Volume Enclosed by Example Subdivision Surfaces

Size: px
Start display at page:

Download "Volume Enclosed by Example Subdivision Surfaces"

Transcription

1 Volume Enclosed by Example Subdivision Surfaces by Jan Hakenberg - May 5th, this document is available at vixra.org and hakenberg.de Abstract Simple meshes such as the cube, tetrahedron, and tripod frequently appear in the literature to illustrate the concept of subdivision. The formula for the volume enclosed by subdivision surfaces has only recently been identified. We specify simple meshes and state the volume enclosed by the corresponding limit surfaces. We consider the subdivision schemes Doo-Sabin, Midedge, Catmull-Clark, and Loop. Introduction The volume enclosed by the subdivision surface defined by a closed, orientable mesh M is the sum over all facets f vol S m f M = f œm t f i,j,k Ỳ i,j,k pxi py j pz k t f The coefficients Ỳ i,j,k consititute trilinear forms that are alternating. The coefficients are uniquely determined by the subdivision weights for topology type t f of a facet f. The points px i,py i,pz i for i =,,..., m f are the vertices of the mesh that determine the subdivision surface associated to facet f. For the derivation and proof of the formula, see [Hakenberg et al. ]. In this article, we state the volume enclosed by subdivision surfaces generated from various example meshes. Each of the four subdivision schemes is treated in a separate section Doo-Sabin Midedge Catmull-Clark Loop Each example has the following structure: We state the vertex coordinates and topology of the mesh. The specification is omitted if the mesh was already introduced previously. The subdivision iteration is illustrated up to a certain level. After one or two rounds of subdivision, the mesh topology admits the application of the volume formula. In that case, the facets are colored based on their contribution to the volume. We state the volume enclosed by the corresponding subdivision surface. In some cases, we are unable to obtain the volume in symbolic form, and revert to numeric precision. Then, the approximation of the volume by the piecewise linear surface from the first refinements are tabulated and plotted. Non-planar quads are triangulated in an arbitrary fashion. The results can help to validate implementations of the volume formula.

2 volume_enclosed_by_example_subdivision_surfaces_55.nb Doo-Sabin The Doo-Sabin subdivision scheme is published as [Doo/Sabin 978]. The algorithm applies to meshes with n-gons. One round of Doo-Sabin subdivision requires the contraction of each face in the mesh. The weights to contract an n-gon are w, w,..., w n-. Specifically, w = n n + 5, and w k = n p k + Cos for k =,,..., n -. n The weights are applied in a rotational fashion. For instance, a triangle is contracted using the mask,, centered at all vertices; 6 6 a quad is contractred using 9,,, ; for a pentagon, the mask is, 5 + 5, 5-5, 5-5, ; a hexagon is contracted using,,,,,. 6 6 After one round of subdivision, all newly introduced faces are quads. Cube Vertices Faces Important: In order to color the facets based on their contribution to the global volume, we display the dual mesh. Required valences f Limit volume Level

3 volume_enclosed_by_example_subdivision_surfaces_55.nb Corner Mesh Vertices Faces Required valences f,, 5 Limit volume Level

4 volume_enclosed_by_example_subdivision_surfaces_55.nb Tripod Vertices Faces Required valences f,, 5, 6 Limit volume Level Tetrahedron Vertices Faces

5 volume_enclosed_by_example_subdivision_surfaces_55.nb 5 Required valences f, Limit volume Octahedron Level Vertices Faces Required valences f, Limit volume

6 6 volume_enclosed_by_example_subdivision_surfaces_55.nb Regular Prism Level Vertices Faces,,,, 5,, 5, 6,, 6, 5,,, 6 Required valences f, Limit volume Level

7 volume_enclosed_by_example_subdivision_surfaces_55.nb 7 Torus Vertices Faces

8 8 volume_enclosed_by_example_subdivision_surfaces_55.nb Required valences f,, 6, 7, 8 Limit volume Level Print The specification of the mesh is omitted. The example is included for the purpose of illustration, and to study the approximation of the volume. Required valences f, 5 Limit volume Level Bigguy The specification of the mesh is omitted. The example is included for the purpose of illustration, and to study the approximation of the volume.

9 volume_enclosed_by_example_subdivision_surfaces_55.nb 9 Required valences f,, 5, 6 Limit volume Level Midedge The Midedge subdivision scheme is specified by [Peters/Reif 997]. The algorithm applies to meshes with n-gons. One round of Midedge subdivision requires the contraction of each face in the mesh. In the simplest-pure configuration, the weights to contract an n-gon are w =, w =, w =,..., w n- =, w n- =. The weights are applied in a rotational fashion. For instance, a triangle is contracted using the mask,, centered at all vertices; a quad is contractred using,,,. After one round of subdivision, all newly introduced faces are quads. Cube The vertex coordinates and topology of the mesh are specified in a section above. Important: In order to color the facets based on their contribution to the global volume, we display the dual mesh.

