Máté Lengyel, Peter Dayan: Hippocampal contributions to control: the third way

Size: px
Start display at page:

Download "Máté Lengyel, Peter Dayan: Hippocampal contributions to control: the third way"

Transcription

1 Máté Lengyel, Peter Dayan: Hippocampal contributions to control: the third way David Nagy journal club at

2

3

4 1 markov decision processes 2 model-based & model-free control 3 a third way

5 1 markov decision processes 2 model-based & model-free control 3 a third way

6 1 markov decision processes 2 model-based & model-free control 3 a third way

7 1 markov decision processes 2 model-based & model-free control 3 a third way

8 1 markov decision processes

9 markov process

10 markov process

11 state space markov process

12 state space markov process transition matrix

13 state space markov process transition matrix

14 state space markov process transition matrix markov property

15 markov process

16 markov reward process

17 markov reward process

18 reward function markov reward process

19 (discount factor) reward function markov reward process

20 (discount factor) reward function markov reward process return:

21 (discount factor) reward function markov reward process return: (state) value function:

22 markov reward process

23 markov decision process

24 markov decision process

25 actions markov decision process

26 actions markov decision process

27 actions markov decision process

28 actions markov decision process policy:

29

30

31

32

33 }MDP

34 }MDP + policy

35 }MDP + policy

36 }MDP + policy MP}

37 MP} }MDPMRP } + policy

38 MP} }MDPMRP } + policy

39 state-value function:

40 state-value function: action-value function:

41 solving an MDP

42 solving an MDP find the optimal policy for which expected return is maximal

43 solving an MDP

44 solving an MDP

45 solving an MDP best possible performance

46 1 markov decision processes 2 model-based & model-free control 3 a third way

47 2 model-based & model-free control

48 solving an MDP model-based model-free

49 solving an MDP model-based model-free all optimal policies achieve the same Q!

50 model-based solving an MDP model-free

51 model-based solving an MDP model-free try to learn MDP parameters from experience

52 model-based solving an MDP model-free try to learn MDP parameters from experience do forward search for choosing action

53 model-based solving an MDP model-free try to learn MDP parameters from experience estimate Q* from experience do forward search for choosing action

54 model-based solving an MDP model-free try to learn MDP parameters from experience estimate Q* from experience do forward search for choosing action choose action with highest Q value

55 model-based solving an MDP model-free

56 model-based solving an MDP model-free experience

57 model-based solving an MDP model-free experience model estimate

58 model-based solving an MDP model-free experience model estimate virtual experiences

59 model-based solving an MDP model-free experience model estimate virtual experiences Q-learning ^ Q

60 model-based solving an MDP model-free experience experience model estimate virtual experiences Q-learning ^ Q

61 model-based solving an MDP model-free experience experience model estimate virtual experiences Q-learning Q-learning ^ Q

62 model-based solving an MDP model-free experience experience model estimate virtual experiences Q-learning ^ Q Q-learning ^ Q

63 model-based solving an MDP model-free experience experience model estimate virtual experiences Q-learning Q-learning ^ Q equal in the limit of infinite xp ^ Q

64 model-based solving an MDP model-free experience } model estimate virtual experiences Q-learning ^ Q computationally intensive experience Q-learning ^ Q

65 amount of computation model-free model-based rate of convergence

66 experimental setup for differentiating between control systems

67

68

69

70 goal directed (prefrontal control)

71 goal directed (prefrontal control) habituation (dorsolateral striatal control)

72 habituation (dorsolateral striatal control) goal directed (prefrontal control) proximal action remains goal directed

73 1 markov decision processes 2 model-based & model-free control 3 a third way

74 3 a third way

75 model-based model-free

76 episodic model-based model-free

77 episodic

78 episodic

79 exploration s1

80 exploration s2 s1

81 exploration s3 s2 s1

82 exploration s4 s3 s2 s1

83 exploration s4 R! s3 s2 s1

84 store s-a chain in memory s4 R! s3 s2 s1

85 store s-a chain in memory then choose episode with best outcome R! s4 s3 s2 s1

86 computational noise parallel sampler tree MDP

87 computational noise

88 computational noise parallel sampler tree MDP

89 exploration & exploitation parallel sampler

90 exploration & exploitation parallel sampler sample each non-terminal (s,a) n times

91 exploration & exploitation parallel sampler sample each non-terminal (s,a) n times random walk from (s,a)

92 exploration & exploitation parallel sampler sample each non-terminal (s,a) n times random walk from (s,a)

93 computational noise parallel sampler tree MDP

94 tree MDP

95 performance experience

96 performance caching experience

97 performance model-based caching experience

98 performance model-based caching episodic experience

99 performance model-based caching episodic experience

100 performance model-based caching episodic experience

101 performance f(complexity, non-stationarity of environment, cost of exploration,...) model-based caching episodic experience

