1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

Size: px
Start display at page:

Download "1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics"

Transcription

1 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1

2 Some course info Welcome to EE 546! Instructor: Maryam Fazel, TA: Reza Eghbali please see webpage for details: a few notes: pre-requisites: ee 578 or math 516 (if you have not taken these, consent of instructor is strictly needed) requirements: homeworks (3), course project (proposal, poster, mid-quarter+final reports) Maryam s office hours: Wednesdays 10:30-11:45am; Reza s TBA 1 2

3 General formulation (mathematical) optimization problem minimize f 0 (x) subject to f j (x) 0, j = 1,...,m x S x = (x 1,...,x n ): optimization variables f 0 : R n R: objective function f j : R n R, j = 1,...,m: constraint functions S: structural constraints (like nonnegativity or boundedness) optimal solution x satisfies f 0 (x ) f 0 (x) for all feasible x 1 3

4 Performance of a numerical method numerical method M problem P performance of M on P: total amount of computational efforts required by method M to solve the problem P to solve the problem could mean find the exact solution (impossible for most problems in finite time) find an approximate solution with a small accuracy ǫ > 0 performance of M with respect to a single problem is meaningless need to define a model (F,O) consisting of a class of problems F, which have some common properties an oracle O, which provides M some information about P in F performance of M on (F, O): its performance on the worst problem from F (which may depend on M) 1 4

5 General iterative scheme input: a starting point x (0) and an accuracy ǫ > 0 initialization: set k = 0, I 1 = k is iteration count I k is accumulated information set main loop: 1. call oracle O at x (k) 2. update information set I k = I k 1 {x (k),o(x (k) )} 3. apply rules of method M to I k and form new point x (k+1) 4. check stopping criterion: if yes then form an output x otherwise set k = k +1 and go to 1 1 5

6 Measuring computational effort analytical complexity: number of calls of oracle required to solve problem P upto accuracy ǫ (also called informational complexity) arithmetical complexity: total number of arithmetic operations (including work of oracle and method itself) required to solve problem P upto accuracy ǫ relationships arithmetical complexity is more useful in practice; usually easily obtained from analytical complexity and complexity of oracle we will mainly work with upper/lower bounds on analytical complexity 1 6

7 Black box oracle local black box only information available for numerical method is answer of oracle oracle is local: small variation of problem far enough from query point x does not change answer at x examples of oracle O(x) zero-order oracle: returns function value f(x) first-order oracle: returns f(x) and gradient f(x) second-order oracle: returns f(x), f(x) and Hessian 2 f(x) 1 7

8 Complexity bound for global optimization problem class F (formulation and assumptions) minimize x Bn f(x) B n = {x R n 0 x i 1, i = 1,...,n} f(x) Lipschitz continuous on B n : there exist L > 0 such that f(x) f(y) L x y 2, x,y B n zero-order oracle: O(x) = f(x) goal: find x B n such that f( x) f ǫ 1 8

9 Uniform grid method method G(ǫ) 1. let p = L n 2ǫ +1 and form (p+1)n points x (k 1,...,k n ) = ( ) k1 p,,k n, k 1 = 0,...,p,..., k n = 0,...,p p 2. among all points x (k 1,...,k n ), find x that has minimal objective value 3. return the pair ( x,f( x)) as a result (can be treated as an iterative process with (p+1) n iterations) theorem: analytical complexity of G on model (F,O) is ( L n 2ǫ ) n

10 proof: let x be a global solution, then there exist (k 1,...,k n ) such that x (k 1,...,k n ) x x (k 1+1,...,k n +1) (element-wise inequality) let ˆx = 1 2 (x(k 1,...,k n ) +x (k 1+1,...,k n +1) ) and x = { then x i x i 1 2p x (k 1+1,...,k n +1) i, if x i ˆx i x (k 1,...,k n ) i, otherwise for all i, therefore 1 p ˆx 1 p x x (k 1+1,...,k n +1) x x 2 2 = n ( x i x i) 2 n 4p 2 i=1 x (k 1,...,k n ) x since x belongs to the grid, and p = L n 2ǫ +1 L n 2ǫ, we conclude f( x) f f( x) f L x x 2 L n 2p ǫ 1 10

