s speed in a aterial is characterized by its refractive index, defined by Equation Also, the frequency does not change as the wave oves fro one ediu to another. Solve: (a) The refractive index is c f λ λ λ 40 n n= = = v = c = = v 670 n vac vac fλ λ λvac or /s to two significant figures. (b) The frequency is f v λ /s 14 = = = Hz 40 n 8 8 ( /s) /s Assess: We ust not forget that the frequency of a wave does not change as the wave oves fro one ediu into another. P17.7: Two narrow slits 50 μ apart are illuinated with light of wavelength 500 n. What is the angle of the = bright fringe in radians? In degrees? P17.7. Prepare: Two closely spaced slits produce a double-slit interference pattern given by Equation The interference pattern looks like the photograph of Figure It is syetrical with the fringes on both sides of and equally distant fro the central axiu. Solve: The bright fringes occur at angles θ such that dsinθ = λ = 0, 1,, 3,... ( ) 180 sin θ = = 0.0 = 0.00 rad = 1.1 (50 10 ) θ = 0.00 rad π rad

3 Assess: We did expect the angle to be sall because the wavelength of light is uch saller than the separation of the two slits. P17.8: Light fro a sodiu lap (λ = 589 n) illuinates two narrow slits. The fringe spacing on a screen 150 c behind the slits is 4.0. What is the spacing (in ) between the two slits? P17.8. Prepare: Two closely spaced slits produce a double-slit interference pattern. The interference pattern looks like the photograph of Figure Solve: The fringe spacing is given by Equation 17.9 as follows: ( )( ) y = d = = 3 d y = 0. P17.10: A double-slit experient is perfored with light of wavelength 600 n. The bright interference fringes are spaced 1.8 apart on the viewing screen. What will the fringe spacing be if the light is changed to a wavelength of 400 n? P Prepare: Two closely spaced slits produce a double-slit interference pattern. The interference pattern looks like the photograph of Figure Solve: The forula for fringe spacing is Equation λ y = L ( ) L = d d L 3000 d = The wavelength is now changed to 400 n, and Ld /, being a part of the experiental setup, stays the sae. Applying the above equation once again, y = = = d ( )(3000) 1. P17.1: Two narrow slits are 0.1 apart. Light of wavelength 550 n illuinates the slits, causing an interference pattern on a screen 1.0 away. Light fro each slit travels to the = 1 axiu on the right side of the central axiu. How uch farther did the light fro the left slit travel than the light fro the right slit?? P17.1. Prepare: For a double slit, constructive interference occurs when r = λ where = 0, 1,, 3,... Solve: At the first interference axiu ( = 1) the path difference fro the two slits is r = λ = (1) λ = 550 n. one wavelength, which in this case is Assess: For a double slit, the first interference axiu occurs when the path difference fro the two slits is one wavelength. P17.4: Antireflection coatings can be used on the inner surfaces of eyeglasses to reduce the reflection of stray light into the eye, thus reducing eyestrain. a) A 90-n-thick coating is applied to the lens. What ust be the coating s index of refraction to be ost effective at 480 n? Assue that the coating s index of refraction is less than that of the lens. 3

