Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013

Size: px
Start display at page:

Download "Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013"

Transcription

1 Lecture 3 Mesh Dr. Shuang LIANG School of Software Engineering Tongji University Spring 2013

2 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces

3 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces

4 Overview 3D polygonal mesh Representing a 2D surface embedded in 3D by using a set of polygons Why are they of interest? Simple, common representation Rendering with hardware support Output of many acquisition tools Input to many simulation/analysis tools

5 Overview 3D polygonal mesh

6 Overview 3D polygonal mesh Geometry & topology

7 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces

8 Mesh Acquisition Interactive modeling Polygon editors Interactive software Scanners SketchUp Blender

9 Mesh Acquisition Interactive modeling Polygon editors Interactive software Scanners Laser range scanners

10 Mesh Acquisition Interactive modeling Polygon editors Interactive software Scanners Laser range scanners CT, MRI, etc.

11 Today s Topics Overview Mesh Acquisition Mesh Data Structures Desired characteristics Main data structures Subdivision Surfaces

12 Desired Characteristics Performance requirements Efficient traversal of topology Given a face, find its vertices Given a face, find neighboring faces Given a vertex, find faces touching it Given a vertex, find neighboring vertices Given an edge, find vertices and faces it touches Efficient usage of memory Efficient updates We need to consider Algorithms Operations

13 Mesh Data Structures Independent faces Vertex and face tables Adjacency lists Winged edge Half edge Simple triangle mesh

14 Independent Faces Each face lists vertex coordinates Redundant vertices (x 4,y 4,z 4 ) (x 3,y 3,z 3 ) f 2 f 3 f 1 (x 5,y 5,z 5 ) (x 1,y 1,z 1 ) (x 2,y 2,z 2 ) FACE TABLE f 1 f 2 f 3 (x 1,y 1,z 1 ), (x 2,y 2,z 2 ), (x 3,y 3,z 3 ) (x 2,y 2,z 2 ), (x 4,y 4,z 4 ), (x 3,y 3,z 3 ) (x 2,y 2,z 2 ), (x 5,y 5,z 5 ), (x 4,y 4,z 4 )

15 Vertex and Face Tables Each face lists vertex references Shared vertices No adjacency information (x 3,y 3,z 3 ) (x 4,y 4,z 4 ) f 2 f 3 f 1 (x 5,y 5,z 5 ) (x 1,y 1,z 1 ) (x 2,y 2,z 2 ) VERTEX TABLE FACE TABLE v 1 v 2 v 3 v 4 (x 1,y 1,z 1 ) (x 2,y 2,z 2 ) (x 3,y 3,z 3 ) (x 4,y 4,z 4 ) v 5 (x 5,y 5,z 5 ) f 1 f 2 f 3 (v 1,v 2,v 3 ) (v 2,v 4,v 3 ) (v 2,v 5,v 4 )

16 Adjacency Lists Store all vertex, edges and face adjacencies Efficient adjacency traversal Extra storage v 3 e 4 e 5 e 3 v 4 f 2 f 3 e 7 v 5 e 1 v 1 f 1 e 2 v2 e 6 v2,v3 e1,e4,e2,e5,e6 f1,f2 v5,v4,v3,v1 e6,e5,e3,e2 f3,f2,f1 v2,v4,v3 e5,e4,e3 f3,f1

17 Partial Adjacency Lists Can we store only some adjacency relationships and derive others? {E i } {E i } {V i } {F i } {V i } {F i }

18 Winged Edge ( 翼边 ) Adjacency encoded in edges All adjacencies in O(1) time A bit extra storage popular e22 e21 v2 e F2 F1 v1 e11 e12