11 Lower complexity bound questions: how good is this bound? (maybe our proof is too rough) how good is this method? (there may exist much better algorithms) lower complexity bound based on black box concept valid for all reasonable iterative schemes working with the model (F, O) often use the idea of a resisting oracle tries to create a worst problem for a particular method starts from an empty function and tries to answer each call in worst possible way however, must be compatible with previous answers and F (after termination, it is possible to reconstruct the problem) 1 11

12 Lower bound for global optimization problem class F (formulation and assumptions) minimize x Bn f(x) B n = {x R n 0 x i 1, i = 1,...,n} f(x) Lipschitz continuous on B n : there exist L > 0 such that f(x) f(y) L x y 2, x,y B n zero-order oracle: O(x) = f(x) theorem: analytical complexity of this model (F, O) is at least ( ) n L 2ǫ 1 12

13 Proof of lower bound define resisting oracle O(x) returns f(x) = 0 at any test point x therefore any method can only return x with f( x) = 0 construct worst function let p = L 2ǫ 1, then for any method that takes less than pn calls, there exist x B n such that there is no test point in the box { B = x } x x 1 2p consider the function f(x) = min{0, L x x ǫ} optimal value: min x B n f(x) = f(x ) = ǫ 1 13

14 check compatibility f(x) = min{0, L x x ǫ} 1 p f(x) is Lipschitz continuous with parameter L ǫ f(x) f(y) L x y L x y 2 function f(x) is non-zero only inside the box B = {x x x ǫ/l} since p = L 2ǫ L 2ǫ, we conclude that B B therefore f(x) equals zero at all test points 1 p B B x 1 p conclusion: accuracy no less than ǫ if number of oracle calls less than p n 1 14

15 Complexity of global optimization complexity uniform grid lower bound ( ) n ( ) n L n L 2ǫ 2ǫ dependence on ǫ is optimal dependence on n is not optimal the conclusion depends on the problem class F: if we assume f(x) f(y) L x y, x,y B n then uniform grid method has complexity ( ) n L, and it is optimal 2ǫ question: will higher-order oracles help improve complexity results? 1 15

16 Common classes and features global optimization goal: find a global minimum problem class: continuous functions oracle: order black box features: no guarantee nonlinear optimization goal: find a local minimum (not always acceptable) problem class: differentiable functions oracle: 1-2 order black box features: variety of approaches, widespread software convex optimization goal: find a global minimum problem class: convex sets, convex functions (sometimes restrictive) oracle: 1-2 order black box, and beyond features: efficient practical methods, complete complexity theory 1 16

17 Complexities for convex optimization minimize x Q f(x), where Q R n is bounded, closed and convex problem class lower bound optimal methods? nonsmooth O ( 1/ǫ 2) yes smooth O(1/ ǫ) yes smooth and strongly convex O(log(1/ǫ)) yes based on local black-box first-order oracle independent of dimension (good for high-dimensional problems) big O notation: a(ǫ) = O(b(ǫ)) means there exists M > 0 such that a(ǫ) Mb(ǫ) for all ǫ sufficiently small 1 17

18 A conceptual contradiction convexity is a global structure usually checked by inspection: e.g., composition of basic convex functions numerical verification of convexity is extremely difficult but numerical methods use local black-box beyond block box: structural convex optimization exploiting structure to improve performance of numerical methods recent developments: interior-point methods (2nd-order oracle) smoothing minimization of composite objective 1 18

19 Minimization of composite objective problem class: } minimize x R {φ(x) n f(x)+ψ(x) f is convex and smooth (having Lipschitz-continuous gradient) Ψ is convex, but may be nondifferentiable using black-box first-order oracle, complexity is O(1/ǫ 2 ) structural convex optimization assume Ψ is simple, e.g., can solve explicitly the auxiliary problem minimize x domψ {f(y)+ f(y),x y + L } 2 x y 2 +Ψ(x) accelerated gradient methods achieve reduced complexity O(1/ ǫ) 1 19