10 volume_enclosed_by_example_subdivision_surfaces_55.nb Required valences f Limit volume Corner Mesh Level The vertex coordinates and topology of the mesh are specified in a section above. Required valences f,, 5 Limit volume Level Tripod The vertex coordinates and topology of the mesh are specified in a section above. Required valences f,, 5, 6 Limit volume

11 volume_enclosed_by_example_subdivision_surfaces_55.nb Level Tetrahedron The vertex coordinates and topology of the mesh are specified in a section above. Required valences f, Limit volume Octahedron Level The vertex coordinates and topology of the mesh are specified in a section above. Required valences f, Limit volume

12 volume_enclosed_by_example_subdivision_surfaces_55.nb Regular Prism Level The vertex coordinates and topology of the mesh are specified in a section above. Required valences f, Limit volume Torus Level The vertex coordinates and topology of the mesh are specified in a section above. Required valences f,, 6, 7, 8 Limit volume

13 volume_enclosed_by_example_subdivision_surfaces_55.nb Level Print The specification of the mesh is omitted. The example is included for the purpose of illustration, and to study the approximation of the volume. Required valences f, 5 Limit volume Level Bigguy The specification of the mesh is omitted. The example is included for the purpose of illustration, and to study the approximation of the volume.

14 volume_enclosed_by_example_subdivision_surfaces_55.nb Required valences f,, 5, 6 Limit volume Level Catmull-Clark The Catmull-Clark subdivision scheme is published as [Catmull/Clark 978]. The algorithm applies to meshes with quads. Weights are specified for the insertion of a face midpoint, and edge midpoint, as well as the repositioning of a vertex. The weights are subject to normalization so that their sum adds up to. Cube The vertex coordinates and topology of the mesh are specified in a section above.

15 volume_enclosed_by_example_subdivision_surfaces_55.nb 5 Required valences f Limit volume / Corner Level The vertex coordinates and topology of the mesh are specified in a section above. Required valences f,, 5 Limit volume / Tripod Level The vertex coordinates and topology of the mesh are specified in a section above.

16 6 volume_enclosed_by_example_subdivision_surfaces_55.nb Required valences f,, 5, 6 Limit volume / Tetrahedron Level The vertex coordinates and topology of the mesh are specified in a section above. For subdivision, the faces are quadrangulated as illustrated. Required valences f, Limit volume

17 volume_enclosed_by_example_subdivision_surfaces_55.nb Level Octahedron The vertex coordinates and topology of the mesh are specified in a section above. For subdivision, the faces are quadrangulated as illustrated. Required valences f, Limit volume Level Regular Prism The vertex coordinates and topology of the mesh are specified in a section above. For subdivision, the faces are quadrangulated as illustrated. Required valences f, Limit volume

18 8 volume_enclosed_by_example_subdivision_surfaces_55.nb Level Torus The vertex coordinates and topology of the mesh are specified in a section above. For subdivision, the faces are quadrangulated as illustrated. Required valences f,, 6, 7, 8 Limit volume Level Print The specification of the mesh is omitted. The example is included for the purpose of illustration, and to study the approximation of the volume.

19 volume_enclosed_by_example_subdivision_surfaces_55.nb 9 Required valences f, 5 Limit volume Level Bigguy The specification of the mesh is omitted. The example is included for the purpose of illustration, and to study the approximation of the volume. Required valences f,, 5, 6 Limit volume Level

20 volume_enclosed_by_example_subdivision_surfaces_55.nb Loop The Loop subdivision scheme is published as [Loop 987]. The algorithm applies to meshes with triangles. The weights for the insertion of an edge midpoint, as well as the repositioning of a vertex that already existed in the input mesh are where b= n Cos p n. Tetrahedron The vertex coordinates and topology of the mesh are specified in a section above. Required valences f, 6 Limit volume Octahedron Level The vertex coordinates and topology of the mesh are specified in a section above.

