9/30/2018. Hierarchical Markov decision processes. Outline. Difficulties when modeling

Size: px
Start display at page:

Download "9/30/2018. Hierarchical Markov decision processes. Outline. Difficulties when modeling"

Transcription

1 Hierarchical Markov decision processes Anders Ringgaard Kristensen Outline Graphical representation of models Markov property Hierarchical models Multi-level models Decisions on multiple time scale Markov chain simulation Slide 2 Difficulties when modeling The curse of dimensionality (Multi-level) Hierarchical processes Decisions on multiple time scales (Multi-level) Hierarchical processes State space representation Decision graphs Discussed later Several herd constraints Inherit problem of the method Parameter iteration The Markov property Memory variables Bayesian Slide 3 1

2 Graphical representation of MDPs Recall the structure of the simple dairy cow replacement model: Stage: 1 lactation cycle State: i=1: Low milk yield i=2: Average milk yield i=3: High milk yield Action: d=1: Keep the cow d=2: Replace the cow at the end of the stage The structure may be displayed graphically in two different ways: As a model tree As a decision graph We will model 10 stages (finite horizon) Slide 4 The model displayed as a tree We have a nested structure: The root of the model is the process itself The process holds 10 stages (the time horizon) Each stage holds 3 states (Low, Average, High) Each state holds 2 actions (Keep, Replace) The parameters: Each action has a set of parameters attached: A reward A probability distribution (to the states at next stage). Implemented in the MLHMP software system Slide 5 The MLHMP software the model tree window Slide 6 2

3 Summary of the model tree The nested structure of an MDP is shown directly Each value (stage, state and action) is displayed as an icon of a certain type. A label is (optionally) attached to each value in order to ease the (human) interpretation of the values. Asymmetric models are easily handled (and displayed) Slide 7 The model displayed as a Decision Graph A Decision Graph consists of variables and directed edges connecting them: A variable is displayed as a circle A directed edge is displayed as an arc In our small example we have basically 3 variables at each stage: The state (random) The action (decision) The reward (utility) Slide 8 The Esthauge LIMID software system: The Net window For a model like this the DG is rather boring 3

4 Summary of the Decision Graph representation The causal structure of the model is shown explicitly as directed edges (arcs). Each variable is displayed as a node ( circle ) of a certain kind: Chance node (yellow) state variable Decision nodes (green) actions Utility nodes (purple) rewards Each variable has a number of values. Labels may (optionally) be used in order to ease the (human) interpretation of the variables. Asymmetric models are difficult to display (and handle) Slide 10 The Markov property Let i n be the state at stage n The Markov property is satisfied if, and only if, P(i n+1 i n, i n-1,, i 1 ) = P (i n+1 i n ) In words: The distribution of the state at next stage depends only on the present state previous states are not relevant. This property is crucial in Markov decision processes. Slide 11 The Markov property what does it mean? Does it mean that the state at stage n+k is independent of the state at stage n for n > 1? Let us use the DAG to test: Conditional independence! Understanding the Markov property is crucial for understanding MDPs We shall come back to the Markov property several times. Slide 12 4

5 Age dependency of milk yield st Parity 2nd Parity 3rd Parity 4th Parity Kg ECM Slide 13 An extended model, I State variables Age Parity 1 Parity 2 Parity 3 Parity 4 Relative milk yield Low Average High Slide 14 An extended model, II Slide 15 5

6 An extended model, III Slide 16 An extended model, IV Slide 17 Let us take a look at the model tree Slide 18 6

7 Age and genotype dependency Par. 1 Par. 2 Par. 3 Par. 4 Low genetic merit Average genetic merit High genetic merit Slide 19 A further extended model State variables Genetic merit: Low, Average, High Age: Parity 1, Parity 2, Parity 3, Parity 4 (Relative) milk yield: Low, Average, Advanced Quantitative High Methods in Herd Management Slide 20 Rewards and output Slide 21 7

8 Transition probabilities, Keep Slide 22 Transition probabilities, Replace Slide 23 We shall again take a look at the graphical display Slide 24 8

9 An example: Houben et al. (1994) State variables: Age (monthly intervals, 204 levels) Milk yield, present lactation (15 levels) Milk yield, previous lactation (15 levels) Length of calving interval (8 levels) Mastitis, present lactation (4 levels) Mastitis, previous lactation (4 levels) Clinical mastitis (yes/no) Total state space 6,821,724 states Houben, E. P. H., R. B. M. Huirne, A. A. Dijkhuizen & A. R. Kristensen Optimal replacement of mastitis cows determined by a hierarchic Markov process. Journal of Dairy Science 77, Slide 25 The curse of dimensionality If state variables are represented at a realistic number of levels all relevant state variables are included in the model then the state space grows to prohibitive dimensions Solution: Hierarchical models Slide 26 Important observations, transition matrix Most elements are zero because Age is included as a state variable Some state variables are constant within animal Some state variables are constant over several stages If state numbers are defined appropriately the non-zero elements are arranged in a certain pattern This can be utilized for a hierarchical organisation of the state space! Slide 27 9

