Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 13

Size: px
Start display at page:

Download "Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 13"

Transcription

1 Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 0012 Lec 13 Dimension Reduction: SVD and PCA Zhu Li Dept of CSEE, UMKC Office: FH560E, Ph: x Z. Li, Image Analysis & Retrv p.1

2 Outline Recap: About HW-2 Quiz-1 Linear Algebra Refresher SVD Principal Component Analysis (PCA) Z. Li, Image Analysis & Retrv p.2

3 Homework-2: Aggregation Data Set: 6 class, 6x20=120 images Can train global Kmeans and GMM from other image source Aggregation PCA: will cover today. GMM and Kmeans model: prob using smaller number of components, nc=24, 48 Other issues? Z. Li, Image Analysis & Retrv p.3

4 HW-2 extension CDVS data set available on box.com for download What we will do with this? Course Project Options : o New aggregation schemes Improved AKULA Super Vector aggregation Graph Cut As an Aggregation Point Cloud Geometry Aggregation o IEEE ICME: due 12/02 (prob 12/09) Image Analysis & Understanding, 2015 p.4

5 Quiz-1 Retrieval System Performance Metrics books, 50 are related to the query, retrieved 20, 15 are correct p n p 15 5 n Precision = tp/(tp+fp) = 0.75 Recall=tp/(tp+fn) = 0.3 Z. Li, Image Analysis & Retrv p.5

6 Cheating sheet award Quiz-1 Z. Li, Image Analysis & Retrv p.6

7 Outline Recap: About HW-2 Quiz-1 Linear Algebra Refresher SVD Principal Component Analysis (PCA) Z. Li, Image Analysis & Retrv p.7

8 Vector and Matrix Notations Vector Matrix Z. Li, Image Analysis & Retrv p.8

9 Vector Products Inner Product Outer Product Z. Li, Image Analysis & Retrv p.9

10 y=ax Matrix-Vector Product So, y is a linear combination of basis {a k } with weights from x Z. Li, Image Analysis & Retrv p.10

11 C=AB Matrix Product A: nxp B: pxm A: nxm = Associative: ABC = (AB)C = A(BC) Distributive: A(B+C) = AB + AC Z. Li, Image Analysis & Retrv p.11

12 Vector outer product: Outer Product/Kron Example Z. Li, Image Analysis & Retrv p.12

13 Matrix Transpose Transpose Z. Li, Image Analysis & Retrv p.13

14 Matrix Trace and Determinant Trace:Tr(A): only for nxn square matrix Determinant: Det(A): The size of volumes spanned by A, All possible linear combinations of a 1 and a 2 Det(A) = 2-9 = 7; Z. Li, Image Analysis & Retrv p.14

15 Eigen Values and Eigen Vectors Definition: for nxn matrix A: In Matlab: [P, V]=eig(A); Z. Li, Image Analysis & Retrv p.15

16 Eigen Vectors of Symmetric Matrix If square matrix A: nxn is symmetric A=A T Then its Eigen Values are real, and Eigen Vectors are othonormal: A = USU T where S is a diagonal matrix with eigen values of A. Application: solution to the Quadratic form maximization: will be the largest eigen value, and x* will be the corresponding eigen vector of A. Z. Li, Image Analysis & Retrv p.16

17 SVD for non square matrix: A mxn : A = UΣV T V T Σ Z. Li, Image Analysis & Retrv p.17

18 SVD as Signal Expansion The Singular Value Decomposition (SVD) of an nxm matrix A, is, A = USV T = i σ i u i v i t Where the diagonal of S are the eigen values of AA T, [σ 1, σ 2,, σ n ], called singular values U are eigenvectors of AA T, and V are eigen vectors of A T A, the outer product of u i v it, are basis of A in reconstruction: A (mxn) = U (mxm) S (mxn) V (nxn) The 1 st order SVD approx. of A is: σ 1 U :, 1 V :, 1 T Z. Li, Image Analysis & Retrv p.18

19 SVD approximation of an image Very easy function [x]=svd_approx(x0, k) dbg=0; if dbg x0= fix(100*randn(4,6)); k=2; end [u, s, v]=svd(x0); [m, n]=size(s); x = zeros(m, n); sgm = diag(s); for j=1:k x = x + sgm(j)*u(:,j)*v(:,j)'; end Z. Li, Image Analysis & Retrv p.19