4 b) If the index of refracting of the coating is 1.38, what thickness should the coating be so as to be ost effective at 480 n? The thinnest possible coating is best. P17.4. Prepare: First note that the coating is on the inside of the glass. As the incident light reflects off the air-coating interface there is no phase change. As the light that is transitted through the coating reflects off the coating-air interface there is no phase change. Destructive interference for two reflective no-phase changes occurs when t = ( + 1/) λair/ n. We will use = 1 in order to obtain the thinnest possible coating. Solve: (a) The index of refraction for the coating is n= ( + 1/) λair/( t) = λair/(4 t) = 480 n/(4(90 n)) = (b) The thickness of the coating is 1 t = + λair / n= λ/4 n= (480 n)/4(1.38) = 87 n Assess: This is a reasonable value for the index of refraction thickness of the coating (see Proble 17.6). P17.44: The two ost proinent wavelengths in the light eitted by a hydrogen discharge lap are 656 n (red) and 486 n (blue). Light fro a hydrogen lap illuinates a diffraction grating with 500 lines/, and the light is observed on a screen 1.50 behind the grating. What is the distance between the first-order red and blue fringes? P Prepare: A diffraction grating produces an interference pattern. The interference pattern looks like the diagra of Figure The bright interference d sin θ, fringes are given by Equation 17.1 = λ = 0, 1,, 3,... The slit spacing d = = is Solve: θ 1/ and = 1. For the red and blue light, = sin = red θ = sin = y = y y blue 1red 1blue The distance between the fringes, then, is where y y 1red 1blue So, = (1.5 )tan19.15 = 0.51 = (1.5 )tan14.06 = y = = 14.5 c. P17.55: If sunlight shines straight onto a peacock feather, the feather appears bright blue when viewed fro 15 on either side of the incident bea of sunlight. The blue color is due to diffraction fro the fro the elanin bands in the feather barbules. Blue light with a wavelength of 470 n is diffracted at 15 by these bands (this is the first-order diffraction) while other wavelengths in the sunlight are diffracted at different angles. What is the spacing of the elanin bands in the feather? P Prepare: The peacock feather is acting as a reflection grating, so we ay use Equation 17.1: d sin θ, = λ with = 1 λ = 470 n, (we are told it is first-order diffraction), θ = 15 = 0. 6 rad. and 1 Solve: Solve Equation 17.1 for d. 4

5 λ (1)( ) d = = = 18. µ sin θ sin(0. 6 rad) Assess: The answer is sall, but plausible for the bands on the barbules. 5

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich LECTURE 12 INTERFERENCE OF LIGHT Instructor: Kazumi Tolich Lecture 12 2 17.2 The interference of light Young s double-slit experiment Analyzing double-slit interference 17.3 The diffraction grating Spectroscopy

More information

Diffraction Review. Two-slit and one-slit patterns. Double-slit diffraction. Single-slit Intensity. Scaling of diffraction patterns

Diffraction Review. Two-slit and one-slit patterns. Double-slit diffraction. Single-slit Intensity. Scaling of diffraction patterns Diffraction Review Today Single-slit diffraction review Multiple slit diffraction review Diffraction intensities Diffraction grating and spectroscopy Suary of single-slit diffraction Given light of wavelength

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a)

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a) 22.. Visualize: Please refer to Figure Ex22.. Solve: (a) (b) The initial light pattern is a double-slit interference pattern. It is centered behind the midpoint of the slits. The slight decrease in intensity

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

22.4. (a) (b) (c) (d)

22.4. (a) (b) (c) (d) mλl 22.2. Because ym = increasing λ and L increases the fringe spacing. Increasing d decreases the fringe d spacing. Submerging the experiment in water decreases λ and decreases the fringe spacing. So

More information

L Destructive interference:

L Destructive interference: SPH3UW/SPH4UI Unit 9.3 Interference of Light in Two Diensions Page 1 of 11 Notes Physics Tool box A pair of ientical point sources operating in phase prouces a syetrical pattern of constructive an estructive

More information

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference Effects 6.2 Two-Slit Thin film is a general property of waves. A condition for is that the wave source is coherent. between two waves gives characteristic patterns due to constructive and destructive.

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 9-3: INTERFERENCE Intro Video: Interference of Waves Questions From Reading Activity? Essential Idea: Interference patterns from multiple slits

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics hitt1 An upright object is located a distance from a convex mirror that is less than the mirror's focal length. The image formed by the mirror is (1) virtual, upright, and larger

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page)

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) . (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) a). An object (an arrow) is placed as shown in front of each of the following optical instruments.

More information

Diffraction Challenge Problem Solutions

Diffraction Challenge Problem Solutions Diffraction Challenge Problem Solutions Problem 1: Measuring the Wavelength of Laser Light Suppose you shine a red laser through a pair of narrow slits (a = 40 μm) separated by a known distance and allow

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

PHY132 Introduction to Physics II Class 5 Outline:

PHY132 Introduction to Physics II Class 5 Outline: PHY132 Introduction to Physics II Class 5 Outline: Ch. 22, sections 22.1-22.4 (Note we are skipping sections 22.5 and 22.6 in this course) Light and Optics Double-Slit Interference The Diffraction Grating

More information

The sources must be coherent. This means they emit waves with a constant phase with respect to each other.