10 Illustration of the hierarchy for the example Founder Genetic merit Cow 1 Cow 2 Cow 3 Dummy (no action) Child Relative milk yield Keep/Replace Optimization technique Policy iteration in the founder process (exact) Value iteration in the child processes (exact) The positive properties of both techniques are combined into a very efficient and exact hierarchic technique Slide 28 The dairy cow replacement model as a hierarchical process Founder process: Stage: Life time of a cow State: Genetic merit Action: Dummy Child process: Stage: A lactation cycle State: Milk yield (relative to genetic merit and lactation) Action: Keep/Replace Benefits: The age of the cow is known from the child level stage The size of the transition matrices are reduced to 3 x 3 (as compared to 36 x 36 in the original model) Slide 29 Multi-level processes The hierarchy may be extended to several levels Actions may be defined at all levels making simultaneous optimization of decisions with different time horizons possible. Curse of dimensionality circumvented Simultaneous optimization of decisions at different levels (time horizon) Slide 30 10

11 Example: Dimensionality State variables in original model (van Arendonk 1985): Age (months) (1-144) Milk yield, previous lactation (1-15) Milk yield, present lactation (1-15) Total number of states: 29,880 Stage length: 1 month Matrix dimension 29,880 x 29,880 Slide 31 As a 2 or 3-level process Slide 32 Model tree of a hierarchical MDP In any action of an MDP, the choice of action influences: The immediate reward The probability distribution of the state at next stage In a hierarchical model the action (of a parent process) is modeled as a separate embedded finite time MDP (a child process): The reward is the expected sum of total rewards of the child The transition probability distribution is calculated as the matrix product of all transition matrices of the child process. The action of a parent process is an ordinary action of which the reward and transition probabilities are calculated in a special way (from the child process). In the model tree we just ad a child process to the action! Slide 33 11

12 Model tree of a hierarchical MDP Slide 34 Markov chain simulation As a supplement to the optimal policy various technical and economical key figures characterizing the optimal policy may be calculated by Markov chain simulation. The MLHMP software implements this (refer to exercises). Sometimes considered as a separate modeling technique (which it is not). Done by re-defining rewards and outputs and solving a set of linear equations. Slide 35 Properties of methods for decision support Herd constraints Optimization Dynamic programming Biological variation Functional limitations Slide 36 Uncertainty Dynamics 12

Multi-level hierarchic Markov processes

Multi-level hierarchic Markov processes Software Users Guide: Multi-level hierarchic Markov processes Anders Ringgaard Kristensen Dina Notat No. 84 September 1999 Fourth Edition, August 2010 . Software Users Guide: Multi-level hierarchic Markov

More information

A software system for multi-level hierarchic Markov processes

A software system for multi-level hierarchic Markov processes A software system for multi-level hierarchic Markov processes Anders Ringgaard Kristensen Department of Animal Science and Animal Health Royal Veterinary and Agricultural University Grønnegårdsvej 3, DK-1870

More information

Decision graphs II (Limited Memory) Influence Diagrams. Advanced Herd Management Anders Ringgaard Kristensen

Decision graphs II (Limited Memory) Influence Diagrams. Advanced Herd Management Anders Ringgaard Kristensen Decision graphs II (Limited Memory) Influence Diagrams Advanced Herd Management Anders Ringgaard Kristensen Outline Decision trees Optimization methods Decision tree Strong junction tree Single Policy

More information

LIMIDs for decision support in pig production

LIMIDs for decision support in pig production LIMIDs for decision support in pig production Merete Stenner Hansen Anders Ringgaard Kristensen Department of Large Animal Sciences, Royal Veterinary and Agricultural University Grønnegårdsvej 2, DK-1870

More information

UPDATING POCKET DAIRY (Existing Users only) Updating PCDART to version Please read all directions before proceeding.