19 Winged Edge ( 翼边 ) v 4 Example v 3 e 4 e 5 f 2 f 3 e 7 e 3 v 5 e 1 v 1 f 1 e 2 v2 e 6 VERTEX TABLE EDGE TABLE v 1 v 2 v 3 v 4 v 5 (x 1,y 1,z 1 ) e1 (x 2,y 2,z 2 ) e6 (x 3,y 3,z 3 ) e3 (x 4,y 4,z 4 ) e5 (x 5,y 5,z 5 ) e6 e 1 e 2 e 3 e 4 e 5 e 6 e 7 (v 1,v 3 ) (v 1,v 2 ) (v 2,v 3 ) (v 3,v 4 ) (v 2,v 4 ) (v 2,v 5 ) f 1 f 1 f 1 f 2 f 2 f 2 f 3 f (v 4,v 5 ) f 3 e 2 e 1 e 2 e 1 e 3 e 5 e 4 e 2 e 1 e 5 e 3 e 6 e 2 e 5 e 4 e 3 e 1 e 7 e 4 e 7 e 6 e 3 e 6 e 4 e 5 e 7 e 7 e 6 FACE TABLE f 1 f 2 f 3 e1 e3 e5

20 Half-edge Instead of a single edge, 2 directed half edges For each half-edge, we store a reference to The vertex it points to Its adjacent face (a zero pointer, if it is a boundary halfedge) The next half-edge of the face or boundary (in counterclockwise direction) Its inverse (the opposite) half-edge For each face, we store a reference to One of its half-edges For each vertex, we store a reference to One of its outgoing half-edges

21 Half-edge

22 Half-edge A basic half-edge structure can be realized using the following classes struct Halfedge { HalfedgeRef next_halfedge; HalfedgeRef opposite_halfedge; FaceRef face; VertexRef to_vertex; }; struct Face { HalfedgeRef halfedge; }; struct Vertex { HalfedgeRef outgoing_halfedge; };

23 Half-edge Example: The following procedure enumerates all vertices that are adjacent to a given center vertex Enumerate_1_ring(VertexRef center) { HalfedgeRef h = center.outgoing_halfedge; HalfedgeRef hstop = h; do { VertexRef v = h.to_vertex; // do something with v h = h. opposite_halfedge.next_halfedge; } while ( h!= hstop ); } confused?

24 Simple Triangle Mesh Do not store edges at all Store adjacency in vertices and faces For each face: 3 vertices and 3 faces For each vertex: N faces v 3 NULL v 4 f 2 f 3 v 5 f 1 v2 v 1

25 Comparison Data structure Face Vertex Edge Adjacency Storage List of independent faces Yes High Vertex and face tables Yes Yes - - Shared vertexes Adjacency lists Yes Yes Yes V-E-F High Winged/Half edge - - Yes E Edge-centered Simple triangle mesh Yes Yes - F-V High F stands for face, V stands for vertex, and E stands for edge. - indicates the adjacency is encoded in the data structure.

26 Summary Mesh acquisition Interactive tool scanner Mesh representation Data structure is determined by algorithms. which adjacency relationships to store depend on which operations must be efficient

27 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces Introduction Linear subdivision an example Different subdivision schemes overview

28 Subdivision surfaces Coarse mesh + subdivision rule Smooth surface = limit of sequence of refinements Advantages Simple (only need subdivision rule) Local (only look at nearby vertices) Arbitrary topology (since only local)

29 Subdivision surfaces How do you make a surface with guaranteed continuity?

30 Subdivision surfaces Repeated application of Topology refinement (splitting faces) Geometry refinement (weighted averaging)

31 Subdivision surfaces an example Base mesh

32 Subdivision surfaces an example Topology refinement

33 Subdivision surfaces an example Geometry refinement

34 Subdivision surfaces an example Topology refinement

35 Subdivision surfaces an example Geometry refinement

36 Subdivision surfaces an example Limit surface

37 Subdivision surfaces an example Base mesh + limit surface

38 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces Introduction Linear subdivision an example Different subdivision schemes overview

39 Design of subdivision rules What types of input? Quad meshes, triangle meshes, etc. How to refine topology? Simple implementations How to refine geometry? Smoothness guarantees in limit surface C, C, C ( )