102 performance experience

103 +B,D,eta performance experience

104 performance experience

105 quickly changing env. performance experience

106 +exploration cost performance experience

107

108 increase in branching

109 sources

A Brief Introduction to Reinforcement Learning

A Brief Introduction to Reinforcement Learning A Brief Introduction to Reinforcement Learning Minlie Huang ( ) Dept. of Computer Science, Tsinghua University aihuang@tsinghua.edu.cn 1 http://coai.cs.tsinghua.edu.cn/hml Reinforcement Learning Agent

More information

10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control 10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Policy Gradient I Used Materials Disclaimer: Much of the material and slides for this lecture

More information

Markov Decision Processes and Reinforcement Learning

Markov Decision Processes and Reinforcement Learning Lecture 14 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Slides by Stuart Russell and Peter Norvig Course Overview Introduction Artificial Intelligence

More information

Reinforcement Learning: A brief introduction. Mihaela van der Schaar

Reinforcement Learning: A brief introduction. Mihaela van der Schaar Reinforcement Learning: A brief introduction Mihaela van der Schaar Outline Optimal Decisions & Optimal Forecasts Markov Decision Processes (MDPs) States, actions, rewards and value functions Dynamic Programming

More information

Algorithms for Solving RL: Temporal Difference Learning (TD) Reinforcement Learning Lecture 10

Algorithms for Solving RL: Temporal Difference Learning (TD) Reinforcement Learning Lecture 10 Algorithms for Solving RL: Temporal Difference Learning (TD) 1 Reinforcement Learning Lecture 10 Gillian Hayes 8th February 2007 Incremental Monte Carlo Algorithm TD Prediction TD vs MC vs DP TD for control:

More information

Markov Decision Processes. (Slides from Mausam)

Markov Decision Processes. (Slides from Mausam) Markov Decision Processes (Slides from Mausam) Machine Learning Operations Research Graph Theory Control Theory Markov Decision Process Economics Robotics Artificial Intelligence Neuroscience /Psychology

More information

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound Lecture 12: Deep Reinforcement Learning Types of Learning Supervised training Learning from the teacher Training data includes

More information

Strategies for simulating pedestrian navigation with multiple reinforcement learning agents

Strategies for simulating pedestrian navigation with multiple reinforcement learning agents Strategies for simulating pedestrian navigation with multiple reinforcement learning agents Francisco Martinez-Gil, Miguel Lozano, Fernando Ferna ndez Presented by: Daniel Geschwender 9/29/2016 1 Overview

More information

Value Iteration. Reinforcement Learning: Introduction to Machine Learning. Matt Gormley Lecture 23 Apr. 10, 2019

Value Iteration. Reinforcement Learning: Introduction to Machine Learning. Matt Gormley Lecture 23 Apr. 10, 2019 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Reinforcement Learning: Value Iteration Matt Gormley Lecture 23 Apr. 10, 2019 1

More information

CSE151 Assignment 2 Markov Decision Processes in the Grid World

CSE151 Assignment 2 Markov Decision Processes in the Grid World CSE5 Assignment Markov Decision Processes in the Grid World Grace Lin A484 gclin@ucsd.edu Tom Maddock A55645 tmaddock@ucsd.edu Abstract Markov decision processes exemplify sequential problems, which are

More information

PLite.jl. Release 1.0

PLite.jl. Release 1.0 PLite.jl Release 1.0 October 19, 2015 Contents 1 In Depth Documentation 3 1.1 Installation................................................ 3 1.2 Problem definition............................................

More information

Approximate Linear Successor Representation

Approximate Linear Successor Representation Approximate Linear Successor Representation Clement A. Gehring Computer Science and Artificial Intelligence Laboratory Massachusetts Institutes of Technology Cambridge, MA 2139 gehring@csail.mit.edu Abstract

More information

Pascal De Beck-Courcelle. Master in Applied Science. Electrical and Computer Engineering

Pascal De Beck-Courcelle. Master in Applied Science. Electrical and Computer Engineering Study of Multiple Multiagent Reinforcement Learning Algorithms in Grid Games by Pascal De Beck-Courcelle A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of

More information

arxiv: v1 [cs.lg] 26 Sep 2017

arxiv: v1 [cs.lg] 26 Sep 2017 MDP environments for the OpenAI Gym arxiv:1709.09069v1 [cs.lg] 26 Sep 2017 Andreas Kirsch blackhc@gmail.com Abstract The OpenAI Gym provides researchers and enthusiasts with simple to use environments

More information

15-780: MarkovDecisionProcesses

15-780: MarkovDecisionProcesses 15-780: MarkovDecisionProcesses J. Zico Kolter Feburary 29, 2016 1 Outline Introduction Formal definition Value iteration Policy iteration Linear programming for MDPs 2 1988 Judea Pearl publishes Probabilistic