20 Example: sparse least-squares minimize x R n 1 2 Ax b 2 2+λ x 1 (where A R m n ) important applications in signal processing, statistics, machine learning focus on problem class: m < n and x sparse (compressed sensing) complexities of structural convex optimization numerical method analytical complexity oracle complexity subgradient method O(1/ǫ 2 ) O(mn) proximal gradient method O(1/ǫ) O(mn) accelerated gradient method O(1/ ǫ) O(mn) interior-point method O(log(1/ǫ)) O(m 2 n) prox gradient homotopy (under RIP) O(log(1/ǫ)) O(mn) 1 20

21 Applications of smoothing piecewise-linear approximation minimize x R n max i=1,...,m (at i x+b i ) one-norm approximation minimize x x 1 subject to Ax b 2 δ group regularization: 1 minimize x R n 2 Ax b 2 2+λ x 1 +ρ w g x g 2 g G 1 21

22 Example: low-rank matrix recovery find a low-rank matrix given noisy linear constraints minimize X R m n 1 2 A(X) b 2 2+λ X where A : R m n R p is a linear map, b R p. X = i σ i(x) is the nuclear norm or trace norm, sum of singular values special case: when X = x 1 x 2 rankx = # of nonzero x i reduces to sparse least squares, X reduces to l 1 norm many applications in machine learning, controls, signal processing, e.g., matrix completion problem (recommender systems, e.g. Netflix) more later x n, 1 22

23 Course goals and course work optimization algorithms along with their complexity analysis experience with implementations and applications methodologies of structural convex optimization exposure to research frontiers in convex optimization and applications course work lectures focus on algorithms and complexity analysis 3 homeworks (lag implementation & theory) substantial project 1 23

24 Syllabus tentative: smooth optimization: gradient method, quasi-newton methods, Nesterov s optimal methods nonsmooth optimization: subgradient calculus, subgradient methods accelerated gradient methods: proximal mapping, accelerated proximal gradient methods, smoothing decomposition and coordinate descent: dual decomposition, alternating direction multiplier method, randomized coordinate descent stochastic and online optimization: convergence and regret analysis, applications in large-scale machine learning interior-point methods: self-concordant barriers, path-following methods, efficient implementations 1 24

25 On the role of complexity analysis complexity analysis plays an important role in convex optimization many ideas appeared early, but did not result in significant impact due to lack of convincing complexity analysis modern algorithms early prototypes accelerated gradient methods heavy ball method polynomial-time IPMs classical barrier methods smoothing smoothing quote from Yurii Nesterov (in 2004 book)... more and more common that the new methods were provided with a complexity analysis, which is considered a better justification of their efficiency than computational experiments

26 References Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004), Section 1.1. (The global optimization example with Lipschtiz continuous function in the Euclidean norm is from Nesterov s lecture notes for INMA2460: Nonlinear Optimization, Catholic University of Louvain) Yu. Nesterov, How to advance in Structural Convex Optimization (November 2008), OPTIMA 78, Mathematical Programming Society Newsletter, pages

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Proximal operator and methods

Proximal operator and methods Proximal operator and methods Master 2 Data Science, Univ. Paris Saclay Robert M. Gower Optimization Sum of Terms A Datum Function Finite Sum Training Problem The Training Problem Convergence GD I Theorem

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

15. Cutting plane and ellipsoid methods

15. Cutting plane and ellipsoid methods EE 546, Univ of Washington, Spring 2012 15. Cutting plane and ellipsoid methods localization methods cutting-plane oracle examples of cutting plane methods ellipsoid method convergence proof inequality

More information

EE/AA 578: Convex Optimization

EE/AA 578: Convex Optimization EE/AA 578: Convex Optimization Instructor: Maryam Fazel University of Washington Fall 2016 1. Introduction EE/AA 578, Univ of Washington, Fall 2016 course logistics mathematical optimization least-squares;

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Composite Self-concordant Minimization