The sources must be coherent. This means they emit waves with a constant phase with respect to each other. CH. 24 Wave Optics The sources must be coherent. This means they emit waves with a constant phase with respect to each other. The waves need to have identical wavelengths. Can t be coherent without this.

More information

Interference of Light

Interference of Light Lecture 22 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Wave Motion Interference Models of Light (Water waves are Easy

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Version 001 Interference jean (AP Phy MHS 2012) 1

Version 001 Interference jean (AP Phy MHS 2012) 1 Version 001 Interference jean AP Phy MHS 01) 1 This print-out should have 11 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. sound m Concept

More information

Physical or wave optics

Physical or wave optics Physical or wave optics In the last chapter, we have been studying geometric optics u light moves in straight lines u can summarize everything by indicating direction of light using a ray u light behaves

More information

Section 10.3: The Diffraction Grating Tutorial 1 Practice, page 523

Section 10.3: The Diffraction Grating Tutorial 1 Practice, page 523 Section 0.: The Diffraction Grating Tutorial Practice, page 52. Slit separation and nuber of lines are related by the equation. As increases, decreases. The diffraction grating ith 0 000 lines/c has ore

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Topic 9: Wave phenomena - AHL 9.3 Interference

Topic 9: Wave phenomena - AHL 9.3 Interference Topic 9.3 is an extension of Topic 4.4. Essential idea: Interference patterns from multiple slits and thin films produce accurately repeatable patterns. Nature of science: (1) Curiosity: Observed patterns

More information

LECTURE 13 THIN FILM INTERFERENCE. Instructor: Kazumi Tolich

LECTURE 13 THIN FILM INTERFERENCE. Instructor: Kazumi Tolich LECTURE 13 THIN FILM INTERFERENCE Instructor: Kazumi Tolich Lecture 13 2 17.4 Thin film interference Interference of reflected light waves Thin films of air The colors of soap bubbles and oil slicks 17.4

More information

Review Session 1. Dr. Flera Rizatdinova

Review Session 1. Dr. Flera Rizatdinova Review Session 1 Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the object

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 24 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Announcements. Final exam day events (Friday, May 12, 10:00am to 12:00pm)

Announcements. Final exam day events (Friday, May 12, 10:00am to 12:00pm) Announcements Final exam day events (Friday, May 12, 10:00am to 12:00pm) 50-point multiple choice end-material test (covering material from chapters 33-36). (You get a free 8-point question!) 200 point

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 29, 2010 Please work in a team of 3 or 4 students. All members should find a way to contribute. Two members have a particular role, and

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38

The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38 HMWK 5 Ch 17: P 6, 11, 30, 31, 34, 42, 50, 56, 58, 60 Ch 18: P 7, 16, 22, 27, 28, 30, 51, 52, 59, 61 Ch. 17 P17.6. Prepare: The laser beam is an electromagnetic wave that travels with the speed of light.

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Lab 7 Interference and diffraction

Lab 7 Interference and diffraction Prep this lab, as usual. You may paste this entire lab into your notebook, including the data tables. All this should be completed prior to the start of lab on Wednesday, and I will score your completed

More information

Optics: Laser Light Show Student Advanced Version

Optics: Laser Light Show Student Advanced Version Optics: Laser Light Show Student Advanced Version In this lab, you will explore the behavior of light. You will observe reflection and refraction of a laser beam in jello, and use a diffraction pattern

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

Young s Double Slit Experiment

Young s Double Slit Experiment Young s Double Slit Experiment Light as a Wave? If light behaves like a wave, an experiment similar to a ripple tank using two light sources should reveal bright areas (constructive interference) and dark

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Single Slit Diffraction *

Single Slit Diffraction * OpenStax-CNX module: m42515 1 Single Slit Diffraction * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Discuss the single slit diraction