UPDATING POCKET DAIRY (Existing Users only) Updating PCDART to version Please read all directions before proceeding. Updating PCDART to version 7.15.0 Please read all directions before proceeding. If you use PocketDairy for Android, PPC and/or Palm: Sync your handheld with PCDART to save any current information prior

More information

Reinforcement Learning: A brief introduction. Mihaela van der Schaar

Reinforcement Learning: A brief introduction. Mihaela van der Schaar Reinforcement Learning: A brief introduction Mihaela van der Schaar Outline Optimal Decisions & Optimal Forecasts Markov Decision Processes (MDPs) States, actions, rewards and value functions Dynamic Programming

More information

Directed Graphical Models (Bayes Nets) (9/4/13)

Directed Graphical Models (Bayes Nets) (9/4/13) STA561: Probabilistic machine learning Directed Graphical Models (Bayes Nets) (9/4/13) Lecturer: Barbara Engelhardt Scribes: Richard (Fangjian) Guo, Yan Chen, Siyang Wang, Huayang Cui 1 Introduction For

More information

Stuck in Traffic (SiT) Attacks

Stuck in Traffic (SiT) Attacks Stuck in Traffic (SiT) Attacks Mina Guirguis Texas State University Joint work with George Atia Traffic 2 Intelligent Transportation Systems V2X communication enable drivers to make better decisions: Avoiding

More information

Partially Observable Markov Decision Processes. Silvia Cruciani João Carvalho

Partially Observable Markov Decision Processes. Silvia Cruciani João Carvalho Partially Observable Markov Decision Processes Silvia Cruciani João Carvalho MDP A reminder: is a set of states is a set of actions is the state transition function. is the probability of ending in state

More information

15-780: MarkovDecisionProcesses

15-780: MarkovDecisionProcesses 15-780: MarkovDecisionProcesses J. Zico Kolter Feburary 29, 2016 1 Outline Introduction Formal definition Value iteration Policy iteration Linear programming for MDPs 2 1988 Judea Pearl publishes Probabilistic

More information

Planning and Control: Markov Decision Processes

Planning and Control: Markov Decision Processes CSE-571 AI-based Mobile Robotics Planning and Control: Markov Decision Processes Planning Static vs. Dynamic Predictable vs. Unpredictable Fully vs. Partially Observable Perfect vs. Noisy Environment What

More information

Petri Nets ee249 Fall 2000

Petri Nets ee249 Fall 2000 Petri Nets ee249 Fall 2000 Marco Sgroi Most slides borrowed from Luciano Lavagno s lecture ee249 (1998) 1 Models Of Computation for reactive systems Main MOCs: Communicating Finite State Machines Dataflow

More information

Outline. Petri nets. Introduction Examples Properties Analysis techniques. 1 EE249Fall04

Outline. Petri nets. Introduction Examples Properties Analysis techniques. 1 EE249Fall04 Outline Petri nets Introduction Examples Properties Analysis techniques 1 Petri Nets (PNs) Model introduced by C.A. Petri in 1962 Ph.D. Thesis: Communication with Automata Applications: distributed computing,

More information

Dynamic Programming. Other Topics

Dynamic Programming. Other Topics Dynamic Programming Other Topics 1 Objectives To explain the difference between discrete and continuous dynamic programming To discuss about multiple state variables To discuss the curse of dimensionality

More information

Edge Equalized Treemaps

Edge Equalized Treemaps Edge Equalized Treemaps Aimi Kobayashi Department of Computer Science University of Tsukuba Ibaraki, Japan kobayashi@iplab.cs.tsukuba.ac.jp Kazuo Misue Faculty of Engineering, Information and Systems University

More information

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Apprenticeship Learning for Reinforcement Learning with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Table of Contents Introduction Theory Autonomous helicopter control

More information

The Lander-Green Algorithm in Practice. Biostatistics 666

The Lander-Green Algorithm in Practice. Biostatistics 666 The Lander-Green Algorithm in Practice Biostatistics 666 Last Lecture: Lander-Green Algorithm More general definition for I, the "IBD vector" Probability of genotypes given IBD vector Transition probabilities

More information

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real

We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real 14.3 Interval trees We augment RBTs to support operations on dynamic sets of intervals A closed interval is an ordered pair of real numbers ], with Interval ]represents the set Open and half-open intervals

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

TOTAL CONTROL IN REAL-TIME DATAFLOW II BUSINESS EFFICIENCY, MAXIMUM PERFORMANCE

TOTAL CONTROL IN REAL-TIME DATAFLOW II BUSINESS EFFICIENCY, MAXIMUM PERFORMANCE TOTAL CONTROL IN REAL-TIME DATAFLOW II BUSINESS EFFICIENCY, MAXIMUM PERFORMANCE heifers ready For AI Cows in Heat ID Only Cow Ready For AI ID Only Cow Nu Days in Days Days Activity Rumina... Hours To Lactation

More information

Getting Started with the Animal Agriculture Demonstration Project

Getting Started with the Animal Agriculture Demonstration Project Getting Started with the Animal Agriculture Demonstration Project How to use the Demo Projects- Each demo project has been selected to help users see how COMET-Farm works and how to navigate the data entry

More information

Chapter 1 Introduction to Statistics

Chapter 1 Introduction to Statistics Corresponds to ELEMENTARY STATISTICS USING THE TI 83/84 PLUS CALCULATOR 3rd ed. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola Chapter 1 Introduction

More information

Writing Parallel Programs; Cost Model.