21 volume_enclosed_by_example_subdivision_surfaces_55.nb Required valences f, 6 Limit volume Regular Prism Level The vertex coordinates and topology of the mesh are specified in a section above. For subdivision, each quad is split into triangles as illustrated. Required valences f, 5, 6 Limit volume

22 volume_enclosed_by_example_subdivision_surfaces_55.nb Twisted Prism Level Vertices Faces Required valences f,, 5, 6 Limit volume Level

23 volume_enclosed_by_example_subdivision_surfaces_55.nb Twisted Cube Vertices Faces Required valences f, 5, 6 Limit volume Level Regular Cube The vertex coordinates and topology of the mesh are specified in a section above. For subdivision, each quad is split into triangles as illustrated.

24 volume_enclosed_by_example_subdivision_surfaces_55.nb Required valences f, 6 Limit volume Twisted Corner Level Vertices Faces

25 volume_enclosed_by_example_subdivision_surfaces_55.nb 5 Required valences f, 5, 6, 7, 8 Limit volume Level The volumes are stated only in numeric precision. For instance at subdivision level in symbolic form, the volume is Sin p p + 88 Sin Regular Corner The vertex coordinates and topology of the mesh are specified in a section above. For subdivision, each quad is split into triangles as illustrated. Required valences f, 6, 8, Limit volume Level

26 6 volume_enclosed_by_example_subdivision_surfaces_55.nb Regular Torus Vertices Faces Required valences f 6 Limit volume Level

27 volume_enclosed_by_example_subdivision_surfaces_55.nb 7 Torus The vertex coordinates and topology of the mesh are specified in a section above. Required valences f, 6, 7, 8 Limit volume Level Hip_s The specification of the mesh is omitted. The example is included for the purpose of illustration, and to study the approximation of the volume. Required valences f,, 5, 6, 7, 8, 9, Limit volume Level

28 8 volume_enclosed_by_example_subdivision_surfaces_55.nb References [Catmull/Clark 978] Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes, Computer-Aided Design 6(6), 978 [Doo/Sabin 978] Doo. D., Sabin M.: Behaviour of recursive division surfaces near extraordinary points, Computer- Aided Design (6), 978 [Hakenberg et al. ] Hakenberg J., Reif U., Schaefer S., Warren J.: Volume Enclosed by Subdivision Surfaces, vixra:5., vixra.org, [Loop 987] Loop C.: Smooth subdivision surfaces based on triangles, Master s thesis, University of Utah, 987 [Peters/Reif 997] Peters J., Reif U.: The simplest subdivision scheme for smoothing polyhedra, 997

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces Using Semi-Regular 8 Meshes for Subdivision Surfaces Luiz Velho IMPA Instituto de Matemática Pura e Aplicada Abstract. Semi-regular 8 meshes are refinable triangulated quadrangulations. They provide a

More information

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface.

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface. Example: Loop Scheme What makes a good scheme? recursive application leads to a smooth surface 200, Denis Zorin Example: Loop Scheme Refinement rule 200, Denis Zorin Example: Loop Scheme Two geometric

More information

Local Mesh Operators: Extrusions Revisited

Local Mesh Operators: Extrusions Revisited Local Mesh Operators: Extrusions Revisited Eric Landreneau Computer Science Department Abstract Vinod Srinivasan Visualization Sciences Program Texas A&M University Ergun Akleman Visualization Sciences

More information

Recursive Subdivision Surfaces for Geometric Modeling

Recursive Subdivision Surfaces for Geometric Modeling Recursive Subdivision Surfaces for Geometric Modeling Weiyin Ma City University of Hong Kong, Dept. of Manufacturing Engineering & Engineering Management Ahmad Nasri American University of Beirut, Dept.

More information

u 0+u 2 new boundary vertex

u 0+u 2 new boundary vertex Combined Subdivision Schemes for the design of surfaces satisfying boundary conditions Adi Levin School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:fadilev@math.tau.ac.ilg

More information

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that generalizes the four-directional box spline of class

More information

SEMIREGULAR PENTAGONAL SUBDIVISIONS

SEMIREGULAR PENTAGONAL SUBDIVISIONS SEMIREGULAR PENTAGONAL SUBDIVISIONS ERGUN AKLEMAN & VINOD SRINIVASAN Visualization Sciences Program Texas A&M University ZEKI MELEK & PAUL EDMUNDSON Computer Science Department Abstract Triangular and

More information

Curve Corner Cutting

Curve Corner Cutting Subdivision ision Techniqueses Spring 2010 1 Curve Corner Cutting Take two points on different edges of a polygon and join them with a line segment. Then, use this line segment to replace all vertices

More information

Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

More information

Joe Warren, Scott Schaefer Rice University

Joe Warren, Scott Schaefer Rice University Joe Warren, Scott Schaefer Rice University Polygons are a ubiquitous modeling primitive in computer graphics. Their popularity is such that special purpose graphics hardware designed to render polygons