More information

Lecture 39. Chapter 37 Diffraction

Lecture 39. Chapter 37 Diffraction Lecture 39 Chapter 37 Diffraction Interference Review Combining waves from small number of coherent sources double-slit experiment with slit width much smaller than wavelength of the light Diffraction

More information

Physics 202 Homework 9

Physics 202 Homework 9 Physics 202 Homework 9 May 29, 2013 1. A sheet that is made of plastic (n = 1.60) covers one slit of a double slit 488 nm (see Figure 1). When the double slit is illuminated by monochromatic light (wavelength

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

Midterm II Physics 9B Summer 2002 Session I

Midterm II Physics 9B Summer 2002 Session I Midterm II Physics 9B Summer 00 Session I Name: Last 4 digits of ID: Total Score: ) Two converging lenses, L and L, are placed on an optical bench, 6 cm apart. L has a 0 cm focal length and is placed to

More information

Chapter 82 Example and Supplementary Problems

Chapter 82 Example and Supplementary Problems Chapter 82 Example and Supplementary Problems Nature of Polarized Light: 1) A partially polarized beam is composed of 2.5W/m 2 of polarized and 4.0W/m 2 of unpolarized light. Determine the degree of polarization

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org Lecture 1202 Wave Optics Physics Help Q&A: tutor.leiacademy.org Total Internal Reflection A phenomenon called total internal reflectioncan occur when light is directed from a medium having a given index

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

( ) n ; t = n! $ m 2 = & ' ; t = n. 2n soap film. Solution: " t = & 7.45 ( 10)7 m =

( ) n ; t = n! $ m 2 = & ' ; t = n. 2n soap film. Solution:  t = & 7.45 ( 10)7 m = Section 10.1: Interference in Thin Films Tutorial 1 Practice, page 507 1. The second soap film is thicker. The longer wavelength of the second film means the film at that point must be thicker for constructive

More information

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive. 1.1 INTERFERENCE When two (or more than two) waves of the same frequency travel almost in the same direction and have a phase difference that remains constant with time, the resultant intensity of light

More information

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects New topic: Diffraction only one slit, but wide From Last time Two-source interference: Interference-like pattern from a single slit. For a slit: a θ central width ~ 2 Diffraction grating Week3HW on Mastering

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.2 Refraction 2000 Q27 A student is investigating the effect that a semicircular glass block has on a ray of monochromatic light. She observes that

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Diffraction Huygen s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line of travel is called diffraction

More information

Single slit diffraction

Single slit diffraction Single slit diffraction Book page 364-367 Review double slit Core Assume paths of the two rays are parallel This is a good assumption if D >>> d PD = R 2 R 1 = dsin θ since sin θ = PD d Constructive interference

More information

Lab 12 - Interference-Diffraction of Light Waves

Lab 12 - Interference-Diffraction of Light Waves Lab 12 - Interference-Diffraction of Light Waves Equipment and Safety: No special safety equipment is required for this lab. Do not look directly into the laser. Do not point the laser at other people.

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

PHYS 1402 DIFFRACTION AND INTERFERENCE OF LIGHT: MEASURE THE WAVELENGTH OF LIGHT

PHYS 1402 DIFFRACTION AND INTERFERENCE OF LIGHT: MEASURE THE WAVELENGTH OF LIGHT PHYS 1402 DIFFRACTION AND INTERFERENCE OF LIGHT: MEASURE THE WAVELENGTH OF LIGHT I. OBJECTIVE The objective of this experiment is to observe the interference pattern from a double slit and a diffraction

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

The location of the bright fringes can be found using the following equation.

The location of the bright fringes can be found using the following equation. What You Need to Know: In the past two labs we ve been thinking of light as a particle that reflects off of a surface or refracts into a medium. Now we are going to talk about light as a wave. If you take

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Physics Midterm I

Physics Midterm I Phys121 - February 6, 2009 1 Physics 121 - Midterm I Last Name First Name Student Number Signature Tutorial T.A. (circle one): Ricky Chu Firuz Demir Maysam Emadi Alireza Jojjati Answer ALL 10 questions.

More information

PHYSICS - CLUTCH CH 32: WAVE OPTICS.