Composite Self-concordant Minimization Composite Self-concordant Minimization Volkan Cevher Laboratory for Information and Inference Systems-LIONS Ecole Polytechnique Federale de Lausanne (EPFL) volkan.cevher@epfl.ch Paris 6 Dec 11, 2013 joint

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Lecture 18: March 23

Lecture 18: March 23 0-725/36-725: Convex Optimization Spring 205 Lecturer: Ryan Tibshirani Lecture 8: March 23 Scribes: James Duyck Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

Convex optimization algorithms for sparse and low-rank representations

Convex optimization algorithms for sparse and low-rank representations Convex optimization algorithms for sparse and low-rank representations Lieven Vandenberghe, Hsiao-Han Chao (UCLA) ECC 2013 Tutorial Session Sparse and low-rank representation methods in control, estimation,

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

IE598 Big Data Optimization Summary Nonconvex Optimization

IE598 Big Data Optimization Summary Nonconvex Optimization IE598 Big Data Optimization Summary Nonconvex Optimization Instructor: Niao He April 16, 2018 1 This Course Big Data Optimization Explore modern optimization theories, algorithms, and big data applications

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

ME 555: Distributed Optimization

ME 555: Distributed Optimization ME 555: Distributed Optimization Duke University Spring 2015 1 Administrative Course: ME 555: Distributed Optimization (Spring 2015) Instructor: Time: Location: Office hours: Website: Soomin Lee (email:

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

More information

LECTURE 18 LECTURE OUTLINE

LECTURE 18 LECTURE OUTLINE LECTURE 18 LECTURE OUTLINE Generalized polyhedral approximation methods Combined cutting plane and simplicial decomposition methods Lecture based on the paper D. P. Bertsekas and H. Yu, A Unifying Polyhedral

More information

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex Affine function suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex S R n convex = f(s) ={f(x) x S} convex the inverse image f 1 (C) of a convex

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

Lecture 9. Introduction to Numerical Techniques

Lecture 9. Introduction to Numerical Techniques Lecture 9. Introduction to Numerical Techniques Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 27, 2015 1 / 25 Logistics hw8 (last one) due today. do an easy problem

More information

ACCELERATED DUAL GRADIENT-BASED METHODS FOR TOTAL VARIATION IMAGE DENOISING/DEBLURRING PROBLEMS. Donghwan Kim and Jeffrey A.

ACCELERATED DUAL GRADIENT-BASED METHODS FOR TOTAL VARIATION IMAGE DENOISING/DEBLURRING PROBLEMS. Donghwan Kim and Jeffrey A. ACCELERATED DUAL GRADIENT-BASED METHODS FOR TOTAL VARIATION IMAGE DENOISING/DEBLURRING PROBLEMS Donghwan Kim and Jeffrey A. Fessler University of Michigan Dept. of Electrical Engineering and Computer Science

More information

Lecture 15: Log Barrier Method

Lecture 15: Log Barrier Method 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 15: Log Barrier Method Scribes: Pradeep Dasigi, Mohammad Gowayyed Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Optimization for Machine Learning

Optimization for Machine Learning with a focus on proximal gradient descent algorithm Department of Computer Science and Engineering Outline 1 History & Trends 2 Proximal Gradient Descent 3 Three Applications A Brief History A. Convex

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi Convex Programming and Efficiency In this lecture, we formalize convex programming problem, discuss what it means to solve it efficiently

More information

Lecture 17 Sparse Convex Optimization

Lecture 17 Sparse Convex Optimization Lecture 17 Sparse Convex Optimization Compressed sensing A short introduction to Compressed Sensing An imaging perspective 10 Mega Pixels Scene Image compression Picture Why do we compress images? Introduction

More information

Lecture 19: November 5

Lecture 19: November 5 0-725/36-725: Convex Optimization Fall 205 Lecturer: Ryan Tibshirani Lecture 9: November 5 Scribes: Hyun Ah Song Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

2. Optimization problems 6

2. Optimization problems 6 6 2.1 Examples... 7... 8 2.3 Convex sets and functions... 9 2.4 Convex optimization problems... 10 2.1 Examples 7-1 An (NP-) optimization problem P 0 is defined as follows Each instance I P 0 has a feasibility