More information

Connected & Manifold Sierpinsky Polyhedra

Connected & Manifold Sierpinsky Polyhedra Volume xx (200y), Number z, pp. 1 6 Connected & Manifold Sierpinsky Polyhedra Vinod Srinivasan and Ergun Akleman Visualization Sciences Program, Department of Architecture, Texas A&M University Abstract

More information

Normals of subdivision surfaces and their control polyhedra

Normals of subdivision surfaces and their control polyhedra Computer Aided Geometric Design 24 (27 112 116 www.elsevier.com/locate/cagd Normals of subdivision surfaces and their control polyhedra I. Ginkel a,j.peters b,,g.umlauf a a University of Kaiserslautern,

More information

Curves and Surfaces 2

Curves and Surfaces 2 Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

More information

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces David L. Finn Today, we continue our discussion of subdivision surfaces, by first looking in more detail at the midpoint method and

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

A subdivision scheme for hexahedral meshes

A subdivision scheme for hexahedral meshes A subdivision scheme for hexahedral meshes Chandrajit Bajaj Department of Computer Sciences, University of Texas Scott Schaefer Department of Computer Science, Rice University Joe Warren Department of

More information

Subdivision Curves and Surfaces

Subdivision Curves and Surfaces Subdivision Surfaces or How to Generate a Smooth Mesh?? Subdivision Curves and Surfaces Subdivision given polyline(2d)/mesh(3d) recursively modify & add vertices to achieve smooth curve/surface Each iteration

More information

Semi-Regular 4 8 Refinement and Box Spline Surfaces

Semi-Regular 4 8 Refinement and Box Spline Surfaces Semi-Regular 4 8 Refinement and Box Spline Surfaces LUIZ VELHO IMPA Instituto de Matemática Pura e Aplicada, lvelho@visgraf.impa.br Abstract. In this paper we introduce a new mesh refinement method for

More information

Hierarchical Grid Conversion

Hierarchical Grid Conversion Hierarchical Grid Conversion Ali Mahdavi-Amiri, Erika Harrison, Faramarz Samavati Abstract Hierarchical grids appear in various applications in computer graphics such as subdivision and multiresolution

More information

Normals of subdivision surfaces and their control polyhedra

Normals of subdivision surfaces and their control polyhedra Normals of subdivision surfaces and their control polyhedra I. Ginkel, a, J. Peters b, and G. Umlauf a, a University of Kaiserslautern, Germany b University of Florida, Gainesville, FL, USA Abstract For

More information

Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics Subdivision Surfaces Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd NURBS patches aren t the greatest NURBS patches are nxm, forming

More information

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati Subdivision Surfaces Surfaces Having arbitrary Topologies Tensor Product Surfaces Non Tensor Surfaces We can t find u-curves and v-curves in general surfaces General Subdivision Coarse mesh Subdivision

More information

Honeycomb Subdivision

Honeycomb Subdivision Honeycomb Subdivision Ergun Akleman and Vinod Srinivasan Visualization Sciences Program, Texas A&M University Abstract In this paper, we introduce a new subdivision scheme which we call honeycomb subdivision.

More information

Subdivision on Arbitrary Meshes: Algorithms and Theory

Subdivision on Arbitrary Meshes: Algorithms and Theory Subdivision on Arbitrary Meshes: Algorithms and Theory Denis Zorin New York University 719 Broadway, 12th floor, New York, USA E-mail: dzorin@mrl.nyu.edu Subdivision surfaces have become a standard geometric

More information

Subdivision overview

Subdivision overview Subdivision overview CS4620 Lecture 16 2018 Steve Marschner 1 Introduction: corner cutting Piecewise linear curve too jagged for you? Lop off the corners! results in a curve with twice as many corners

More information

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes) Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang 1 Guoping Wang 2 1 University of Science and Technology of China 2 Peking University, China SIAM Conference on Geometric and Physical Modeling Doo-Sabin

More information

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013 Lecture 3 Mesh Dr. Shuang LIANG School of Software Engineering Tongji University Spring 2013 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces Today s Topics Overview Mesh

More information

Smooth Multi-Sided Blending of bi-2 Splines

Smooth Multi-Sided Blending of bi-2 Splines Smooth Multi-Sided Blending of bi-2 Splines Kȩstutis Karčiauskas Jörg Peters Vilnius University University of Florida K. Karčiauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 1 / 18 Quad

More information

Interpolatory 3-Subdivision

Interpolatory 3-Subdivision EUROGRAPHICS 2000 / M. Gross and F.R.A. Hopgood (Guest Editors) Volume 19 (2000), Number 3 Interpolatory 3-Subdivision U. Labsik G. Greiner Computer Graphics Group University of Erlangen-Nuremberg Am Weichselgarten