20 Norm Vector Norm: Length of the vector Euclidean Norm (L2 Norm): norm(x, 2) L p norm: Matrix Norm: Forbenius Norm Z. Li, Image Analysis & Retrv p.20

21 Quadratic Form Quadratic form f(x)=x T Ax in R: Positive Definite (PD): For non-zero x, x T Ax > 0 Positive Semi-Definite (PSD): For non-zero x, x T Ax >= 0 Indefinite: Exists x 1, x 2 non zero, but x 1T Ax 1 >0, while x 2T Ax 2 < 0; Z. Li, Image Analysis & Retrv p.21

22 Matrix Calculus Gradient of f(a): Matrix Gradient Properties Z. Li, Image Analysis & Retrv p.22

23 Hessian of f(x) For function:f: R n R Gradient & Hessian of Quadratic Form: f(x)= x T Ax Z. Li, Image Analysis & Retrv p.23

24 Outline Recap: About HW-2 Quiz-1 Linear Algebra Refresher SVD Principal Component Analysis (PCA) Z. Li, Image Analysis & Retrv p.24

25 PCA -Dimension Reduction in Retrieval A typical image retrieval pipeline R d -> R p Image Formation Feature Computing Feature Aggregation Classification e.g, dense SIFT: x 128 e.g, Fisher Vector: k=64, d=128 Knowledge/ Data Base Image Analysis & Understanding, 2015 p.25

26 Principal Component Analysis The formulation: for data points {x 1, x 2,, } in R n, find a lower dimensional representation in R m, via a projection P,: mxn, s.t., the energy of the data is preserved Image Analysis & Understanding, 2015 p.26

27 PCA solution Take the Lagrangian of the problem L w, λ = w T Sw λ(w T w I) Take the derivative w.r.t. to w, and KKT condition gives us, Sw = λw This is an Eigen problem, finding projection s.t. it is just a scaling along the scatter matrix eigen vectors. Image Analysis & Understanding, 2015 p.27

28 PCA how to compute PCA via SVD on the Covariance matrix S: covariance, nxn Image Analysis & Understanding, 2015 p.28

29 2d Data

30 Principal Components 5 Gives best axis to project Minimum RMS error Principal vectors are orthogonal st principal vector nd principal vector

31 PCA on HoGs Matlab Implementation of PCA: [A, s, eig_values]=princomp(hogs); HoG basis function Image Analysis & Understanding, 2015 p.31

32 PCA Application in Aggregation SIFT aggregation Usually a PCA is done on SIFT features, to reduce the dimension from 128 to say 24, 32. Then a GMM is trained in R 32 space, for FV encoding Homework-2 Aggregation Fisher Vector Aggregation of SIFT load../../dataset/cdvs_sift_aggregation_test _data.mat; [n_sift, kd_sift]=size(gd_sift_cdvs); offs = randperm(n_sift); offs = offs(1:200*2^10); % PCA [A1, s1, lat1]=princomp(double(gd_sift_cdvs(offs, :))); figure(41); hold on; grid on; stem(lat1, '.'); title('sift pca eigen values'); Image Analysis & Understanding, 2015 p.32

33 Eigen values SIFT PCA Z. Li, Image Analysis & Retrv p.33

34 SIFT PCA Basis Functions Capturing max variation directions Z. Li, Image Analysis & Retrv p.34

35 Visualizing SIFT in lower dimensional space Project SIFTs from 2 images to 2D space Z. Li, Image Analysis & Retrv p.35

36 Summary HW-2 and Project SIFT dimension reduction via PCA first, before aggregation with VLAD and FV CDVS data set already pre-processed, easy to use. Ext into Project: super vector, geometry coding. SVD and PCA SVD non-square matrix decomposition, left transform and right transform, with scaling in between SVD as an image decomposition, linear combination of outer-product basis PCA eigen values indicate amount of info/energy in each dimension, PCA basis are eigen vectors to the covariance matrix Many applications Z. Li, Image Analysis & Retrv p.36

ECE 484 Digital Image Processing Lec 17 - Part II Review & Final Projects Topics

ECE 484 Digital Image Processing Lec 17 - Part II Review & Final Projects Topics ECE 484 Digital Image Processing Lec 17 - Part II Review & Final Projects opics Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu slides created with

More information

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Zhu Li Dept of CSEE,

More information

Image Analysis & Retrieval Lec 10 - Classification II

Image Analysis & Retrieval Lec 10 - Classification II CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 10 - Classification II Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E, Contact:

More information

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 18.