More information

Game Theory with Learning for Cybersecurity Monitoring

Game Theory with Learning for Cybersecurity Monitoring Game Theory with Learning for Cybersecurity Monitoring Keywhan Chung advised by : Professor Ravishankar Iyer Professor Zbigniew Kalbarczyk In collaboration with Dr. Charles Kamhoua, Dr. Kevin Kwiat at

More information

Approximate Linear Programming for Average-Cost Dynamic Programming

Approximate Linear Programming for Average-Cost Dynamic Programming Approximate Linear Programming for Average-Cost Dynamic Programming Daniela Pucci de Farias IBM Almaden Research Center 65 Harry Road, San Jose, CA 51 pucci@mitedu Benjamin Van Roy Department of Management

More information

Stuck in Traffic (SiT) Attacks

Stuck in Traffic (SiT) Attacks Stuck in Traffic (SiT) Attacks Mina Guirguis Texas State University Joint work with George Atia Traffic 2 Intelligent Transportation Systems V2X communication enable drivers to make better decisions: Avoiding

More information

Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended)

Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended) Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended) Pavlos Andreadis, February 2 nd 2018 1 Markov Decision Processes A finite Markov Decision Process

More information

Attend to details of the value iteration and policy iteration algorithms Reflect on Markov decision process behavior Reinforce C programming skills

Attend to details of the value iteration and policy iteration algorithms Reflect on Markov decision process behavior Reinforce C programming skills CSC 261 Lab 11: Markov Decision Processes Fall 2015 Assigned: Tuesday 1 December Due: Friday 11 December, 5:00 pm Objectives: Attend to details of the value iteration and policy iteration algorithms Reflect

More information

Monte Carlo Tree Search PAH 2015

Monte Carlo Tree Search PAH 2015 Monte Carlo Tree Search PAH 2015 MCTS animation and RAVE slides by Michèle Sebag and Romaric Gaudel Markov Decision Processes (MDPs) main formal model Π = S, A, D, T, R states finite set of states of the

More information

Planning and Control: Markov Decision Processes

Planning and Control: Markov Decision Processes CSE-571 AI-based Mobile Robotics Planning and Control: Markov Decision Processes Planning Static vs. Dynamic Predictable vs. Unpredictable Fully vs. Partially Observable Perfect vs. Noisy Environment What

More information

ˆ The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

ˆ The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. S 88 Summer 205 Introduction to rtificial Intelligence Final ˆ You have approximately 2 hours 50 minutes. ˆ The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

Smooth Image Segmentation by Nonparametric Bayesian Inference

Smooth Image Segmentation by Nonparametric Bayesian Inference Smooth Image Segmentation by Nonparametric Bayesian Inference Peter Orbanz and Joachim M. Buhmann Institute of Computational Science, ETH Zurich European Conference on Computer Vision (ECCV), 2006 The

More information

Introduction to Reinforcement Learning. J. Zico Kolter Carnegie Mellon University

Introduction to Reinforcement Learning. J. Zico Kolter Carnegie Mellon University Introduction to Reinforcement Learning J. Zico Kolter Carnegie Mellon University 1 Agent interaction with environment Agent State s Reward r Action a Environment 2 Of course, an oversimplification 3 Review:

More information

In Homework 1, you determined the inverse dynamics model of the spinbot robot to be

In Homework 1, you determined the inverse dynamics model of the spinbot robot to be Robot Learning Winter Semester 22/3, Homework 2 Prof. Dr. J. Peters, M.Eng. O. Kroemer, M. Sc. H. van Hoof Due date: Wed 6 Jan. 23 Note: Please fill in the solution on this sheet but add sheets for the

More information

Workstation Cluster. AVACS S3 Phase 2. July 28, 2011

Workstation Cluster. AVACS S3 Phase 2. July 28, 2011 Workstation Cluster AVACS S3 Phase 2 July 28, 2011 1 Description of the Model In this test case, we consider the dependability of a fault-tolerant workstation cluster [5]. Notably, we consider a finite-state

More information

CS 188: Artificial Intelligence Spring Recap Search I

CS 188: Artificial Intelligence Spring Recap Search I CS 188: Artificial Intelligence Spring 2011 Midterm Review 3/14/2011 Pieter Abbeel UC Berkeley Recap Search I Agents that plan ahead à formalization: Search Search problem: States (configurations of the

More information

arxiv: v1 [cs.cv] 2 Sep 2018

arxiv: v1 [cs.cv] 2 Sep 2018 Natural Language Person Search Using Deep Reinforcement Learning Ankit Shah Language Technologies Institute Carnegie Mellon University aps1@andrew.cmu.edu Tyler Vuong Electrical and Computer Engineering

More information

Recap Search I. CS 188: Artificial Intelligence Spring Recap Search II. Example State Space Graph. Search Problems.