40 An example linear subdivision Types of input Quad mesh four-sided polygon Any number of quads may touch each vertex How to refine topology? Split every quad into four at midpoints How to refine geometry? Average vertex positions This is a simple example to demonstrate how subdivision schemes work

41 An example linear subdivision

42 An example linear subdivision Topology refinement

43 An example linear subdivision Geometry refinement

44 An example linear subdivision

45 An example linear subdivision

46 An example linear subdivision What is its physical meaning?

47 An example linear subdivision Example Input mesh

48 An example linear subdivision Example Topology refinement

49 An example linear subdivision Example Geometry refinement

50 An example linear subdivision Example Topology refinement

51 An example linear subdivision Example Geometry refinement

52 An example linear subdivision Example Topology refinement

53 An example linear subdivision Example Geometry refinement

54 An example linear subdivision Example Final result

55 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces Introduction Linear subdivision an example Different subdivision schemes overview

56 Subdivision schemes comparison Common subdivision schemes Loop [1] Catmull-Clark [2] Differ in: Input topology How to refine topology How to refine geometry [1] C. Loop, Smooth Subdivision Surfaces Based on Triangles, M.S. Mathematics thesis, University of Utah, 1987 [2] E. Catmull and J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes, Computer-Aided Design 10(6): , 1978

57 Subdivision schemes comparison Loop Catmull-Clark Loop Catmull-Clark

58 Thanks everybody!

CS 532: 3D Computer Vision 12 th Set of Notes

CS 532: 3D Computer Vision 12 th Set of Notes 1 CS 532: 3D Computer Vision 12 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Meshes Slides

More information

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background 3D Object Representations Polygonal Meshes Adam Finkelstein & Tim Weyrich Princeton University C0S 426, Spring 2008 Points o Range image o Point cloud Surfaces o Polygonal mesh o Subdivision o Parametric

More information

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations Subdivision Surfaces Adam Finkelstein Princeton University COS 426, Spring 2003 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman, CS426, Fall99)

More information

Meshes. Mesh elements

Meshes. Mesh elements Meshes polygonal soup polygons specified one-by-one with no explicit information on shared vertices polygonal nonmanifold connectivity information is provided (which vertices are shared) no restrictions

More information

Mesh Representations & Geometry Processing

Mesh Representations & Geometry Processing Lecture 10/11: Mesh Representations & Geometry Processing Computer Graphics and Imaging UC Berkeley A Small Triangle Mesh 8 vertices, 12 triangles A Large Triangle Mesh David Digital Michelangelo Project

More information

Modeling. Simulating the Everyday World

Modeling. Simulating the Everyday World Modeling Simulating the Everyday World Three broad areas: Modeling (Geometric) = Shape Animation = Motion/Behavior Rendering = Appearance Page 1 Geometric Modeling 1. How to represent 3d shapes Polygonal

More information

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface.

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface. Example: Loop Scheme What makes a good scheme? recursive application leads to a smooth surface 200, Denis Zorin Example: Loop Scheme Refinement rule 200, Denis Zorin Example: Loop Scheme Two geometric

More information

: Mesh Processing. Chapter 2

: Mesh Processing. Chapter 2 600.657: Mesh Processing Chapter 2 Data Structures Polygon/Triangle Soup Indexed Polygon/Triangle Set Winged-Edge Half-Edge Directed-Edge List of faces Polygon Soup Each face represented independently

More information

Advanced Computer Graphics

Advanced Computer Graphics Advanced Computer Graphics Lecture 2: Modeling (1): Polygon Meshes Bernhard Jung TU-BAF, Summer 2007 Overview Computer Graphics Icon: Utah teapot Polygon Meshes Subdivision Polygon Mesh Optimization high-level:

More information

Meshes and Manifolds. Computer Graphics CMU /15-662

Meshes and Manifolds. Computer Graphics CMU /15-662 Meshes and Manifolds Computer Graphics CMU 15-462/15-662 Fractal Quiz Last time: overview of geometry Many types of geometry in nature Geometry Demand sophisticated representations Two major categories:

More information

polygon meshes polygon meshes representation

polygon meshes polygon meshes representation polygon meshes computer graphics polygon meshes 2009 fabio pellacini 1 polygon meshes representation which representation is good? often triangles/quads only will work on triangles compact efficient for

More information

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati Subdivision Surfaces Surfaces Having arbitrary Topologies Tensor Product Surfaces Non Tensor Surfaces We can t find u-curves and v-curves in general surfaces General Subdivision Coarse mesh Subdivision

More information

Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

More information

Curve Corner Cutting

Curve Corner Cutting Subdivision ision Techniqueses Spring 2010 1 Curve Corner Cutting Take two points on different edges of a polygon and join them with a line segment. Then, use this line segment to replace all vertices

More information

Rendering Subdivision Surfaces Efficiently on the GPU

Rendering Subdivision Surfaces Efficiently on the GPU Rendering Subdivision Surfaces Efficiently on the GPU Gy. Antal, L. Szirmay-Kalos and L. A. Jeni Department of Algorithms and their Applications, Faculty of Informatics, Eötvös Loránd Science University,

More information

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016 Polygonal Meshes Thomas Funkhouser Princeton University COS 526, Fall 2016 Digital Geometry Processing Processing of 3D surfaces Creation, acquisition Storage, transmission Editing, animation, simulation

More information

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 3, No 3 Sofia 203 Print ISSN: 3-9702; Online ISSN: 34-408 DOI: 0.2478/cait-203-0023 An Efficient Data Structure for Representing

More information

Subdivision overview

Subdivision overview Subdivision overview CS4620 Lecture 16 2018 Steve Marschner 1 Introduction: corner cutting Piecewise linear curve too jagged for you? Lop off the corners! results in a curve with twice as many corners

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces CS 4620 Lecture 31 Cornell CS4620 Fall 2015 1 Administration A5 due on Friday Dreamworks visiting Thu/Fri Rest of class Surfaces, Animation, Rendering w/ prior instructor Steve Marschner

More information

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces Using Semi-Regular 8 Meshes for Subdivision Surfaces Luiz Velho IMPA Instituto de Matemática Pura e Aplicada Abstract. Semi-regular 8 meshes are refinable triangulated quadrangulations. They provide a

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Geometric Modeling Based on Polygonal Meshes: OpenMesh

Geometric Modeling Based on Polygonal Meshes: OpenMesh Geometric Modeling Based on Polygonal Meshes: OpenMesh Prof. Dr. Mario Botsch Computer Graphics & Geometry Processing 2 OpenMesh 1.1.0 Developed at RWTH Aachen C++ library for polygonal / triangle meshes

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher http://alice.loria.fr/index.php/publications.html?redirect=0&paper=vsdm@2011&author=levy CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher µ R 3 µ R 2 http://upload.wikimedia.org/wikipedia/commons/b/bc/double_torus_illustration.png

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Volume Enclosed by Example Subdivision Surfaces

Volume Enclosed by Example Subdivision Surfaces Volume Enclosed by Example Subdivision Surfaces by Jan Hakenberg - May 5th, this document is available at vixra.org and hakenberg.de Abstract Simple meshes such as the cube, tetrahedron, and tripod frequently

More information

Surface reconstruction Introduction. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Surface reconstruction Introduction. Florent Lafarge Inria Sophia Antipolis - Mediterranee Surface reconstruction Introduction Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline Contents Introduction Smooth/piecewise-smooth reconstruction methods Primitive-based reconstruction methods

More information

Geometry: 3D coordinates Attributes. e.g. normal, color, texture coordinate. Connectivity

Geometry: 3D coordinates Attributes. e.g. normal, color, texture coordinate. Connectivity Mesh Data Structures res Data Structures What should be stored? Geometry: 3D coordinates Attributes eg normal, color, texture coordinate Per vertex, per face, per edge Connectivity Adjacency relationships

More information

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015 Subdivision curves and surfaces Brian Curless CSE 557 Fall 2015 1 Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, 10.2,