More information

Convex Optimization. August 26, 2008

Convex Optimization. August 26, 2008 Convex Optimization Instructor: Angelia Nedich August 26, 2008 Outline Lecture 1 What is the Course About Who Cares and Why Course Objective Convex Optimization History New Interest in the Topic Formal

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

IDENTIFYING ACTIVE MANIFOLDS

IDENTIFYING ACTIVE MANIFOLDS Algorithmic Operations Research Vol.2 (2007) 75 82 IDENTIFYING ACTIVE MANIFOLDS W.L. Hare a a Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. A.S. Lewis b b School of ORIE,

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Convex Analysis and Minimization Algorithms I

Convex Analysis and Minimization Algorithms I Jean-Baptiste Hiriart-Urruty Claude Lemarechal Convex Analysis and Minimization Algorithms I Fundamentals With 113 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1 1 Linear and Combinatorial Optimization Anders Heyden Centre for Mathematical Sciences Lecture 1: Introduction The course and its goals Basic concepts Optimization Combinatorial optimization

More information

Introduction to Topics in Machine Learning

Introduction to Topics in Machine Learning Introduction to Topics in Machine Learning Namrata Vaswani Department of Electrical and Computer Engineering Iowa State University Namrata Vaswani 1/ 27 Compressed Sensing / Sparse Recovery: Given y :=

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

Nonsmooth Optimization and Related Topics

Nonsmooth Optimization and Related Topics Nonsmooth Optimization and Related Topics Edited by F. H. Clarke University of Montreal Montreal, Quebec, Canada V. F. Dem'yanov Leningrad State University Leningrad, USSR I and F. Giannessi University

More information

EARLY INTERIOR-POINT METHODS

EARLY INTERIOR-POINT METHODS C H A P T E R 3 EARLY INTERIOR-POINT METHODS An interior-point algorithm is one that improves a feasible interior solution point of the linear program by steps through the interior, rather than one that

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

Projection-Based Methods in Optimization

Projection-Based Methods in Optimization Projection-Based Methods in Optimization Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences University of Massachusetts Lowell Lowell, MA

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory

MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory By Aaron Sidford (sidford@stanford.edu) April 29, 2017 1 What is this course about? The central problem we consider throughout

More information

Introduction. Optimization

Introduction. Optimization Introduction to Optimization Amy Langville SAMSI Undergraduate Workshop N.C. State University SAMSI 6/1/05 GOAL: minimize f(x 1, x 2, x 3, x 4, x 5 ) = x 2 1.5x 2x 3 + x 4 /x 5 PRIZE: $1 million # of independent

More information

Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples

Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples Greg Ongie PhD Candidate Department of Applied Math and Computational Sciences University of Iowa April

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Convex and Distributed Optimization. Thomas Ropars

Convex and Distributed Optimization. Thomas Ropars >>> Presentation of this master2 course Convex and Distributed Optimization Franck Iutzeler Jérôme Malick Thomas Ropars Dmitry Grishchenko from LJK, the applied maths and computer science laboratory and

More information

Lecture 12: convergence. Derivative (one variable)

Lecture 12: convergence. Derivative (one variable) Lecture 12: convergence More about multivariable calculus Descent methods Backtracking line search More about convexity (first and second order) Newton step Example 1: linear programming (one var., one

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Conjugate Direction Methods Barnabás Póczos & Ryan Tibshirani Conjugate Direction Methods 2 Books to Read David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming Nesterov:

More information

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods.