More information

G 2 Bezier Crust on Quad Subdivision Surfaces

G 2 Bezier Crust on Quad Subdivision Surfaces Pacific Graphics (2013) B. Levy, X. Tong, and K. Yin (Editors) Short Papers G 2 Bezier Crust on Quad Subdivision Surfaces paper 1348 Figure 1: Two examples of Bezier crust applied on Catmull-Clark subdivision

More information

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 3, No 3 Sofia 203 Print ISSN: 3-9702; Online ISSN: 34-408 DOI: 0.2478/cait-203-0023 An Efficient Data Structure for Representing

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

A subdivision scheme for hexahedral meshes

A subdivision scheme for hexahedral meshes A subdivision scheme for hexahedral meshes Chandrajit Bajaj Department of Computer Sciences, University of Texas Scott Schaefer Department of Computer Science, Rice University Joe Warren Department of

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Non-Uniform Recursive Doo-Sabin Surfaces

Non-Uniform Recursive Doo-Sabin Surfaces Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang a,b,c,, Guoping Wang d,e a School of Computer Science and Technology, University of Science and Technology of China, PR China b Key Laboratory of

More information

Design by Subdivision

Design by Subdivision Bridges 2010: Mathematics, Music, Art, Architecture, Culture Design by Subdivision Michael Hansmeyer Department for CAAD - Institute for Technology in Architecture Swiss Federal Institute of Technology

More information

Modeling. Simulating the Everyday World

Modeling. Simulating the Everyday World Modeling Simulating the Everyday World Three broad areas: Modeling (Geometric) = Shape Animation = Motion/Behavior Rendering = Appearance Page 1 Geometric Modeling 1. How to represent 3d shapes Polygonal

More information

Regular Meshes. Abstract. 1 Introduction. JIANER CHEN Computer Science Department. ERGUN AKLEMAN Visualization Sciences Program. Texas A&M University

Regular Meshes. Abstract. 1 Introduction. JIANER CHEN Computer Science Department. ERGUN AKLEMAN Visualization Sciences Program. Texas A&M University ERGUN AKLEMAN Visualization Sciences Program Regular Meshes Texas A&M University JIANER CHEN Computer Science Department Abstract This paper presents our preliminary results on regular meshes in which

More information

G 2 Interpolation for Polar Surfaces

G 2 Interpolation for Polar Surfaces 1 G 2 Interpolation for Polar Surfaces Jianzhong Wang 1, Fuhua Cheng 2,3 1 University of Kentucky, jwangf@uky.edu 2 University of Kentucky, cheng@cs.uky.edu 3 National Tsinhua University ABSTRACT In this

More information

An Interpolatory Subdivision for Volumetric Models over Simplicial Complexes

An Interpolatory Subdivision for Volumetric Models over Simplicial Complexes An Interpolatory Subdivision for Volumetric Models over Simplicial Complexes Yu-Sung Chang Kevin T. McDonnell Hong Qin Department of Computer Science State University of New York at Stony Brook {yusung

More information

Polar Embedded Catmull-Clark Subdivision Surface

Polar Embedded Catmull-Clark Subdivision Surface Polar Embedded Catmull-Clark Subdivision Surface Anonymous submission Abstract In this paper, a new subdivision scheme with Polar embedded Catmull-Clark mesh structure is presented. In this new subdivision

More information

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015 Subdivision curves and surfaces Brian Curless CSE 557 Fall 2015 1 Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, 10.2,

More information

4 8 Subdivision. Luiz Velho a and Denis Zorin b

4 8 Subdivision. Luiz Velho a and Denis Zorin b 4 Subdivision Luiz Velho a and Denis Zorin b a Visgraf Laboratory IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, Rio de Janeiro, RJ, Brazil, 2246-32. lvelho@visgraf.impa.br b Media

More information

Smooth Subdivision of Tetrahedral Meshes

Smooth Subdivision of Tetrahedral Meshes Eurographics Symposium on Geometry Processing (2004) R. Scopigno, D. Zorin, (Editors) Smooth Subdivision of Tetrahedral Meshes S. Schaefer J. Hakenberg J. Warren Rice University Abstract We describe a

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces CS 4620 Lecture 31 Cornell CS4620 Fall 2015 1 Administration A5 due on Friday Dreamworks visiting Thu/Fri Rest of class Surfaces, Animation, Rendering w/ prior instructor Steve Marschner

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Curves, Surfaces and Recursive Subdivision