Recap Search I. CS 188: Artificial Intelligence Spring Recap Search II. Example State Space Graph. Search Problems. CS 188: Artificial Intelligence Spring 011 Midterm Review 3/14/011 Pieter Abbeel UC Berkeley Recap Search I Agents that plan ahead à formalization: Search Search problem: States (configurations of the

More information

Partially Observable Markov Decision Processes. Silvia Cruciani João Carvalho

Partially Observable Markov Decision Processes. Silvia Cruciani João Carvalho Partially Observable Markov Decision Processes Silvia Cruciani João Carvalho MDP A reminder: is a set of states is a set of actions is the state transition function. is the probability of ending in state

More information

Markov Decision Processes (MDPs) (cont.)

Markov Decision Processes (MDPs) (cont.) Markov Decision Processes (MDPs) (cont.) Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University November 29 th, 2007 Markov Decision Process (MDP) Representation State space: Joint state x

More information

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Apprenticeship Learning for Reinforcement Learning with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Table of Contents Introduction Theory Autonomous helicopter control

More information

HIDDEN MARKOV MODELS AND SEQUENCE ALIGNMENT

HIDDEN MARKOV MODELS AND SEQUENCE ALIGNMENT HIDDEN MARKOV MODELS AND SEQUENCE ALIGNMENT - Swarbhanu Chatterjee. Hidden Markov models are a sophisticated and flexible statistical tool for the study of protein models. Using HMMs to analyze proteins

More information

Material Handling Tools for a Discrete Manufacturing System: A Comparison of Optimization and Simulation

Material Handling Tools for a Discrete Manufacturing System: A Comparison of Optimization and Simulation Material Handling Tools for a Discrete Manufacturing System: A Comparison of Optimization and Simulation Frank Werner Fakultät für Mathematik OvGU Magdeburg, Germany (Joint work with Yanting Ni, Chengdu

More information

Q-learning with linear function approximation

Q-learning with linear function approximation Q-learning with linear function approximation Francisco S. Melo and M. Isabel Ribeiro Institute for Systems and Robotics [fmelo,mir]@isr.ist.utl.pt Conference on Learning Theory, COLT 2007 June 14th, 2007

More information

Experiments with Infinite-Horizon, Policy-Gradient Estimation

Experiments with Infinite-Horizon, Policy-Gradient Estimation Journal of Artificial Intelligence Research 15 (2001) 351-381 Submitted 9/00; published 11/01 Experiments with Infinite-Horizon, Policy-Gradient Estimation Jonathan Baxter WhizBang! Labs. 4616 Henry Street

More information

Incremental methods for computing bounds in partially observable Markov decision processes

Incremental methods for computing bounds in partially observable Markov decision processes Incremental methods for computing bounds in partially observable Markov decision processes Milos Hauskrecht MIT Laboratory for Computer Science, NE43-421 545 Technology Square Cambridge, MA 02139 milos@medg.lcs.mit.edu

More information

Hierarchical Average Reward Reinforcement Learning

Hierarchical Average Reward Reinforcement Learning Journal of Machine Learning Research 8 (2007) 2629-2669 Submitted 6/03; Revised 8/07; Published 11/07 Hierarchical Average Reward Reinforcement Learning Mohammad Ghavamzadeh Department of Computing Science

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Machine Learning: Perceptron Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer and Dan Klein. 1 Generative vs. Discriminative Generative classifiers:

More information

STATISTICS (STAT) Statistics (STAT) 1

STATISTICS (STAT) Statistics (STAT) 1 Statistics (STAT) 1 STATISTICS (STAT) STAT 2013 Elementary Statistics (A) Prerequisites: MATH 1483 or MATH 1513, each with a grade of "C" or better; or an acceptable placement score (see placement.okstate.edu).

More information

Symbolic LAO* Search for Factored Markov Decision Processes

Symbolic LAO* Search for Factored Markov Decision Processes Symbolic LAO* Search for Factored Markov Decision Processes Zhengzhu Feng Computer Science Department University of Massachusetts Amherst MA 01003 Eric A. Hansen Computer Science Department Mississippi

More information

Residual Advantage Learning Applied to a Differential Game

Residual Advantage Learning Applied to a Differential Game Presented at the International Conference on Neural Networks (ICNN 96), Washington DC, 2-6 June 1996. Residual Advantage Learning Applied to a Differential Game Mance E. Harmon Wright Laboratory WL/AAAT

More information

Deep Reinforcement Learning

Deep Reinforcement Learning Deep Reinforcement Learning 1 Outline 1. Overview of Reinforcement Learning 2. Policy Search 3. Policy Gradient and Gradient Estimators 4. Q-prop: Sample Efficient Policy Gradient and an Off-policy Critic