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 18. Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 18 Image Hashing Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph:

More information

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 16

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 16 Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 16 Subspace/Transform Optimization Zhu Li Dept of CSEE, UMKC Office: FH560E, Email:

More information

Image Analysis & Retrieval Lec 12 - Mid-Term Review

Image Analysis & Retrieval Lec 12 - Mid-Term Review CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 12 - Mid-Term Review Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E, Contact:

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22 Feature selection Javier Béjar cbea LSI - FIB Term 2011/2012 Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/2012 1 / 22 Outline 1 Dimensionality reduction 2 Projections 3 Attribute selection

More information

Modelling and Visualization of High Dimensional Data. Sample Examination Paper

Modelling and Visualization of High Dimensional Data. Sample Examination Paper Duration not specified UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Modelling and Visualization of High Dimensional Data Sample Examination Paper Examination date not specified Time: Examination

More information

Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Anirban Santara Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture 14 Python Exercise on knn and PCA Hello everyone,

More information

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T.

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T. Section 7.4 Notes (The SVD) The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that Then there are A = UΣV T Specifically: The ordering of

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin)

CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin) CIS 580, Machine Perception, Spring 2014: Assignment 4 Due: Wednesday, April 10th, 10:30am (use turnin) Solutions (hand calculations, plots) have to be submitted electronically as a single pdf file using

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

General Instructions. Questions

General Instructions. Questions CS246: Mining Massive Data Sets Winter 2018 Problem Set 2 Due 11:59pm February 8, 2018 Only one late period is allowed for this homework (11:59pm 2/13). General Instructions Submission instructions: These

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 14-PCA & Autoencoders 1 / 18

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Euclidean Space. Definition 1 (Euclidean Space) A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,.

Euclidean Space. Definition 1 (Euclidean Space) A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,. Definition 1 () A Euclidean space is a finite-dimensional vector space over the reals R, with an inner product,. 1 Inner Product Definition 2 (Inner Product) An inner product, on a real vector space X

More information

Mixtures of Gaussians and Advanced Feature Encoding

Mixtures of Gaussians and Advanced Feature Encoding Mixtures of Gaussians and Advanced Feature Encoding Computer Vision Ali Borji UWM Many slides from James Hayes, Derek Hoiem, Florent Perronnin, and Hervé Why do good recognition systems go bad? E.g. Why

More information

Applications Video Surveillance (On-line or off-line)

Applications Video Surveillance (On-line or off-line) Face Face Recognition: Dimensionality Reduction Biometrics CSE 190-a Lecture 12 CSE190a Fall 06 CSE190a Fall 06 Face Recognition Face is the most common biometric used by humans Applications range from

More information

Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis

Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis Yiran Li yl534@math.umd.edu Advisor: Wojtek Czaja wojtek@math.umd.edu 10/17/2014 Abstract

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Computer Vision: Lecture 3

Computer Vision: Lecture 3 Computer Vision: Lecture 3 Carl Olsson 2019-01-29 Carl Olsson Computer Vision: Lecture 3 2019-01-29 1 / 28 Todays Lecture Camera Calibration The inner parameters - K. Projective vs. Euclidean Reconstruction.