Curves, Surfaces and Recursive Subdivision Department of Computer Sciences Graphics Fall 25 (Lecture ) Curves, Surfaces and Recursive Subdivision Conics: Curves and Quadrics: Surfaces Implicit form arametric form Rational Bézier Forms Recursive

More information

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Catmull-Clark Surface ACC-Patches Polygon Models Prevalent in game industry Very

More information

Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property

Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property Charles Loop cloop@microsoft.com February 1, 2001 Technical Report MSR-TR-2001-24 The masks for Loop s triangle subdivision

More information

Robustness of Boolean operations on subdivision-surface models

Robustness of Boolean operations on subdivision-surface models Robustness of Boolean operations on subdivision-surface models Di Jiang 1, Neil Stewart 2 1 Université de Montréal, Dép t. Informatique CP6128, Succ. CentreVille, Montréal, H3C 3J7, Qc, Canada jiangdi@umontreal.ca

More information

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018 CS354 Computer Graphics Surface Representation IV Qixing Huang March 7th 2018 Today s Topic Subdivision surfaces Implicit surface representation Subdivision Surfaces Building complex models We can extend

More information

Technical Report. Removing polar rendering artifacts in subdivision surfaces. Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin.

Technical Report. Removing polar rendering artifacts in subdivision surfaces. Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin. Technical Report UCAM-CL-TR-689 ISSN 1476-2986 Number 689 Computer Laboratory Removing polar rendering artifacts in subdivision surfaces Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin June 2007

More information

Subdivision based Interpolation with Shape Control

Subdivision based Interpolation with Shape Control Subdivision based Interpolation with Shape Control Fengtao Fan University of Kentucky Deparment of Computer Science Lexington, KY 40506, USA ffan2@uky.edu Fuhua (Frank) Cheng University of Kentucky Deparment

More information

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Charles Loop Microsoft Research Scott Schaefer Texas A&M University April 24, 2007 Technical Report MSR-TR-2007-44 Microsoft Research

More information

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Subdivision surfaces University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications,

More information

Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme

Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme Noor Asma Husain, Mohd Shafry Mohd Rahim, and Abdullah Bade Abstract Subdivision surfaces were applied to

More information

Regular Mesh Construction Algorithms using Regular Handles

Regular Mesh Construction Algorithms using Regular Handles Regular Mesh Construction Algorithms using Regular Handles Ergun Akleman Visualization Sciences Program Texas A&M University Jianer Chen Computer Science Department Abstract This paper presents our recent

More information

Taxonomy of interpolation. constraints on recursive subdivision. Ahmad H. Nasri 1, Malcolm A. Sabin 2. 1 Introduction

Taxonomy of interpolation. constraints on recursive subdivision. Ahmad H. Nasri 1, Malcolm A. Sabin 2. 1 Introduction 1 Introduction Taxonomy of interpolation constraints on recursive subdivision surfaces Ahmad H. Nasri 1, Malcolm A. Sabin 2 1 Department of Mathematics and Computer Science, American University of Beirut,

More information

Subdivision of Curves and Surfaces: An Overview

Subdivision of Curves and Surfaces: An Overview Subdivision of Curves and Surfaces: An Overview Ben Herbst, Karin M Hunter, Emile Rossouw Applied Mathematics, Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland,

More information

Ternary Butterfly Subdivision

Ternary Butterfly Subdivision Ternary Butterfly Subdivision Ruotian Ling a,b Xiaonan Luo b Zhongxian Chen b,c a Department of Computer Science, The University of Hong Kong b Computer Application Institute, Sun Yat-sen University c

More information

09 - Designing Surfaces. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

09 - Designing Surfaces. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 9 - Designing Surfaces Triangular surfaces A surface can be discretized by a collection of points and triangles Each triangle is a subset of a plane Every point on the surface can be expressed as an affine

More information

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches Homework 1: Questions/Comments? Subdivision Surfaces Last Time? Curves & Surfaces Continuity Definitions Spline Surfaces / Patches Tensor Product Bilinear Patches Bezier Patches Trimming Curves C0, G1,

More information

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Karl-Heinz Brakhage RWTH Aachen, 55 Aachen, Deutschland, Email: brakhage@igpm.rwth-aachen.de Abstract In this paper

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Evaluation of Loop Subdivision Surfaces

Evaluation of Loop Subdivision Surfaces Evaluation of Loop Subdivision Surfaces Jos Stam Alias wavefront, Inc. 8 Third Ave, 8th Floor, Seattle, WA 980, U.S.A. jstam@aw.sgi.com Abstract This paper describes a technique to evaluate Loop subdivision