More information

Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation

Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation POLISH MARITIME RESEARCH Special Issue S1 (74) 2012 Vol 19; pp. 31-36 10.2478/v10012-012-0020-8 Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation Andrzej Rak,

More information

HMM and Auction-based Formulations of of ISR Coordination Mechanisms for for the Expeditionary Strike Group Missions

HMM and Auction-based Formulations of of ISR Coordination Mechanisms for for the Expeditionary Strike Group Missions HMM and Auction-based Formulations of of ISR Coordination Mechanisms for for the Expeditionary Strike Group Missions Woosun An Chulwoo Park Prof. Krishna R. Pattipati Prof. David L. Kleinman Prof. William

More information

Modeling time series with hidden Markov models

Modeling time series with hidden Markov models Modeling time series with hidden Markov models Advanced Machine learning 2017 Nadia Figueroa, Jose Medina and Aude Billard Time series data Barometric pressure Temperature Data Humidity Time What s going

More information

Monte Carlo Tree Search

Monte Carlo Tree Search Monte Carlo Tree Search Branislav Bošanský PAH/PUI 2016/2017 MDPs Using Monte Carlo Methods Monte Carlo Simulation: a technique that can be used to solve a mathematical or statistical problem using repeated

More information

Quality Optimal Policy for H.264 Scalable Video Scheduling in Broadband Multimedia Wireless Networks

Quality Optimal Policy for H.264 Scalable Video Scheduling in Broadband Multimedia Wireless Networks Quality Optimal Policy for H.264 Scalable Video Scheduling in Broadband Multimedia Wireless Networks Vamseedhar R. Reddyvari Electrical Engineering Indian Institute of Technology Kanpur Email: vamsee@iitk.ac.in

More information

SIMULATION BASED REINFORCEMENT LEARNING FOR PATH TRACKING ROBOT

SIMULATION BASED REINFORCEMENT LEARNING FOR PATH TRACKING ROBOT SIMULATION BASED REINFORCEMENT LEARNING FOR PATH TRACKING ROBOT Tony 1, M. Rahmat Widyanto 2 1 Department of Computer System, Faculty of Information Technology, Tarumanagara University Jl. Letjen S. Parman

More information

9/30/2018. Hierarchical Markov decision processes. Outline. Difficulties when modeling

9/30/2018. Hierarchical Markov decision processes. Outline. Difficulties when modeling Hierarchical Markov decision processes Anders Ringgaard Kristensen Outline Graphical representation of models Markov property Hierarchical models Multi-level models Decisions on multiple time scale Markov

More information

CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs

CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs Felix Wang fywang2 John Wieting wieting2 Introduction We implement a texture classification algorithm using 2-D Noncausal Hidden

More information

Instance-Based Action Models for Fast Action Planning

Instance-Based Action Models for Fast Action Planning Instance-Based Action Models for Fast Action Planning Mazda Ahmadi and Peter Stone Department of Computer Sciences The University of Texas at Austin 1 University Station C0500, Austin, TX 78712-0233 Email:{mazda,pstone}@cs.utexas.edu

More information

arxiv: v3 [cs.ni] 3 May 2017

arxiv: v3 [cs.ni] 3 May 2017 Modeling Request Patterns in VoD Services with Recommendation Systems Samarth Gupta and Sharayu Moharir arxiv:1609.02391v3 [cs.ni] 3 May 2017 Department of Electrical Engineering, Indian Institute of Technology

More information

A Short History of Markov Chain Monte Carlo

A Short History of Markov Chain Monte Carlo A Short History of Markov Chain Monte Carlo Christian Robert and George Casella 2010 Introduction Lack of computing machinery, or background on Markov chains, or hesitation to trust in the practicality

More information

Multi-level hierarchic Markov processes

Multi-level hierarchic Markov processes Software Users Guide: Multi-level hierarchic Markov processes Anders Ringgaard Kristensen Dina Notat No. 84 September 1999 Fourth Edition, August 2010 . Software Users Guide: Multi-level hierarchic Markov

More information

Diagnose and Decide: An Optimal Bayesian Approach

Diagnose and Decide: An Optimal Bayesian Approach Diagnose and Decide: An Optimal Bayesian Approach Christopher Amato CSAIL MIT camato@csail.mit.edu Emma Brunskill Computer Science Department Carnegie Mellon University ebrun@cs.cmu.edu Abstract Many real-world

More information

An Improved Policy Iteratioll Algorithm for Partially Observable MDPs

An Improved Policy Iteratioll Algorithm for Partially Observable MDPs An Improved Policy Iteratioll Algorithm for Partially Observable MDPs Eric A. Hansen Computer Science Department University of Massachusetts Amherst, MA 01003 hansen@cs.umass.edu Abstract A new policy