Writing Parallel Programs; Cost Model. CSE341T 08/30/2017 Lecture 2 Writing Parallel Programs; Cost Model. Due to physical and economical constraints, a typical machine we can buy now has 4 to 8 computing cores, and soon this number will be

More information

Planning and Reinforcement Learning through Approximate Inference and Aggregate Simulation

Planning and Reinforcement Learning through Approximate Inference and Aggregate Simulation Planning and Reinforcement Learning through Approximate Inference and Aggregate Simulation Hao Cui Department of Computer Science Tufts University Medford, MA 02155, USA hao.cui@tufts.edu Roni Khardon

More information

An Improved Policy Iteratioll Algorithm for Partially Observable MDPs

An Improved Policy Iteratioll Algorithm for Partially Observable MDPs An Improved Policy Iteratioll Algorithm for Partially Observable MDPs Eric A. Hansen Computer Science Department University of Massachusetts Amherst, MA 01003 hansen@cs.umass.edu Abstract A new policy

More information

Monte Carlo Tree Search PAH 2015

Monte Carlo Tree Search PAH 2015 Monte Carlo Tree Search PAH 2015 MCTS animation and RAVE slides by Michèle Sebag and Romaric Gaudel Markov Decision Processes (MDPs) main formal model Π = S, A, D, T, R states finite set of states of the

More information

E0005E - Industrial Image Analysis

E0005E - Industrial Image Analysis E0005E - Industrial Image Analysis The Hough Transform Matthew Thurley slides by Johan Carlson 1 This Lecture The Hough transform Detection of lines Detection of other shapes (the generalized Hough transform)

More information

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order).

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Exercises Exercises 1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). a) {(1, 1), (1, 2), (1, 3)} b) {(1, 2), (2, 1), (2, 2), (3,

More information

CSE151 Assignment 2 Markov Decision Processes in the Grid World

CSE151 Assignment 2 Markov Decision Processes in the Grid World CSE5 Assignment Markov Decision Processes in the Grid World Grace Lin A484 gclin@ucsd.edu Tom Maddock A55645 tmaddock@ucsd.edu Abstract Markov decision processes exemplify sequential problems, which are

More information

Graphical Models. David M. Blei Columbia University. September 17, 2014

Graphical Models. David M. Blei Columbia University. September 17, 2014 Graphical Models David M. Blei Columbia University September 17, 2014 These lecture notes follow the ideas in Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. In addition,

More information

Partially Observable Markov Decision Processes. Mausam (slides by Dieter Fox)

Partially Observable Markov Decision Processes. Mausam (slides by Dieter Fox) Partially Observable Markov Decision Processes Mausam (slides by Dieter Fox) Stochastic Planning: MDPs Static Environment Fully Observable Perfect What action next? Stochastic Instantaneous Percepts Actions

More information

Linear and Affine Transformations Coordinate Systems

Linear and Affine Transformations Coordinate Systems Linear and Affine Transformations Coordinate Systems Recall A transformation T is linear if Recall A transformation T is linear if Every linear transformation can be represented as matrix Linear Transformation

More information

10/24/ Rotations. 2. // s left subtree s right subtree 3. if // link s parent to elseif == else 11. // put x on s left

10/24/ Rotations. 2. // s left subtree s right subtree 3. if // link s parent to elseif == else 11. // put x on s left 13.2 Rotations MAT-72006 AA+DS, Fall 2013 24-Oct-13 368 LEFT-ROTATE(, ) 1. // set 2. // s left subtree s right subtree 3. if 4. 5. // link s parent to 6. if == 7. 8. elseif == 9. 10. else 11. // put x

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

Name: UW CSE 473 Midterm, Fall 2014

Name: UW CSE 473 Midterm, Fall 2014 Instructions Please answer clearly and succinctly. If an explanation is requested, think carefully before writing. Points may be removed for rambling answers. If a question is unclear or ambiguous, feel

More information

MAT 155. Chapter 1 Introduction to Statistics. sample. population. parameter. statistic

MAT 155. Chapter 1 Introduction to Statistics. sample. population. parameter. statistic MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 1 Introduction to Statistics 1 1Review and Preview 1 2Statistical Thinking 1 3Types of Data 1 4Critical Thinking 1 5Collecting Sample Data Key

More information

Heuristic Search Value Iteration Trey Smith. Presenter: Guillermo Vázquez November 2007

Heuristic Search Value Iteration Trey Smith. Presenter: Guillermo Vázquez November 2007 Heuristic Search Value Iteration Trey Smith Presenter: Guillermo Vázquez November 2007 What is HSVI? Heuristic Search Value Iteration is an algorithm that approximates POMDP solutions. HSVI stores an upper

More information

Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended)

Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended) Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended) Pavlos Andreadis, February 2 nd 2018 1 Markov Decision Processes A finite Markov Decision Process

More information

You can download missing data from the course website, together with the codes R and python that we will run in this exercise.