More information

Triangle meshes 2. CS 4620 Lecture Steve Marschner. Cornell CS4620 Fall 2018 Lecture 3

Triangle meshes 2. CS 4620 Lecture Steve Marschner. Cornell CS4620 Fall 2018 Lecture 3 Triangle meshes 2 CS 4620 Lecture 3 2018 Steve Marschner 1 Practical encoding of meshes OBJ file format widely used format for polygon meshes supports the usual attributes: position, normal, texture coordinate

More information

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces David L. Finn Today, we continue our discussion of subdivision surfaces, by first looking in more detail at the midpoint method and

More information

Notation. Triangle meshes. Topology/geometry examples. Validity of triangle meshes. n T = #tris; n V = #verts; n E = #edges

Notation. Triangle meshes. Topology/geometry examples. Validity of triangle meshes. n T = #tris; n V = #verts; n E = #edges Notation n T = #tris; n V = #verts; n E = #edges Triangle meshes Euler: n V n E + n T = 2 for a simple closed surface and in general sums to small integer argument for implication that n T :n E :n V is

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 1: Polygonal Meshes Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Geometric object Set of connected points in space Usually inside Euclidean space (orthonormal

More information

u 0+u 2 new boundary vertex

u 0+u 2 new boundary vertex Combined Subdivision Schemes for the design of surfaces satisfying boundary conditions Adi Levin School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:fadilev@math.tau.ac.ilg

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Subdivision surfaces University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications,

More information

Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme

Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme Iterative Process to Improve Simple Adaptive Subdivision Surfaces Method with Butterfly Scheme Noor Asma Husain, Mohd Shafry Mohd Rahim, and Abdullah Bade Abstract Subdivision surfaces were applied to

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT

BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT On-Line Geometric Modeling Notes BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science Uniersity of California, Dais Oeriew

More information

Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces

Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces Eskil Steenberg The Interactive Institute, P.O. Box 24081, SE 104 50 Stockholm,

More information

Curves and Surfaces 2

Curves and Surfaces 2 Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

More information

Joe Warren, Scott Schaefer Rice University

Joe Warren, Scott Schaefer Rice University Joe Warren, Scott Schaefer Rice University Polygons are a ubiquitous modeling primitive in computer graphics. Their popularity is such that special purpose graphics hardware designed to render polygons

More information

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018 CS354 Computer Graphics Surface Representation III Qixing Huang March 5th 2018 Today s Topic Bspline curve operations (Brief) Knot Insertion/Deletion Subdivision (Focus) Subdivision curves Subdivision

More information

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018 CS354 Computer Graphics Surface Representation IV Qixing Huang March 7th 2018 Today s Topic Subdivision surfaces Implicit surface representation Subdivision Surfaces Building complex models We can extend

More information

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

More information

Recursive Subdivision Surfaces for Geometric Modeling

Recursive Subdivision Surfaces for Geometric Modeling Recursive Subdivision Surfaces for Geometric Modeling Weiyin Ma City University of Hong Kong, Dept. of Manufacturing Engineering & Engineering Management Ahmad Nasri American University of Beirut, Dept.

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

More information

Triangle meshes COMP575/COMP 770

Triangle meshes COMP575/COMP 770 Triangle meshes COMP575/COMP 770 1 [Foley et al.] Notation n T = #tris; n V = #verts; n E = #edges Euler: n V n E + n T = 2 for a simple closed surface and in general sums to small integer argument for

More information

Curves, Surfaces and Recursive Subdivision

Curves, Surfaces and Recursive Subdivision Department of Computer Sciences Graphics Fall 25 (Lecture ) Curves, Surfaces and Recursive Subdivision Conics: Curves and Quadrics: Surfaces Implicit form arametric form Rational Bézier Forms Recursive

More information

DESIGNING AND IMPLEMENTING A SURFACE MODELING SYSTEM

DESIGNING AND IMPLEMENTING A SURFACE MODELING SYSTEM DESIGNING AND IMPLEMENTING A SURFACE MODELING SYSTEM By LE-JENG SHIUE A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

More information

Technical Report. Removing polar rendering artifacts in subdivision surfaces. Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin.