More information

Human-level Control Through Deep Reinforcement Learning (Deep Q Network) Peidong Wang 11/13/2015

Human-level Control Through Deep Reinforcement Learning (Deep Q Network) Peidong Wang 11/13/2015 Human-level Control Through Deep Reinforcement Learning (Deep Q Network) Peidong Wang 11/13/2015 Content Demo Framework Remarks Experiment Discussion Content Demo Framework Remarks Experiment Discussion

More information

Hierarchical Average Reward Reinforcement Learning

Hierarchical Average Reward Reinforcement Learning Hierarchical Average Reward Reinforcement Learning Mohammad Ghavamzadeh mgh@cs.ualberta.ca Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, CANADA Sridhar Mahadevan mahadeva@cs.umass.edu

More information

REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION

REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION ABSTRACT Mark A. Mueller Georgia Institute of Technology, Computer Science, Atlanta, GA USA The problem of autonomous vehicle navigation between

More information

Similarity Ranking in Large- Scale Bipartite Graphs

Similarity Ranking in Large- Scale Bipartite Graphs Similarity Ranking in Large- Scale Bipartite Graphs Alessandro Epasto Brown University - 20 th March 2014 1 Joint work with J. Feldman, S. Lattanzi, S. Leonardi, V. Mirrokni [WWW, 2014] 2 AdWords Ads Ads

More information

Slides credited from Dr. David Silver & Hung-Yi Lee

Slides credited from Dr. David Silver & Hung-Yi Lee Slides credited from Dr. David Silver & Hung-Yi Lee Review Reinforcement Learning 2 Reinforcement Learning RL is a general purpose framework for decision making RL is for an agent with the capacity to

More information

Learning State-Action Basis Functions for Hierarchical MDPs

Learning State-Action Basis Functions for Hierarchical MDPs Sarah Osentoski Sridhar Mahadevan University of Massachusetts Amherst, 140 Governor s Drive, Amherst, MA 01002 SOSENTOS@CS.UMASS.EDU MAHADEVA@CS.UMASS.EDU Reinforcement Learning, Semi-Markov Decision Processes,

More information

Hierarchical Average Reward Reinforcement Learning Mohammad Ghavamzadeh Sridhar Mahadevan CMPSCI Technical Report

Hierarchical Average Reward Reinforcement Learning Mohammad Ghavamzadeh Sridhar Mahadevan CMPSCI Technical Report Hierarchical Average Reward Reinforcement Learning Mohammad Ghavamzadeh Sridhar Mahadevan CMPSCI Technical Report 03-19 June 25, 2003 Department of Computer Science 140 Governors Drive University of Massachusetts

More information

Space-Progressive Value Iteration: An Anytime Algorithm for a Class of POMDPs

Space-Progressive Value Iteration: An Anytime Algorithm for a Class of POMDPs Space-Progressive Value Iteration: An Anytime Algorithm for a Class of POMDPs Nevin L. Zhang and Weihong Zhang lzhang,wzhang @cs.ust.hk Department of Computer Science Hong Kong University of Science &

More information

Multi-Class Segmentation with Relative Location Prior

Multi-Class Segmentation with Relative Location Prior Multi-Class Segmentation with Relative Location Prior Stephen Gould, Jim Rodgers, David Cohen, Gal Elidan, Daphne Koller Department of Computer Science, Stanford University International Journal of Computer

More information

Robotic Search & Rescue via Online Multi-task Reinforcement Learning

Robotic Search & Rescue via Online Multi-task Reinforcement Learning Lisa Lee Department of Mathematics, Princeton University, Princeton, NJ 08544, USA Advisor: Dr. Eric Eaton Mentors: Dr. Haitham Bou Ammar, Christopher Clingerman GRASP Laboratory, University of Pennsylvania,

More information

Image Restoration using Markov Random Fields

Image Restoration using Markov Random Fields Image Restoration using Markov Random Fields Based on the paper Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, PAMI, 1984, Geman and Geman. and the book Markov Random Field

More information

When Network Embedding meets Reinforcement Learning?

When Network Embedding meets Reinforcement Learning? When Network Embedding meets Reinforcement Learning? ---Learning Combinatorial Optimization Problems over Graphs Changjun Fan 1 1. An Introduction to (Deep) Reinforcement Learning 2. How to combine NE

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS Summer Introduction to Artificial Intelligence Midterm You have approximately minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. Mark your answers

More information

Perseus: randomized point-based value iteration for POMDPs

Perseus: randomized point-based value iteration for POMDPs Universiteit van Amsterdam IAS technical report IAS-UA-04-02 Perseus: randomized point-based value iteration for POMDPs Matthijs T. J. Spaan and Nikos lassis Informatics Institute Faculty of Science University