More information

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches Reminder: Lecture 20: The Eight-Point Algorithm F = -0.00310695-0.0025646 2.96584-0.028094-0.00771621 56.3813 13.1905-29.2007-9999.79 Readings T&V 7.3 and 7.4 Essential/Fundamental Matrix E/F Matrix Summary

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Name: Math 310 Fall 2012 Toews EXAM 1. The material we have covered so far has been designed to support the following learning goals:

Name: Math 310 Fall 2012 Toews EXAM 1. The material we have covered so far has been designed to support the following learning goals: Name: Math 310 Fall 2012 Toews EXAM 1 The material we have covered so far has been designed to support the following learning goals: understand sources of error in scientific computing (modeling, measurement,

More information

Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis:midyear Report

Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis:midyear Report Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis:midyear Report Yiran Li yl534@math.umd.edu Advisor: Wojtek Czaja wojtek@math.umd.edu

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Raquel Urtasun & Rich Zemel University of Toronto Nov 4, 2015 Urtasun & Zemel (UofT) CSC 411: 14-PCA & Autoencoders Nov 4, 2015 1 / 18

More information

Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has.

Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has. ASSIGNMENT 0 Introduction to Linear Algebra (Basics of vectors and matrices) Due 3:30 PM, Tuesday, October 10 th. Assignments should be submitted via e-mail to: matlabfun.ucsd@gmail.com You can also submit

More information

Lab # 2 - ACS I Part I - DATA COMPRESSION in IMAGE PROCESSING using SVD

Lab # 2 - ACS I Part I - DATA COMPRESSION in IMAGE PROCESSING using SVD Lab # 2 - ACS I Part I - DATA COMPRESSION in IMAGE PROCESSING using SVD Goals. The goal of the first part of this lab is to demonstrate how the SVD can be used to remove redundancies in data; in this example

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

Exercise 2. AMTH/CPSC 445a/545a - Fall Semester September 21, 2017

Exercise 2. AMTH/CPSC 445a/545a - Fall Semester September 21, 2017 Exercise 2 AMTH/CPSC 445a/545a - Fall Semester 2016 September 21, 2017 Problem 1 Compress your solutions into a single zip file titled assignment2.zip, e.g. for a student named

More information

Discriminate Analysis

Discriminate Analysis Discriminate Analysis Outline Introduction Linear Discriminant Analysis Examples 1 Introduction What is Discriminant Analysis? Statistical technique to classify objects into mutually exclusive and exhaustive

More information

Image Analysis & Retrieval

Image Analysis & Retrieval Outline CS/EE 5590 / ENG 401 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Image Analysis & Retrieval Background Objective of the class Prerequisite Lecture Plan Course Project

More information

Generalized trace ratio optimization and applications

Generalized trace ratio optimization and applications Generalized trace ratio optimization and applications Mohammed Bellalij, Saïd Hanafi, Rita Macedo and Raca Todosijevic University of Valenciennes, France PGMO Days, 2-4 October 2013 ENSTA ParisTech PGMO

More information

Image Analysis & Retrieval Lec-01: Introduction

Image Analysis & Retrieval Lec-01: Introduction CS/EE 5590 / ENG 401 Special Topics Spring 2017, M/W 5:30-6:45pm@Haag 309 Image Analysis & Retrieval Lec-01: Introduction Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

CSE 547: Machine Learning for Big Data Spring Problem Set 2. Please read the homework submission policies.

CSE 547: Machine Learning for Big Data Spring Problem Set 2. Please read the homework submission policies. CSE 547: Machine Learning for Big Data Spring 2019 Problem Set 2 Please read the homework submission policies. 1 Principal Component Analysis and Reconstruction (25 points) Let s do PCA and reconstruct

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Linear Algebra Review

Linear Algebra Review CS 1674: Intro to Computer Vision Linear Algebra Review Prof. Adriana Kovashka University of Pittsburgh January 11, 2018 What are images? (in Matlab) Matlab treats images as matrices of numbers To proceed,

More information

Image Compression with Singular Value Decomposition & Correlation: a Graphical Analysis

Image Compression with Singular Value Decomposition & Correlation: a Graphical Analysis ISSN -7X Volume, Issue June 7 Image Compression with Singular Value Decomposition & Correlation: a Graphical Analysis Tamojay Deb, Anjan K Ghosh, Anjan Mukherjee Tripura University (A Central University),

More information

CS231A Midterm Review. Friday 5/6/2016

CS231A Midterm Review. Friday 5/6/2016 CS231A Midterm Review Friday 5/6/2016 Outline General Logistics Camera Models Non-perspective cameras Calibration Single View Metrology Epipolar Geometry Structure from Motion Active Stereo and Volumetric