Technical Report. Removing polar rendering artifacts in subdivision surfaces. Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin. Technical Report UCAM-CL-TR-689 ISSN 1476-2986 Number 689 Computer Laboratory Removing polar rendering artifacts in subdivision surfaces Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin June 2007

More information

Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation

Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation Charles Loop Microsoft Research Scott Schaefer Texas A&M University Tianyun Ni NVIDIA Ignacio Castaño NVIDIA Goal Real-Time

More information

13 - Meshes. Acknowledgement: Enrico Puppo. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

13 - Meshes. Acknowledgement: Enrico Puppo. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 13 - Meshes Acknowledgement: Enrico Puppo What is a mesh? A surface made of polygonal faces glued at common edges Origin of Meshes In nature, meshes arise in a variety of contexts: Cells in organic tissues

More information

Polygonal Mesh. Geometric object made of vertices, edges and faces. Faces are polygons. Polyhedron. Triangular mesh Quad mesh. Pyramid Cube Sphere (?

Polygonal Mesh. Geometric object made of vertices, edges and faces. Faces are polygons. Polyhedron. Triangular mesh Quad mesh. Pyramid Cube Sphere (? 1 Mesh Modeling Polygonal Mesh Geometric object made of vertices, edges and faces Polyhedron Pyramid Cube Sphere (?) Can also be 2D (although much less interesting) Faces are polygons Triangular mesh Quad

More information

3D Mesh Compression in Open3DGC. Khaled MAMMOU

3D Mesh Compression in Open3DGC. Khaled MAMMOU 3D Mesh Compression in Open3DGC Khaled MAMMOU OPPORTUNITIES FOR COMPRESSION Indexed Face Set Geometry: positions Connectivity: of triangles Requires 192 bits per vertex! Redundancy Indexes repeated multiple

More information

Cross-Parameterization and Compatible Remeshing of 3D Models

Cross-Parameterization and Compatible Remeshing of 3D Models Cross-Parameterization and Compatible Remeshing of 3D Models Vladislav Kraevoy Alla Sheffer University of British Columbia Authors Vladislav Kraevoy Ph.D. Student Alla Sheffer Assistant Professor Outline

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 2: THE SIMPLICIAL COMPLEX DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU

More information

3D Modeling: Surfaces

3D Modeling: Surfaces CS 430/536 Computer Graphics I 3D Modeling: Surfaces Week 8, Lecture 16 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Joint Advanced Student School 2007 Martin Dummer

Joint Advanced Student School 2007 Martin Dummer Sierpiński-Curves Joint Advanced Student School 2007 Martin Dummer Statement of the Problem What is the best way to store a triangle mesh efficiently in memory? The following points are desired : Easy

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 Polygon Meshes and Implicit Surfaces Polygon Meshes Implicit Surfaces Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California 1 Modeling

More information

Introduction to Geometry. Computer Graphics CMU /15-662

Introduction to Geometry. Computer Graphics CMU /15-662 Introduction to Geometry Computer Graphics CMU 15-462/15-662 Assignment 2: 3D Modeling You will be able to create your own models (This mesh was created in Scotty3D in about 5 minutes... you can do much

More information

Triangle meshes. Computer Graphics CSE 167 Lecture 8

Triangle meshes. Computer Graphics CSE 167 Lecture 8 Triangle meshes Computer Graphics CSE 167 Lecture 8 Examples Spheres Andrzej Barabasz Approximate sphere Rineau & Yvinec CGAL manual Based on slides courtesy of Steve Marschner 2 Examples Finite element

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 and Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible, but how

More information

Design by Subdivision

Design by Subdivision Bridges 2010: Mathematics, Music, Art, Architecture, Culture Design by Subdivision Michael Hansmeyer Department for CAAD - Institute for Technology in Architecture Swiss Federal Institute of Technology

More information

3D Object Representation. Michael Kazhdan ( /657)