More information

ICRA 2012 Tutorial on Reinforcement Learning I. Introduction

ICRA 2012 Tutorial on Reinforcement Learning I. Introduction ICRA 2012 Tutorial on Reinforcement Learning I. Introduction Pieter Abbeel UC Berkeley Jan Peters TU Darmstadt Motivational Example: Helicopter Control Unstable Nonlinear Complicated dynamics Air flow

More information

Natural Actor-Critic. Authors: Jan Peters and Stefan Schaal Neurocomputing, Cognitive robotics 2008/2009 Wouter Klijn

Natural Actor-Critic. Authors: Jan Peters and Stefan Schaal Neurocomputing, Cognitive robotics 2008/2009 Wouter Klijn Natural Actor-Critic Authors: Jan Peters and Stefan Schaal Neurocomputing, 2008 Cognitive robotics 2008/2009 Wouter Klijn Content Content / Introduction Actor-Critic Natural gradient Applications Conclusion

More information

Unsupervised Learning. CS 3793/5233 Artificial Intelligence Unsupervised Learning 1

Unsupervised Learning. CS 3793/5233 Artificial Intelligence Unsupervised Learning 1 Unsupervised CS 3793/5233 Artificial Intelligence Unsupervised 1 EM k-means Procedure Data Random Assignment Assign 1 Assign 2 Soft k-means In clustering, the target feature is not given. Goal: Construct

More information

Discre'za'on. Pieter Abbeel UC Berkeley EECS

Discre'za'on. Pieter Abbeel UC Berkeley EECS Discre'za'on Pieter Abbeel UC Berkeley EECS Markov Decision Process AssumpCon: agent gets to observe the state [Drawing from Su;on and Barto, Reinforcement Learning: An IntroducCon, 1998] Markov Decision

More information

Detecting DGA Malware Traffic Through Behavioral Models. Erquiaga, María José Catania, Carlos García, Sebastían

Detecting DGA Malware Traffic Through Behavioral Models. Erquiaga, María José Catania, Carlos García, Sebastían Detecting DGA Malware Traffic Through Behavioral Models Erquiaga, María José Catania, Carlos García, Sebastían Outline Introduction Detection Method Training the threshold Dataset description Experiment

More information

Using Linear Programming for Bayesian Exploration in Markov Decision Processes

Using Linear Programming for Bayesian Exploration in Markov Decision Processes Using Linear Programming for Bayesian Exploration in Markov Decision Processes Pablo Samuel Castro and Doina Precup McGill University School of Computer Science {pcastr,dprecup}@cs.mcgill.ca Abstract A

More information

Probabilistic Model Checking. Mohammad Roohitavaf

Probabilistic Model Checking. Mohammad Roohitavaf Probabilistic Model Checking Mohammad Roohitavaf Index! Introduction! Probabilistic Systems! Probabilistic Logics! PRISM! Performance Evaluation! Model Checking and Performance Evaluation! Challenges Introduction!

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

Community Preserving Network Embedding

Community Preserving Network Embedding Community Preserving Network Embedding Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, Shiqiang Yang Presented by: Ben, Ashwati, SK What is Network Embedding 1. Representation of a node in an m-dimensional

More information

Using Reinforcement Learning to Optimize Storage Decisions Ravi Khadiwala Cleversafe

Using Reinforcement Learning to Optimize Storage Decisions Ravi Khadiwala Cleversafe Using Reinforcement Learning to Optimize Storage Decisions Ravi Khadiwala Cleversafe Topics What is Reinforcement Learning? Exploration vs. Exploitation The Multi-armed Bandit Optimizing read locations

More information

Jo-Car2 Autonomous Mode. Path Planning (Cost Matrix Algorithm)

Jo-Car2 Autonomous Mode. Path Planning (Cost Matrix Algorithm) Chapter 8.2 Jo-Car2 Autonomous Mode Path Planning (Cost Matrix Algorithm) Introduction: In order to achieve its mission and reach the GPS goal safely; without crashing into obstacles or leaving the lane,

More information

Contracts: Practical Contribution Incentives for P2P Live Streaming

Contracts: Practical Contribution Incentives for P2P Live Streaming Contracts: Practical Contribution Incentives for P2P Live Streaming Michael Piatek, Arvind Krishnamurthy, Arun Venkataramani, Richard Yang, David Zhang, Alexander Jaffe U. of Washington, U. of Massachusetts,

More information

Incorporating Satellite Documents into Co-citation Networks for Scientific Paper Searches

Incorporating Satellite Documents into Co-citation Networks for Scientific Paper Searches Incorporating Satellite Documents into Co-citation Networks for Scientific Paper Searches Masaki Eto Gakushuin Women s College Tokyo, Japan masaki.eto@gakushuin.ac.jp Abstract. To improve the search performance

More information

LAO*, RLAO*, or BLAO*?