More information

Fast Rendering of Subdivision Surfaces

Fast Rendering of Subdivision Surfaces Fast Rendering of Subdivision Surfaces Kari Pulli (Univ. of Washington, Seattle, WA) Mark Segal (SGI) Abstract Subdivision surfaces provide a curved surface representation that is useful in a number of

More information

Stellar Subdivision Grammars

Stellar Subdivision Grammars Eurographics Symposium on Geometry Processing (2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Stellar Subdivision Grammars Luiz Velho IMPA Instituto de Matematica Pura e Aplicada Abstract In this paper

More information

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces Shuhua Lai and Fuhua (Frank) Cheng (University of Kentucky) Graphics & Geometric Modeling Lab, Department of Computer Science,

More information

CONSTRUCTIONS OF QUADRILATERAL MESHES: A COMPARATIVE STUDY

CONSTRUCTIONS OF QUADRILATERAL MESHES: A COMPARATIVE STUDY South Bohemia Mathematical Letters Volume 24, (2016), No. 1, 43-48. CONSTRUCTIONS OF QUADRILATERAL MESHES: A COMPARATIVE STUDY PETRA SURYNKOVÁ abstrakt. Polygonal meshes represent important geometric structures

More information

Topological Issues in Hexahedral Meshing

Topological Issues in Hexahedral Meshing Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Outline I. What is meshing? Problem statement Types of mesh Quality issues

More information

Linear Complexity Hexahedral Mesh Generation

Linear Complexity Hexahedral Mesh Generation Linear Complexity Hexahedral Mesh Generation David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 http://www.ics.uci.edu/ eppstein/ Tech. Report 95-51

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018 CS354 Computer Graphics Surface Representation III Qixing Huang March 5th 2018 Today s Topic Bspline curve operations (Brief) Knot Insertion/Deletion Subdivision (Focus) Subdivision curves Subdivision

More information

Lecture 19: Introduction To Topology

Lecture 19: Introduction To Topology Chris Tralie, Duke University 3/24/2016 Announcements Group Assignment 2 Due Wednesday 3/30 First project milestone Friday 4/8/2016 Welcome to unit 3! Table of Contents The Euler Characteristic Spherical

More information

Spline Functions on Triangulations

Spline Functions on Triangulations Spline Functions on Triangulations MING-JUN LAI AND LARRY L. SCHUMAKER CAMBRIDGE UNIVERSITY PRESS Contents Preface xi Chapter 1. Bivariate Polynomials 1.1. Introduction 1 1.2. Norms of Polynomials on Triangles

More information

Removing Polar Rendering Artifacts in Subdivision Surfaces

Removing Polar Rendering Artifacts in Subdivision Surfaces This is an electronic version of an article published in Journal of Graphics, GPU, and Game Tools, Volume 14, Issue 2 pp. 61-76, DOI: 10.1080/2151237X.2009.10129278. The Journal of Graphics, GPU, and Game

More information

Local Modification of Subdivision Surfaces Based on Curved Mesh

Local Modification of Subdivision Surfaces Based on Curved Mesh Local Modification of Subdivision Surfaces Based on Curved Mesh Yoshimasa Tokuyama Tokyo Polytechnic University tokuyama@image.t-kougei.ac.jp Kouichi Konno Iwate University konno@cis.iwate-u.ac.jp Junji

More information

Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation

Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation Charles Loop Microsoft Research Scott Schaefer Texas A&M University Tianyun Ni NVIDIA Ignacio Castaño NVIDIA Goal Real-Time

More information

A Unified Framework for Primal/Dual Quadrilateral Subdivision Schemes

A Unified Framework for Primal/Dual Quadrilateral Subdivision Schemes A Unified Framework for Primal/Dual Quadrilateral Subdivision Schemes Denis Zorin NYU Peter Schröder Caltech Abstract Most commonly used subdivision schemes are of primal type, i.e., they split faces.

More information

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches CHARLES LOOP Microsoft Research and SCOTT SCHAEFER Texas A&M University We present a simple and computationally efficient algorithm

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Advanced Modeling 2. Katja Bühler, Andrej Varchola, Eduard Gröller. March 24, x(t) z(t)

Advanced Modeling 2. Katja Bühler, Andrej Varchola, Eduard Gröller. March 24, x(t) z(t) Advanced Modeling 2 Katja Bühler, Andrej Varchola, Eduard Gröller March 24, 2014 1 Parametric Representations A parametric curve in E 3 is given by x(t) c : c(t) = y(t) ; t I = [a, b] R z(t) where x(t),