You can download missing data from the course website, together with the codes R and python that we will run in this exercise. Exercise 4: Samples Characterization Aim: Sampling environmental conditions Principal Component Analysis of environmental conditions Hierarchical clustering of sampling spots Interpretation of the environmental

More information

ON SOME METHODS OF CONSTRUCTION OF BLOCK DESIGNS

ON SOME METHODS OF CONSTRUCTION OF BLOCK DESIGNS ON SOME METHODS OF CONSTRUCTION OF BLOCK DESIGNS NURNABI MEHERUL ALAM M.Sc. (Agricultural Statistics), Roll No. I.A.S.R.I, Library Avenue, New Delhi- Chairperson: Dr. P.K. Batra Abstract: Block designs

More information

STATISTICS (STAT) Statistics (STAT) 1

STATISTICS (STAT) Statistics (STAT) 1 Statistics (STAT) 1 STATISTICS (STAT) STAT 2013 Elementary Statistics (A) Prerequisites: MATH 1483 or MATH 1513, each with a grade of "C" or better; or an acceptable placement score (see placement.okstate.edu).

More information

Exact Sampling for Hardy- Weinberg Equilibrium

Exact Sampling for Hardy- Weinberg Equilibrium Exact Sampling for Hardy- Weinberg Equilibrium Mark Huber Dept. of Mathematics and Institute of Statistics and Decision Sciences Duke University mhuber@math.duke.edu www.math.duke.edu/~mhuber Joint work

More information

Data handling and processing to evaluate dairy farm management through a web application.

Data handling and processing to evaluate dairy farm management through a web application. Data handling and processing to evaluate dairy farm management through a web application. A. Pozzebon* 1, G. Azzaro 1, M. Caccamo 1, R. Petriglieri 1 and G. Licitra 1,2 ; 1 CoRFiLaC, Regione Siciliana,

More information

Dealing with Data Gradients: Backing Out & Calibration

Dealing with Data Gradients: Backing Out & Calibration Dealing with Data Gradients: Backing Out & Calibration Nathaniel Osgood MIT 15.879 April 25, 2012 ABM Modeling Process Overview A Key Deliverable! ODD: Overview & high-level design components ODD: Design

More information

Approximate Linear Programming for Average-Cost Dynamic Programming

Approximate Linear Programming for Average-Cost Dynamic Programming Approximate Linear Programming for Average-Cost Dynamic Programming Daniela Pucci de Farias IBM Almaden Research Center 65 Harry Road, San Jose, CA 51 pucci@mitedu Benjamin Van Roy Department of Management

More information

Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient

Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information

Nested Intervals Tree Encoding with Continued Fractions

Nested Intervals Tree Encoding with Continued Fractions Nested Intervals Tree Encoding with Continued Fractions VADIM TROPASHKO Oracle Corp There is nothing like abstraction To take away your intuition Shai Simonson http://aduniorg/courses/discrete/ We introduce

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

3-8 Solving Systems of Equations Using Inverse Matrices. Determine whether each pair of matrices are inverses of each other. 13.

3-8 Solving Systems of Equations Using Inverse Matrices. Determine whether each pair of matrices are inverses of each other. 13. 13. Determine whether each pair of matrices are inverses of each other. If K and L are inverses, then. Since, they are not inverses. 15. If P and Q are inverses, then. Since, they are not inverses. esolutions

More information

REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION

REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION ABSTRACT Mark A. Mueller Georgia Institute of Technology, Computer Science, Atlanta, GA USA The problem of autonomous vehicle navigation between

More information

2.3.4 Optimal paths in directed acyclic graphs

2.3.4 Optimal paths in directed acyclic graphs .3.4 Optimal paths in directed acyclic graphs Definition: A directed graph G = (N, A) is acyclic if it contains no circuits. A directed acyclic graph is referred to as DAG. circuit Problem Given a directed

More information

Statistics, Data, and R. 2 Sample Means, Variances, Covariances, and Correlations

Statistics, Data, and R. 2 Sample Means, Variances, Covariances, and Correlations Statistics, Data, and R 1 Populations and Samples A population refers to a group of animals that are part of the overall breeding structure in an industry. Examples are, Holstein dairy cattle in Canada