3D Object Representation. Michael Kazhdan ( /657) 3D Object Representation Michael Kazhdan (601.457/657) 3D Objects How can this object be represented in a computer? 3D Objects This one? H&B Figure 10.46 3D Objects This one? H&B Figure 9.9 3D Objects

More information

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes) Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang 1 Guoping Wang 2 1 University of Science and Technology of China 2 Peking University, China SIAM Conference on Geometric and Physical Modeling Doo-Sabin

More information

Spline Surfaces, Subdivision Surfaces

Spline Surfaces, Subdivision Surfaces CS-C3100 Computer Graphics Spline Surfaces, Subdivision Surfaces vectorportal.com Trivia Assignment 1 due this Sunday! Feedback on the starter code, difficulty, etc., much appreciated Put in your README

More information

Parametric description

Parametric description Examples: surface of revolution Vase Torus Parametric description Parameterization for a subdivision curve Modeling Polygonal meshes Graphics I Faces Face based objects: Polygonal meshes OpenGL is based

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 426, Fall 2000 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Hierarchical Grid Conversion

Hierarchical Grid Conversion Hierarchical Grid Conversion Ali Mahdavi-Amiri, Erika Harrison, Faramarz Samavati Abstract Hierarchical grids appear in various applications in computer graphics such as subdivision and multiresolution

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

G 2 Interpolation for Polar Surfaces

G 2 Interpolation for Polar Surfaces 1 G 2 Interpolation for Polar Surfaces Jianzhong Wang 1, Fuhua Cheng 2,3 1 University of Kentucky, jwangf@uky.edu 2 University of Kentucky, cheng@cs.uky.edu 3 National Tsinhua University ABSTRACT In this

More information

Topological Rewriting & Patch Transformations

Topological Rewriting & Patch Transformations Topological Rewriting & Patch Transformations Antoine Spicher www.spatial-computing.org/mgs SUPMECA June 2015 Outline MGS: a Formal Introduction Patch Transformations Differential Operators An Integrative

More information

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY 13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 23 Dr. W. Cho Prof. N. M. Patrikalakis Copyright c 2003 Massachusetts Institute of Technology Contents 23 F.E. and B.E. Meshing Algorithms 2

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

11/1/13. Polygon Meshes and Implicit Surfaces. Shape Representations. Polygon Models in OpenGL. Modeling Complex Shapes

11/1/13. Polygon Meshes and Implicit Surfaces. Shape Representations. Polygon Models in OpenGL. Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 7 and Constructive Solid Geometry [Angel Ch. 12.1-12.3] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible,

More information

Motivation MGB Agenda. Compression. Scalability. Scalability. Motivation. Tessellation Basics. DX11 Tessellation Pipeline

Motivation MGB Agenda. Compression. Scalability. Scalability. Motivation. Tessellation Basics. DX11 Tessellation Pipeline MGB 005 Agenda Motivation Tessellation Basics DX Tessellation Pipeline Instanced Tessellation Instanced Tessellation in DX0 Displacement Mapping Content Creation Compression Motivation Save memory and

More information

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Catmull-Clark Surface ACC-Patches Polygon Models Prevalent in game industry Very

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

Subdivision Curves and Surfaces

Subdivision Curves and Surfaces Subdivision Surfaces or How to Generate a Smooth Mesh?? Subdivision Curves and Surfaces Subdivision given polyline(2d)/mesh(3d) recursively modify & add vertices to achieve smooth curve/surface Each iteration

More information

Postprocessing of Compressed 3D Graphic Data

Postprocessing of Compressed 3D Graphic Data Journal of Visual Communication and Image Representation 11, 80 92 (2000) doi:10.1006/jvci.1999.0430, available online at http://www.idealibrary.com on Postprocessing of Compressed 3D Graphic Data Ka Man