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 21 Outline 1 Course

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Spring 2018 http://vllab.ee.ntu.edu.tw/dlcv.html (primary) https://ceiba.ntu.edu.tw/1062dlcv (grade, etc.) FB: DLCV Spring 2018 Yu Chiang Frank Wang 王鈺強, Associate Professor

More information

Image Analysis & Retrieval

Image Analysis & Retrieval CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li: Image Analysis

More information

Machine Learning for Signal Processing Fundamentals of Linear Algebra

Machine Learning for Signal Processing Fundamentals of Linear Algebra Machine Learning for Signal Processing Fundamentals of Linear Algebra Class Sep 4 Instructor: Bhiksha Raj Sep 4-755/8-797 Administrivia Info on second TA still awaited from ECE Registration: Anyone on

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

Unsupervised learning in Vision

Unsupervised learning in Vision Chapter 7 Unsupervised learning in Vision The fields of Computer Vision and Machine Learning complement each other in a very natural way: the aim of the former is to extract useful information from visual

More information

Alternative Statistical Methods for Bone Atlas Modelling

Alternative Statistical Methods for Bone Atlas Modelling Alternative Statistical Methods for Bone Atlas Modelling Sharmishtaa Seshamani, Gouthami Chintalapani, Russell Taylor Department of Computer Science, Johns Hopkins University, Baltimore, MD Traditional

More information

An idea which can be used once is a trick. If it can be used more than once it becomes a method

An idea which can be used once is a trick. If it can be used more than once it becomes a method An idea which can be used once is a trick. If it can be used more than once it becomes a method - George Polya and Gabor Szego University of Texas at Arlington Rigid Body Transformations & Generalized

More information

Practical Least-Squares for Computer Graphics

Practical Least-Squares for Computer Graphics Outline Least Squares with Generalized Errors Robust Least Squares Constrained Least Squares Practical Least-Squares for Computer Graphics Outline Least Squares with Generalized Errors Robust Least Squares

More information

STUDY OF FACE AUTHENTICATION USING EUCLIDEAN AND MAHALANOBIS DISTANCE CLASSIFICATION METHOD

STUDY OF FACE AUTHENTICATION USING EUCLIDEAN AND MAHALANOBIS DISTANCE CLASSIFICATION METHOD STUDY OF FACE AUTHENTICATION USING EUCLIDEAN AND MAHALANOBIS DISTANCE CLASSIFICATION METHOD M.Brindha 1, C.Raviraj 2, K.S.Srikanth 3 1 (Department of EIE, SNS College of Technology, Coimbatore, India,

More information

Adaptive Video Compression using PCA Method

Adaptive Video Compression using PCA Method Adaptive Video Compression using Method Mostafa Mofarreh-Bonab Department of Electrical and Computer Engineering Shahid Beheshti University,Tehran, Iran Mohamad Mofarreh-Bonab Electrical and Electronic

More information

Photometric Stereo. Photometric Stereo. Shading reveals 3-D surface geometry BRDF. HW3 is assigned. An example of photometric stereo

Photometric Stereo. Photometric Stereo. Shading reveals 3-D surface geometry BRDF. HW3 is assigned. An example of photometric stereo Photometric Stereo Photometric Stereo HW3 is assigned Introduction to Computer Vision CSE5 Lecture 6 Shading reveals 3-D surface geometry Shape-from-shading: Use just one image to recover shape. Requires

More information

Projective geometry for Computer Vision

Projective geometry for Computer Vision Department of Computer Science and Engineering IIT Delhi NIT, Rourkela March 27, 2010 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence

More information

A Spectral-based Clustering Algorithm for Categorical Data Using Data Summaries (SCCADDS)

A Spectral-based Clustering Algorithm for Categorical Data Using Data Summaries (SCCADDS) A Spectral-based Clustering Algorithm for Categorical Data Using Data Summaries (SCCADDS) Eman Abdu eha90@aol.com Graduate Center The City University of New York Douglas Salane dsalane@jjay.cuny.edu Center

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 06 Image Structures 13/02/06 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Latent Semantic Indexing

Latent Semantic Indexing Latent Semantic Indexing Thanks to Ian Soboroff Information Retrieval 1 Issues: Vector Space Model Assumes terms are independent Some terms are likely to appear together synonyms, related words spelling