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Giri Iyengar Cornell University gi43@cornell.edu March 14, 2018 Giri Iyengar (Cornell Tech) Social Network Analysis March 14, 2018 1 / 24 Overview 1 Social Networks 2 HITS 3 Page

More information

Q-learning with linear function approximation

Q-learning with linear function approximation Q-learning with linear function approximation Francisco S. Melo and M. Isabel Ribeiro Institute for Systems and Robotics [fmelo,mir]@isr.ist.utl.pt Conference on Learning Theory, COLT 2007 June 14th, 2007

More information

Modeling time series with hidden Markov models

Modeling time series with hidden Markov models Modeling time series with hidden Markov models Advanced Machine learning 2017 Nadia Figueroa, Jose Medina and Aude Billard Time series data Barometric pressure Temperature Data Humidity Time What s going

More information

Adaptive Robotics - Final Report Extending Q-Learning to Infinite Spaces

Adaptive Robotics - Final Report Extending Q-Learning to Infinite Spaces Adaptive Robotics - Final Report Extending Q-Learning to Infinite Spaces Eric Christiansen Michael Gorbach May 13, 2008 Abstract One of the drawbacks of standard reinforcement learning techniques is that

More information

ECE521 Lecture 18 Graphical Models Hidden Markov Models

ECE521 Lecture 18 Graphical Models Hidden Markov Models ECE521 Lecture 18 Graphical Models Hidden Markov Models Outline Graphical models Conditional independence Conditional independence after marginalization Sequence models hidden Markov models 2 Graphical

More information

HIERARCHICAL TRANSFORMATIONS A Practical Introduction

HIERARCHICAL TRANSFORMATIONS A Practical Introduction HIERARCHICAL TRANSFORMATIONS A Practical Introduction Christopher Peters CST, KTH Royal Institute of Technology, Sweden chpeters@kth.se https://www.kth.se/profile/chpeters/ Before we begin... Lab work

More information

Multiagent Planning with Factored MDPs

Multiagent Planning with Factored MDPs Appeared in Advances in Neural Information Processing Systems NIPS-14, 2001. Multiagent Planning with Factored MDPs Carlos Guestrin Computer Science Dept Stanford University guestrin@cs.stanford.edu Daphne

More information

ENGG1811 Computing for Engineers Week 10 Matlab: Vectorization. (No loops, please!)

ENGG1811 Computing for Engineers Week 10 Matlab: Vectorization. (No loops, please!) ENGG1811 Computing for Engineers Week 10 Matlab: Vectorization. (No loops, please!) ENGG1811 UNSW, CRICOS Provider No: 00098G1 W10 slide 1 Vectorisation Matlab is designed to work with vectors and matrices

More information

A probabilistic logic incorporating posteriors of hierarchic graphical models

A probabilistic logic incorporating posteriors of hierarchic graphical models A probabilistic logic incorporating posteriors of hierarchic graphical models András s Millinghoffer, Gábor G Hullám and Péter P Antal Department of Measurement and Information Systems Budapest University

More information

STEPHEN WOLFRAM MATHEMATICADO. Fourth Edition WOLFRAM MEDIA CAMBRIDGE UNIVERSITY PRESS

STEPHEN WOLFRAM MATHEMATICADO. Fourth Edition WOLFRAM MEDIA CAMBRIDGE UNIVERSITY PRESS STEPHEN WOLFRAM MATHEMATICADO OO Fourth Edition WOLFRAM MEDIA CAMBRIDGE UNIVERSITY PRESS Table of Contents XXI a section new for Version 3 a section new for Version 4 a section substantially modified for

More information

Probabilistic Model Checking. Mohammad Roohitavaf

Probabilistic Model Checking. Mohammad Roohitavaf Probabilistic Model Checking Mohammad Roohitavaf Index! Introduction! Probabilistic Systems! Probabilistic Logics! PRISM! Performance Evaluation! Model Checking and Performance Evaluation! Challenges Introduction!