More information

Interpolatory 3-Subdivision

Interpolatory 3-Subdivision EUROGRAPHICS 2000 / M. Gross and F.R.A. Hopgood (Guest Editors) Volume 19 (2000), Number 3 Interpolatory 3-Subdivision U. Labsik G. Greiner Computer Graphics Group University of Erlangen-Nuremberg Am Weichselgarten

More information

3D Modeling techniques

3D Modeling techniques 3D Modeling techniques 0. Reconstruction From real data (not covered) 1. Procedural modeling Automatic modeling of a self-similar objects or scenes 2. Interactive modeling Provide tools to computer artists

More information

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces Shuhua Lai and Fuhua (Frank) Cheng (University of Kentucky) Graphics & Geometric Modeling Lab, Department of Computer Science,

More information

Interactive Geometry Editor Beth Werbaneth

Interactive Geometry Editor Beth Werbaneth Interactive Geometry Editor Beth Werbaneth Introduction 3D modeling software allows artists to realize their visions in a digital format. By manipulating points, edges, surfaces, users can create representations

More information

Introduction and Overview

Introduction and Overview CS 523: Computer Graphics, Spring 2009 Shape Modeling Introduction and Overview 1/28/2009 1 Geometric Modeling To describe any reallife object on the computer must start with shape (2D/3D) Geometry processing

More information

Geometric modeling 1

Geometric modeling 1 Geometric Modeling 1 Look around the room. To make a 3D model of a room requires modeling every single object you can see. Leaving out smaller objects (clutter) makes the room seem sterile and unrealistic

More information

SPLITTING THE CUBIC UNIFORM B-SPLINE CURVE

SPLITTING THE CUBIC UNIFORM B-SPLINE CURVE On-Line Geometric odeling Notes SPLITTING THE CUBIC UNIFOR B-SPLINE CURVE Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview

More information

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000 3D Modeling I CG08b Lior Shapira Lecture 8 Based on: Thomas Funkhouser,Princeton University Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Meshes. CS4620/5620: Lecture 17. Announcements. Prelim next Thursday. In the evening, closed book Including material of this week.

Meshes. CS4620/5620: Lecture 17. Announcements. Prelim next Thursday. In the evening, closed book Including material of this week. CS4620/5620: Lecture 17 Meshes 1 Announcements Prelim next Thursday In the evening, closed book Including material of this week 2 Representations for triangle meshes Separate triangles Indexed triangle

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Mesh Basics: Definitions, Topology & Data Structures. Standard Graph Definitions

Mesh Basics: Definitions, Topology & Data Structures. Standard Graph Definitions Mesh : Definitions, Topology & Data Structures 1 Standard Graph Definitions G = V = vertices = {A,B,C,D,E,F,G,H,I,J,K,L} E = edges = {(A,B),(B,C),(C,D),(D,E),(E,F),(F,G), (G,H),(H,A),(A,J),(A,G),(B,J),(K,F),

More information

Key 3D Modeling Terms Beginners Need To Master

Key 3D Modeling Terms Beginners Need To Master Key 3D Modeling Terms Beginners Need To Master Starting your 3D modeling journey is an exciting and rewarding experience. As you begin to learn and practice, there are essential terms you need to know

More information

RHINOCEROS AND NURBS MODELING

RHINOCEROS AND NURBS MODELING Introduction RHINOCEROS AND NURBS MODELING There are three main ways to create a 3D computer model using 3D applications. Each has particular advantages and drawbacks, and the ability to create (or convert

More information

Honeycomb Subdivision

Honeycomb Subdivision Honeycomb Subdivision Ergun Akleman and Vinod Srinivasan Visualization Sciences Program, Texas A&M University Abstract In this paper, we introduce a new subdivision scheme which we call honeycomb subdivision.

More information

Local Modification of Subdivision Surfaces Based on Curved Mesh

Local Modification of Subdivision Surfaces Based on Curved Mesh Local Modification of Subdivision Surfaces Based on Curved Mesh Yoshimasa Tokuyama Tokyo Polytechnic University tokuyama@image.t-kougei.ac.jp Kouichi Konno Iwate University konno@cis.iwate-u.ac.jp Junji

More information