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods. CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 25. NLP algorithms ˆ Overview ˆ Local methods ˆ Constrained optimization ˆ Global methods ˆ Black-box methods ˆ Course wrap-up Laurent Lessard

More information

Outlier Pursuit: Robust PCA and Collaborative Filtering

Outlier Pursuit: Robust PCA and Collaborative Filtering Outlier Pursuit: Robust PCA and Collaborative Filtering Huan Xu Dept. of Mechanical Engineering & Dept. of Mathematics National University of Singapore Joint w/ Constantine Caramanis, Yudong Chen, Sujay

More information

Alternating Projections

Alternating Projections Alternating Projections Stephen Boyd and Jon Dattorro EE392o, Stanford University Autumn, 2003 1 Alternating projection algorithm Alternating projections is a very simple algorithm for computing a point

More information

Iteratively Re-weighted Least Squares for Sums of Convex Functions

Iteratively Re-weighted Least Squares for Sums of Convex Functions Iteratively Re-weighted Least Squares for Sums of Convex Functions James Burke University of Washington Jiashan Wang LinkedIn Frank Curtis Lehigh University Hao Wang Shanghai Tech University Daiwei He

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey Chapter 4 : Optimization for Machine Learning Summary of Chapter 2 Chapter 2: Convex Optimization with Sparsity

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

Case Study 1: Estimating Click Probabilities

Case Study 1: Estimating Click Probabilities Case Study 1: Estimating Click Probabilities SGD cont d AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade March 31, 2015 1 Support/Resources Office Hours Yao Lu:

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

LECTURE NOTES Non-Linear Programming

LECTURE NOTES Non-Linear Programming CEE 6110 David Rosenberg p. 1 Learning Objectives LECTURE NOTES Non-Linear Programming 1. Write out the non-linear model formulation 2. Describe the difficulties of solving a non-linear programming model

More information

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY WILLIAM W. HAGER AND HONGCHAO ZHANG Abstract. An algorithm is developed for projecting a point onto a polyhedron. The algorithm solves a dual version

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

CS 6210 Fall 2016 Bei Wang. Review Lecture What have we learnt in Scientific Computing?

CS 6210 Fall 2016 Bei Wang. Review Lecture What have we learnt in Scientific Computing? CS 6210 Fall 2016 Bei Wang Review Lecture What have we learnt in Scientific Computing? Let s recall the scientific computing pipeline observed phenomenon mathematical model discretization solution algorithm

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Data-driven modeling: A low-rank approximation problem

Data-driven modeling: A low-rank approximation problem 1 / 31 Data-driven modeling: A low-rank approximation problem Ivan Markovsky Vrije Universiteit Brussel 2 / 31 Outline Setup: data-driven modeling Problems: system identification, machine learning,...

More information

Lecture 4: Convexity

Lecture 4: Convexity 10-725: Convex Optimization Fall 2013 Lecture 4: Convexity Lecturer: Barnabás Póczos Scribes: Jessica Chemali, David Fouhey, Yuxiong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Random Walk Distributed Dual Averaging Method For Decentralized Consensus Optimization

Random Walk Distributed Dual Averaging Method For Decentralized Consensus Optimization Random Walk Distributed Dual Averaging Method For Decentralized Consensus Optimization Cun Mu, Asim Kadav, Erik Kruus, Donald Goldfarb, Martin Renqiang Min Machine Learning Group, NEC Laboratories America

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

Foundations of Computing

Foundations of Computing Foundations of Computing Darmstadt University of Technology Dept. Computer Science Winter Term 2005 / 2006 Copyright c 2004 by Matthias Müller-Hannemann and Karsten Weihe All rights reserved http://www.algo.informatik.tu-darmstadt.de/

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

Solving basis pursuit: infeasible-point subgradient algorithm, computational comparison, and improvements

Solving basis pursuit: infeasible-point subgradient algorithm, computational comparison, and improvements Solving basis pursuit: infeasible-point subgradient algorithm, computational comparison, and improvements Andreas Tillmann ( joint work with D. Lorenz and M. Pfetsch ) Technische Universität Braunschweig

More information

arxiv: v1 [cs.ds] 22 Jan 2019

arxiv: v1 [cs.ds] 22 Jan 2019 arxiv:9.8525v [cs.ds] 22 Jan 29 Solving linear program with Chubanov queries and bisection moves. Adrien CHAN-HON-TONG ONERA - université paris sud January 29 Abstract This short article focus on the link

More information