More information

VIII/2015 TECHNICAL REFERENCE GUIDE FOR

VIII/2015 TECHNICAL REFERENCE GUIDE FOR MiX99 Solving Large Mixed Model Equations Release VIII/2015 TECHNICAL REFERENCE GUIDE FOR MiX99 PRE-PROCESSOR Copyright 2015 Last update: Aug 2015 Preface Development of MiX99 was initiated to allow more

More information

Markov Decision Processes and Reinforcement Learning

Markov Decision Processes and Reinforcement Learning Lecture 14 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Slides by Stuart Russell and Peter Norvig Course Overview Introduction Artificial Intelligence

More information

Markov Decision Processes. (Slides from Mausam)

Markov Decision Processes. (Slides from Mausam) Markov Decision Processes (Slides from Mausam) Machine Learning Operations Research Graph Theory Control Theory Markov Decision Process Economics Robotics Artificial Intelligence Neuroscience /Psychology

More information

A Framework for Space and Time Efficient Scheduling of Parallelism

A Framework for Space and Time Efficient Scheduling of Parallelism A Framework for Space and Time Efficient Scheduling of Parallelism Girija J. Narlikar Guy E. Blelloch December 996 CMU-CS-96-97 School of Computer Science Carnegie Mellon University Pittsburgh, PA 523

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

DOWNLOAD PDF BIG IDEAS MATH VERTICAL SHRINK OF A PARABOLA

DOWNLOAD PDF BIG IDEAS MATH VERTICAL SHRINK OF A PARABOLA Chapter 1 : BioMath: Transformation of Graphs Use the results in part (a) to identify the vertex of the parabola. c. Find a vertical line on your graph paper so that when you fold the paper, the left portion

More information

Computer Vision 2 Lecture 8

Computer Vision 2 Lecture 8 Computer Vision 2 Lecture 8 Multi-Object Tracking (30.05.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

More information

Variations on Genetic Cellular Automata

Variations on Genetic Cellular Automata Variations on Genetic Cellular Automata Alice Durand David Olson Physics Department amdurand@ucdavis.edu daolson@ucdavis.edu Abstract: We investigated the properties of cellular automata with three or

More information

Dynamic Programming. An Enumeration Approach. Matrix Chain-Products. Matrix Chain-Products (not in book)

Dynamic Programming. An Enumeration Approach. Matrix Chain-Products. Matrix Chain-Products (not in book) Matrix Chain-Products (not in book) is a general algorithm design paradigm. Rather than give the general structure, let us first give a motivating example: Matrix Chain-Products Review: Matrix Multiplication.

More information

Module 9 : Numerical Relaying II : DSP Perspective

Module 9 : Numerical Relaying II : DSP Perspective Module 9 : Numerical Relaying II : DSP Perspective Lecture 36 : Fast Fourier Transform Objectives In this lecture, We will introduce Fast Fourier Transform (FFT). We will show equivalence between FFT and

More information

Applied Finite Mathematics. Collection Editor: Rupinder Sekhon

Applied Finite Mathematics. Collection Editor: Rupinder Sekhon Applied Finite Mathematics Collection Editor: Rupinder Sekhon Applied Finite Mathematics Collection Editor: Rupinder Sekhon Authors: UniqU, LLC Rupinder Sekhon Online: < http://cnx.org/content/col10613/1.5/

More information

Evolutionary Computation Algorithms for Cryptanalysis: A Study

Evolutionary Computation Algorithms for Cryptanalysis: A Study Evolutionary Computation Algorithms for Cryptanalysis: A Study Poonam Garg Information Technology and Management Dept. Institute of Management Technology Ghaziabad, India pgarg@imt.edu Abstract The cryptanalysis

More information

Stochastic Petri nets

Stochastic Petri nets Stochastic Petri nets 1 Stochastic Petri nets Markov Chain grows very fast with the dimension of the system Petri nets: High-level specification formalism Markovian Stochastic Petri nets adding temporal

More information

USER MANUAL. Software developed by Holstein Association USA, Inc. User Manual 1

USER MANUAL. Software developed by Holstein Association USA, Inc. User Manual 1 USER MANUAL Software developed by Holstein Association USA, Inc. User Manual 1 1) Introduction Minimum installation requirements Installation Instructions Getting Started 2) Looking up an Individual Bull

More information

10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control 10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Policy Gradient I Used Materials Disclaimer: Much of the material and slides for this lecture

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Bayesian Networks Directed Acyclic Graph (DAG) Bayesian Networks General Factorization Bayesian Curve Fitting (1) Polynomial Bayesian

More information

Recall from last time. Lecture 4: Wrap-up of Bayes net representation. Markov networks. Markov blanket. Isolating a node

Recall from last time. Lecture 4: Wrap-up of Bayes net representation. Markov networks. Markov blanket. Isolating a node Recall from last time Lecture 4: Wrap-up of Bayes net representation. Markov networks Markov blanket, moral graph Independence maps and perfect maps Undirected graphical models (Markov networks) A Bayes

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Computing algorithm for dairy sire evaluation

Computing algorithm for dairy sire evaluation Computing algorithm for dairy sire evaluation on several lactations considered as the same trait B. BONAITI Michèle BRIEND 1.N.R.A., Station de Génétique quantitative et appliqu ge, Centre de Recherches