PHYSICS - CLUTCH CH 32: WAVE OPTICS. !! www.clutchprep.com CONCEPT: DIFFRACTION Remember! Light travels in a straight line so long as it isn t disturbed - This allows light to be described as RAYS A common way to disturb light is to have

More information

Past Paper Questions Waves

Past Paper Questions Waves Past Paper Questions Waves Name 1. Explain the differences between an undamped progressive transverse wave and a stationary transverse wave, in terms of amplitude, (ii) phase and (iii) energy transfer.

More information

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3 PHY1160C Exam #3 July 8, 1997 Possibly useful information: For reflection, θinc = θref For refraction, image equation apparent depth Young s Double Slit: n1 sin θ1 = n2 sin θ2 n = c/v M = h i = d i h o

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

25-1 Interference from Two Sources

25-1 Interference from Two Sources 25-1 Interference from Two Sources In this chapter, our focus will be on the wave behavior of light, and on how two or more light waves interfere. However, the same concepts apply to sound waves, and other

More information

Assignment 10 Solutions Due May 1, start of class. Physics 122, sections and 8101 Laura Lising

Assignment 10 Solutions Due May 1, start of class. Physics 122, sections and 8101 Laura Lising Physics 122, sections 502-4 and 8101 Laura Lising Assignment 10 Solutions Due May 1, start of class 1) Revisiting the last question from the problem set before. Suppose you have a flashlight or a laser

More information

L 32 Light and Optics [3]

L 32 Light and Optics [3] L 32 Light and Optics [3] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky red sunsets Light and

More information

WAVE OPTICS. Conceptual Questions Because ym

WAVE OPTICS. Conceptual Questions Because ym WAVE OPTICS Conceptual Questions.. The initial light pattern is a ouble-slit interference pattern. It is centere behin the ipoint of the slits. The slight ecrease in intensity going outwar fro the ile

More information

Electromagnetic waves

Electromagnetic waves Electromagnetic waves Now we re back to thinking of light as specifically being an electromagnetic wave u u u oscillating electric and magnetic fields perpendicular to each other propagating through space

More information

Light and Electromagnetic Waves. Honors Physics

Light and Electromagnetic Waves. Honors Physics Light and Electromagnetic Waves Honors Physics Electromagnetic Waves EM waves are a result of accelerated charges and disturbances in electric and magnetic fields (Radio wave example here) As electrons

More information

Physics 102: Lecture 21 Thin Films & Diffraction Gratings

Physics 102: Lecture 21 Thin Films & Diffraction Gratings Physics 102: Lecture 21 Thin Films & Diffraction Gratings Physics 102: Lecture 21, Slie 1 Recall Interference (at least 2 coherent waves) Constructive (full wavelength ifference) Destructive (half wavelength

More information

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1 F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

More information

5 10:00 AM 12:00 PM 1420 BPS

5 10:00 AM 12:00 PM 1420 BPS Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) I ve assigned 22.62 as a hand-in

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Diffraction. Introduction:

Diffraction. Introduction: 1 Diffraction Introduction: The phenomenon of diffraction results when a wave interacts with an object or aperture whose size is comparable to the wavelength of the wave interacting with it. Loosely speaking,

More information

AH Division of Wavefront and Amplitude Answers

AH Division of Wavefront and Amplitude Answers AH Division of Wavefront and Amplitude Answers 1. Interference. 2. a) Splitting a single light beam into two beams, a reflected beam and a transmitted beam, at a surface between two media of two different

More information

3 Interactions of Light Waves

3 Interactions of Light Waves CHAPTER 22 3 Interactions of Light Waves SECTION The Nature of Light BEFORE YOU READ After you read this section, you should be able to answer these questions: How does reflection affect the way we see

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Blue Skies Blue Eyes Blue Butterflies

Blue Skies Blue Eyes Blue Butterflies Blue Skies Blue Eyes Blue Butterflies Friday, April 19 Homework #9 due in class Lecture: Blue Skies, Blue Eyes & Blue Butterflies: Interaction of electromagnetic waves with matter. Week of April 22 Lab:

More information