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Locally Linear Landmarks for large-scale manifold learning

Locally Linear Landmarks for large-scale manifold learning Locally Linear Landmarks for large-scale manifold learning Max Vladymyrov and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu

More information

Epipolar Geometry and the Essential Matrix

Epipolar Geometry and the Essential Matrix Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

Image Compression using Singular Value Decomposition

Image Compression using Singular Value Decomposition Applications of Linear Algebra 1/41 Image Compression using Singular Value Decomposition David Richards and Adam Abrahamsen Introduction The Singular Value Decomposition is a very important process. In

More information

MUSI-6201 Computational Music Analysis

MUSI-6201 Computational Music Analysis MUSI-6201 Computational Music Analysis Part 4.3: Feature Post-Processing alexander lerch November 4, 2015 instantaneous features overview text book Chapter 3: Instantaneous Features (pp. 63 69) sources:

More information

CSE 255 Lecture 5. Data Mining and Predictive Analytics. Dimensionality Reduction

CSE 255 Lecture 5. Data Mining and Predictive Analytics. Dimensionality Reduction CSE 255 Lecture 5 Data Mining and Predictive Analytics Dimensionality Reduction Course outline Week 4: I ll cover homework 1, and get started on Recommender Systems Week 5: I ll cover homework 2 (at the

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Fabio G. Cozman - fgcozman@usp.br November 16, 2018 What can we do? We just have a dataset with features (no labels, no response). We want to understand the data... no easy to define

More information

Unsupervised Clustering of Bitcoin Transaction Data

Unsupervised Clustering of Bitcoin Transaction Data Unsupervised Clustering of Bitcoin Transaction Data Midyear Report 1 AMSC 663/664 Project Advisor: Dr. Chris Armao By: Stefan Poikonen Bitcoin: A Brief Refresher 2 Bitcoin is a decentralized cryptocurrency

More information

Linear Algebra in LabVIEW

Linear Algebra in LabVIEW https://www.halvorsen.blog Linear Algebra in LabVIEW Hans-Petter Halvorsen, 2018-04-24 Preface This document explains the basic concepts of Linear Algebra and how you may use LabVIEW for calculation of

More information

SOME CONCEPTS IN DISCRETE COSINE TRANSFORMS ~ Jennie G. Abraham Fall 2009, EE5355

SOME CONCEPTS IN DISCRETE COSINE TRANSFORMS ~ Jennie G. Abraham Fall 2009, EE5355 SOME CONCEPTS IN DISCRETE COSINE TRANSFORMS ~ Jennie G. Abraham Fall 009, EE5355 Under Digital Image and Video Processing files by Dr. Min Wu Please see lecture10 - Unitary Transform lecture11 - Transform

More information

Machine Learning for Signal Processing Fundamentals of Linear Algebra

Machine Learning for Signal Processing Fundamentals of Linear Algebra Machine Learning for Signal Processing Fundamentals of Linear Algebra Class 3 Sep 3 Instructor: Bhiksha Raj 3 Sep 3-755/8-797 Administrivia Change of classroom: BH A5 Being broadcast to west coast Registration:

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

Face recognition based on improved BP neural network

Face recognition based on improved BP neural network Face recognition based on improved BP neural network Gaili Yue, Lei Lu a, College of Electrical and Control Engineering, Xi an University of Science and Technology, Xi an 710043, China Abstract. In order

More information

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics CS 775: Advanced Computer Graphics Lecture 3 : Kinematics Traditional Cell Animation, hand drawn, 2D Lead Animator for keyframes http://animation.about.com/od/flashanimationtutorials/ss/flash31detanim2.htm

More information

Three-Dimensional Sensors Lecture 6: Point-Cloud Registration

Three-Dimensional Sensors Lecture 6: Point-Cloud Registration Three-Dimensional Sensors Lecture 6: Point-Cloud Registration Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/ Point-Cloud Registration Methods Fuse data

More information

Parallel Architecture & Programing Models for Face Recognition

Parallel Architecture & Programing Models for Face Recognition Parallel Architecture & Programing Models for Face Recognition Submitted by Sagar Kukreja Computer Engineering Department Rochester Institute of Technology Agenda Introduction to face recognition Feature