More information

PCDART START-UP GUIDE

PCDART START-UP GUIDE DRMS DAIRY RECORDS MANAGEMENT SYSTEMS PCDART START-UP GUIDE DRMS provides support to Service Affiliate DHIA personnel, and they provide local support along with other services for their members. Contact

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

A guide to OVID Basic Search: how to find a few key articles in Medline and Embase

A guide to OVID Basic Search: how to find a few key articles in Medline and Embase A guide to OVID Basic Search: how to find a few key articles in Medline and Embase NHSGGC Library Network September 2011 Visit the NHS Scotland Knowledge Network www.knowledge.scot.nhs.uk and log in at

More information

MetaData for Database Mining

MetaData for Database Mining MetaData for Database Mining John Cleary, Geoffrey Holmes, Sally Jo Cunningham, and Ian H. Witten Department of Computer Science University of Waikato Hamilton, New Zealand. Abstract: At present, a machine

More information

Loopy Belief Propagation

Loopy Belief Propagation Loopy Belief Propagation Research Exam Kristin Branson September 29, 2003 Loopy Belief Propagation p.1/73 Problem Formalization Reasoning about any real-world problem requires assumptions about the structure

More information

Data mining, 4 cu Lecture 6:

Data mining, 4 cu Lecture 6: 582364 Data mining, 4 cu Lecture 6: Quantitative association rules Multi-level association rules Spring 2010 Lecturer: Juho Rousu Teaching assistant: Taru Itäpelto Data mining, Spring 2010 (Slides adapted

More information

Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps

Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps Oliver Cardwell, Ramakrishnan Mukundan Department of Computer Science and Software Engineering University of Canterbury

More information

Basic Concepts of Reliability

Basic Concepts of Reliability Basic Concepts of Reliability Reliability is a broad concept. It is applied whenever we expect something to behave in a certain way. Reliability is one of the metrics that are used to measure quality.

More information

Parallel Computing. Slides credit: M. Quinn book (chapter 3 slides), A Grama book (chapter 3 slides)

Parallel Computing. Slides credit: M. Quinn book (chapter 3 slides), A Grama book (chapter 3 slides) Parallel Computing 2012 Slides credit: M. Quinn book (chapter 3 slides), A Grama book (chapter 3 slides) Parallel Algorithm Design Outline Computational Model Design Methodology Partitioning Communication

More information

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING GENETIC ALGORITHM (GA) Mahanim Omar, Adam Baharum, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia Tel: (+)

More information

Máté Lengyel, Peter Dayan: Hippocampal contributions to control: the third way

Máté Lengyel, Peter Dayan: Hippocampal contributions to control: the third way Máté Lengyel, Peter Dayan: Hippocampal contributions to control: the third way David Nagy journal club at 1 markov decision processes 2 model-based & model-free control 3 a third way 1 markov decision

More information

Quadruped Robots and Legged Locomotion

Quadruped Robots and Legged Locomotion Quadruped Robots and Legged Locomotion J. Zico Kolter Computer Science Department Stanford University Joint work with Pieter Abbeel, Andrew Ng Why legged robots? 1 Why Legged Robots? There is a need for

More information

CSC 373: Algorithm Design and Analysis Lecture 8

CSC 373: Algorithm Design and Analysis Lecture 8 CSC 373: Algorithm Design and Analysis Lecture 8 Allan Borodin January 23, 2013 1 / 19 Lecture 8: Announcements and Outline Announcements No lecture (or tutorial) this Friday. Lecture and tutorials as

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Matrix Multiplication Studio April 20, 2007

Matrix Multiplication Studio April 20, 2007 Matrix Multiplication Studio April 20, 2007 A matrix is a rectangular array of numbers. The shape of a matrix is the number of rows by the number of columns. For example 1 2 is a 2 2 matrix 3 4 3 4 0 is

More information

A Comparison of Text Retrieval Models

A Comparison of Text Retrieval Models A Comparison of Text Retrieval Models HOWARD R. TURTLE 1 AND W. BRUCE CROFT 2 1 West Publishing Company, St Paul, MN 55164, USA 'Computer Science Department, University of Massachusetts, Amherst, MA 01002,

More information

cs6964 March TREES & GRAPHS Miriah Meyer University of Utah

cs6964 March TREES & GRAPHS Miriah Meyer University of Utah cs6964 March 1 2012 TREES & GRAPHS Miriah Meyer University of Utah cs6964 March 1 2012 TREES & GRAPHS Miriah Meyer University of Utah slide acknowledgements: Hanspeter Pfister, Harvard University Jeff

More information

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4.

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. Chapter 4: Roundoff and Truncation Errors Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. 1 Outline Errors Accuracy and Precision

More information