LAO*, RLAO*, or BLAO*? , R, or B? Peng Dai and Judy Goldsmith Computer Science Dept. University of Kentucky 773 Anderson Tower Lexington, KY 40506-0046 Abstract In 2003, Bhuma and Goldsmith introduced a bidirectional variant

More information

THE USE of self-organizing techniques to engineer distributed

THE USE of self-organizing techniques to engineer distributed 360 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005 Using Feedback in Collaborative Reinforcement Learning to Adaptively Optimize MANET Routing Jim

More information

Gradient Reinforcement Learning of POMDP Policy Graphs

Gradient Reinforcement Learning of POMDP Policy Graphs 1 Gradient Reinforcement Learning of POMDP Policy Graphs Douglas Aberdeen Research School of Information Science and Engineering Australian National University Jonathan Baxter WhizBang! Labs July 23, 2001

More information

Package pomdp. January 3, 2019

Package pomdp. January 3, 2019 Package pomdp January 3, 2019 Title Solver for Partially Observable Markov Decision Processes (POMDP) Version 0.9.1 Date 2019-01-02 Provides an interface to pomdp-solve, a solver for Partially Observable

More information

Training Intelligent Stoplights

Training Intelligent Stoplights Training Intelligent Stoplights Thomas Davids, Michael Celentano, and Luke Knepper December 14, 2012 1 Introduction Traffic is a huge problem for the American economy. In 2010, the average American commuter

More information

Hierarchically Optimal Average Reward Reinforcement Learning

Hierarchically Optimal Average Reward Reinforcement Learning Hierarchically Optimal Average Reward Reinforcement Learning Mohammad Ghavamzadeh mgh@cs.umass.edu Sridhar Mahadevan mahadeva@cs.umass.edu Department of Computer Science, University of Massachusetts Amherst,

More information

Path Analysis References: Ch.10, Data Mining Techniques By M.Berry, andg.linoff Dr Ahmed Rafea

Path Analysis References: Ch.10, Data Mining Techniques By M.Berry, andg.linoff  Dr Ahmed Rafea Path Analysis References: Ch.10, Data Mining Techniques By M.Berry, andg.linoff http://www9.org/w9cdrom/68/68.html Dr Ahmed Rafea Outline Introduction Link Analysis Path Analysis Using Markov Chains Applications

More information

Modeling Plant Succession with Markov Matrices

Modeling Plant Succession with Markov Matrices Modeling Plant Succession with Markov Matrices 1 Modeling Plant Succession with Markov Matrices Concluding Paper Undergraduate Biology and Math Training Program New Jersey Institute of Technology Catherine

More information

An Approach to State Aggregation for POMDPs

An Approach to State Aggregation for POMDPs An Approach to State Aggregation for POMDPs Zhengzhu Feng Computer Science Department University of Massachusetts Amherst, MA 01003 fengzz@cs.umass.edu Eric A. Hansen Dept. of Computer Science and Engineering

More information

Using Hidden Markov Models to analyse time series data

Using Hidden Markov Models to analyse time series data Using Hidden Markov Models to analyse time series data September 9, 2011 Background Want to analyse time series data coming from accelerometer measurements. 19 different datasets corresponding to different

More information

Deep Q-Learning to play Snake

Deep Q-Learning to play Snake Deep Q-Learning to play Snake Daniele Grattarola August 1, 2016 Abstract This article describes the application of deep learning and Q-learning to play the famous 90s videogame Snake. I applied deep convolutional

More information

The PageRank Citation Ranking

The PageRank Citation Ranking October 17, 2012 Main Idea - Page Rank web page is important if it points to by other important web pages. *Note the recursive definition IR - course web page, Brian home page, Emily home page, Steven

More information

Reinforcement Learning on the Lego Mindstorms NXT Robot. Analysis and Implementation.

Reinforcement Learning on the Lego Mindstorms NXT Robot. Analysis and Implementation. ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Departamento de Ingeniería de Sistemas y Automática Master Thesis Reinforcement Learning on the Lego Mindstorms NXT Robot. Analysis and Implementation.

More information

Scott Sanner NICTA, Statistical Machine Learning Group, Canberra, Australia

Scott Sanner NICTA, Statistical Machine Learning Group, Canberra, Australia Symbolic Dynamic Programming Scott Sanner NICTA, Statistical Machine Learning Group, Canberra, Australia Kristian Kersting Fraunhofer IAIS, Dept. of Knowledge Discovery, Sankt Augustin, Germany Synonyms

More information

Learning to bounce a ball with a robotic arm

Learning to bounce a ball with a robotic arm Eric Wolter TU Darmstadt Thorsten Baark TU Darmstadt Abstract Bouncing a ball is a fun and challenging task for humans. It requires fine and complex motor controls and thus is an interesting problem for

More information