More information

CSC 411 Lecture 18: Matrix Factorizations

CSC 411 Lecture 18: Matrix Factorizations CSC 411 Lecture 18: Matrix Factorizations Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 18-Matrix Factorizations 1 / 27 Overview Recall PCA: project data

More information

HW Assignment 3 (Due by 9:00am on Mar 6)

HW Assignment 3 (Due by 9:00am on Mar 6) HW Assignment 3 (Due by 9:00am on Mar 6) 1 Theory (150 points) 1. [Tied Weights, 50 points] Write down the gradient computation for a (non-linear) auto-encoder with tied weights i.e., W (2) = (W (1) )

More information

Least-Squares Fitting Algorithms of the NIST Algorithm Testing System

Least-Squares Fitting Algorithms of the NIST Algorithm Testing System [J. Res. Natl. Inst. Stand. Technol. 103, 633 (1998)] Least-Squares Fitting Algorithms of the NIST Algorithm Testing System Volume 103 Number 6 November December 1998 Craig M. Shakarji National Institute

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Video event detection using subclass discriminant analysis and linear support vector machines

Video event detection using subclass discriminant analysis and linear support vector machines Video event detection using subclass discriminant analysis and linear support vector machines Nikolaos Gkalelis, Damianos Galanopoulos, Vasileios Mezaris / TRECVID 2014 Workshop, Orlando, FL, USA, November

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

CS231A. Review for Problem Set 1. Saumitro Dasgupta

CS231A. Review for Problem Set 1. Saumitro Dasgupta CS231A Review for Problem Set 1 Saumitro Dasgupta On today's menu Camera Model Rotation Matrices Homogeneous Coordinates Vanishing Points Matrix Calculus Constrained Optimization Camera Calibration Demo

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Data preprocessing Functional Programming and Intelligent Algorithms

Data preprocessing Functional Programming and Intelligent Algorithms Data preprocessing Functional Programming and Intelligent Algorithms Que Tran Høgskolen i Ålesund 20th March 2017 1 Why data preprocessing? Real-world data tend to be dirty incomplete: lacking attribute

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. - Marcel Proust University of Texas at Arlington Camera Calibration (or Resectioning) CSE 4392-5369 Vision-based

More information

Data Mining: Unsupervised Learning. Business Analytics Practice Winter Term 2015/16 Stefan Feuerriegel

Data Mining: Unsupervised Learning. Business Analytics Practice Winter Term 2015/16 Stefan Feuerriegel Data Mining: Unsupervised Learning Business Analytics Practice Winter Term 2015/16 Stefan Feuerriegel Today s Lecture Objectives 1 Learning how k-means clustering works 2 Understanding dimensionality reduction

More information

Binning of Devices with X-IDDQ

Binning of Devices with X-IDDQ Binning of Devices with X-IDDQ Prasanna M. Ramakrishna Masters Thesis Graduate Committee Dr. Anura P. Jayasumana Adviser Dr. Yashwant K. Malaiya Co-Adviser Dr. Steven C. Reising Member Dept. of Electrical

More information

Recognition, SVD, and PCA

Recognition, SVD, and PCA Recognition, SVD, and PCA Recognition Suppose you want to find a face in an image One possibility: look for something that looks sort of like a face (oval, dark band near top, dark band near bottom) Another

More information

Computational Optimization. Constrained Optimization Algorithms

Computational Optimization. Constrained Optimization Algorithms Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility,

More information

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS Toomas Kirt Supervisor: Leo Võhandu Tallinn Technical University Toomas.Kirt@mail.ee Abstract: Key words: For the visualisation

More information

FFD, mesh morphing & reduced order models: Enablers for efficient aerodynamic shape optimization

FFD, mesh morphing & reduced order models: Enablers for efficient aerodynamic shape optimization FFD, mesh morphing & reduced order models: Enablers for efficient aerodynamic shape optimization F Salmoiraghi, G Rozza SISSA mathlab A Scardigli, H Telib OPTIMAD engineering srl Outline 1. Prac'cal)problems)in)shape)op'miza'on)

More information