More information

Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches

Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches Fuhua Frank Cheng,GangChen, and Jun-Hai Yong University of Kentucky, Lexington, KY, USA Tsinghua University, Beijing,

More information

Solutions to the Second Midterm Exam, Math 170, Section 002 Spring 2012

Solutions to the Second Midterm Exam, Math 170, Section 002 Spring 2012 Solutions to the Second Midterm Exam, Math 170, Section 002 Spring 2012 Multiple choice questions. Question 1. Suppose we have a rectangle with one side of length 5 and a diagonal of length 13. What is

More information

SURFACE FAIRING FOR SHIP HULL DESIGN

SURFACE FAIRING FOR SHIP HULL DESIGN SURFACE FAIRING FOR SHIP HULL DESIGN Xoán A. Leiceaga Eva Soto GED, Universidad de Vigo, Vigo, España leiceaga@uvigo.es Oscar E. Ruiz Carlos A. Vanegas Laboratorio CAD/CAM/CAE, Universidad EAFIT, Medellín,

More information

Math 311. Polyhedra Name: A Candel CSUN Math

Math 311. Polyhedra Name: A Candel CSUN Math 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible

More information

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =?

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? 36 74 0 78 0 154 o 44 48 54 o y x 154 o 78 0 12 74 0 9 1. 8 ft 2. 21m 3. 21 ft 4. 30cm 5. 6mm 6. 16 in 7. yes 9 = 7

More information

EFFICIENT, TIGHT BOUNDING VOLUMES FOR SUBDIVISION SURFACES

EFFICIENT, TIGHT BOUNDING VOLUMES FOR SUBDIVISION SURFACES EFFICIENT, TIGHT BOUNDING VOLUMES FOR SUBDIVISION SURFACES By XIAOBIN WU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

More information

Smooth Surfaces from 4-sided Facets

Smooth Surfaces from 4-sided Facets Smooth Surfaces from -sided Facets T. L. Ni, Y. Yeo, A. Myles, V. Goel and J. Peters Abstract We present a fast algorithm for converting quad meshes on the GPU to smooth surfaces. Meshes with 1,000 input

More information

Multiresolution Analysis for Surfaces of Arbitrary Topological Type

Multiresolution Analysis for Surfaces of Arbitrary Topological Type Multiresolution Analysis for Surfaces of Arbitrary Topological Type MICHAEL LOUNSBERY, TONY D. DeROSE, and JOE WARREN University of Washington, Seattle Multiresolution analysis and wavelets provide useful

More information

Smooth Patching of Refined Triangulations

Smooth Patching of Refined Triangulations Smooth Patching of Refined Triangulations Jörg Peters July, 200 Abstract This paper presents a simple algorithm for associating a smooth, low degree polynomial surface with triangulations whose extraordinary

More information

Interactive and User-Friendly Construction of Multi-Segment Curved Handles

Interactive and User-Friendly Construction of Multi-Segment Curved Handles Interactive and User-Friendly Construction of Multi-Segment Curved Handles VINOD SRINIVASAN Visualization Science Program Texas A&M University ERGUN AKLEMAN Visualization Science Program Texas A&M University

More information

Free-Form Deformation with Automatically Generated Multiresolution Lattices

Free-Form Deformation with Automatically Generated Multiresolution Lattices Free-Form Deformation with Automatically Generated Multiresolution Lattices Yutaka Ono* Bing-Yu Chen* Tomoyuki Nishita* Jieqing Feng *The University of Tokyo Zhejang University {yutaka-o, robin, nis}@is.s.u-tokyo.ac.jp

More information

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Abstract This paper presents a physical data structure to represent both orientable and non-orientable

More information

To appear in Computer-Aided Design Revised June 18, J-splines

To appear in Computer-Aided Design Revised June 18, J-splines To appear in Computer-Aided Design Revised June 18, 2008 J-splines Jarek Rossignac School of Interactive Computing, College of Computing, Georgia Institute of Technology, Atlanta, GA http://www.gvu.gatech.edu/~jarek

More information

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse?

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse? Homework 1: Questions/Comments? Subdivision Surfaces Questions on Homework? Last Time? What s an illegal edge collapse? Curves & Surfaces Continuity Definitions 2 3 C0, G1, C1, C 1 a b 4 Interpolation

More information

A Physical Proof for Five and Only Five Regular Solids

A Physical Proof for Five and Only Five Regular Solids A Physical Proof for Five and Only Five Regular Solids Robert McDermott Center for High Performance Computing University of Utah Salt Lake City, Utah, 84112, USA E-mail: mcdermott@chpc.utah.edu Abstract

More information