Graph based machine learning with applications to media analytics

Size: px
Start display at page:

Download "Graph based machine learning with applications to media analytics"

Transcription

1 Graph based machine learning with applications to media analytics Lei Ding, PhD with collaborators at

2 Outline Graph based machine learning Basic structures Algorithms Examples Applications in media analytics Social analysis of videos Content analysis of images

3 Outline Graph based machine learning Basic structures Algorithms Examples Applications in media analytics Social analysis of videos Content analysis of images

4 What is a graph Not the graph we are going to talk about

5 What is a graph A graph is composed of Vertices (nodes): pixels, actors in videos, genes, ads, etc. Edges: their relations In machine learning, we are interested in predicting some quantity (a class label, or a continuous value) at each unlabeled vertex

6 What is a graph A graph is composed of Vertices (nodes): pixels, actors in videos, genes, ads, etc. Edges: their relations In machine learning, we are interested in predicting some quantity (a class label, or a continuous value) at each unlabeled vertex Broadly speaking, there are two kinds of graphs undirected directed

7 Graph based machine learning for media analytics Oftentimes, media content can be represented using graphs Therefore, challenging inference problems with media content can be answered by learning on graphs

8 Social content model Content network encodes content similarity (videos, audios, etc.) Content generation process Social network encodes peoples social connections Can be used for media genre classification, media recommendation, etc.

9 Graph based machine learning On undirected graphs Optimization based approaches (e.g. energy minimization) Probabilistic models (e.g. random fields) On directed graphs Optimization based approaches (e.g. directed energy minimization) Probabilistic models (e.g. latent Dirichlet allocation, Bayesian networks)

10 Relations How are they related to traditional stats learning (e.g. logistic regression) (Sutton & McCallum, 2007)

11 Graph based machine learning On undirected graphs Optimization based approaches (e.g. energy minimization) Probabilistic models (e.g. random fields) On directed graphs Optimization based approaches (e.g. directed energy minimization) Probabilistic models (e.g. latent Dirichlet allocation, Bayesian networks)

12 Learning on undirected graphs Classification methods We have some labeled data, and want to predict labels for others e.g. manifold regularization Clustering methods We would like to partition data into clusters e.g. spectral clustering

13 Constructing data graphs How to transform a dataset ({x i }, i=1..m) into a graph

14 Affinity matrix A graph is usually represented using an affinity matrix W, where the corresponding entry is 1 if two vertices are connected, and 0 otherwise

15 Graph Laplacians L=D-W, where W is an affinity matrix, D is a diagonal matrix of row sums Discretization of Laplace-Beltrami operator on manifolds, which is the sum of second order derivatives on tangent space (more details later)

16 Function on graph A vector can be used to represent a function over the graph We can encode what we already know or what we want to predict in a label function For example in this graph, a vertex can represent a person, and the function can represent if he is a likely customer f = [ 1, 1, 0, 0, 1, 0 ] T

17 Eigenvectors reviewed

18 Properties of graph Laplacians Symmetric and positive semi-definite Graph Laplacian induces a smoothness term Transposed label function f * Laplacian matrix L * label function f (always non-negative) Smoothness term (f T Lf) measures how much the function f varies with respect to the underlying graph We have labels on some vertices, and want to predict labels on other vertices. A smooth function (small f T Lf) typically predicts well Laplacian eigenvectors with small eigenvalues can be used for data clustering / classification, data set parametrization, image segmentation, etc.

19 Properties of graph Laplacians Symmetric and positive semi-definite Graph Laplacian induces a smoothness term Transposed label function f * Laplacian matrix L * label function f (always non-negative) Smoothness term (f T Lf) measures how much the function f varies with respect to the underlying graph We have labels on some vertices, and want to predict labels on other vertices. A smooth function (small f T Lf) typically predicts well Laplacian eigenvectors with small eigenvalues can be used for data clustering / classification, data set parametrization, image segmentation, etc. Now we are ready to see the algorithms, but let s take a little break to understand things even further

20 Manifolds

21 Manifold perspective of data modeling

22 Why graphs encode underlying data geometry If we consider data as samples from an underlying manifold (which is a fairly weak assumption), and construct the corresponding adjacency graph, then eigenvectors of graph Laplacian approximate eigenfunctions of the Laplace-Beltrami operator of the underlying data manifold (Belkin & Niyogi, 2008)

23 Laplacian eigenvectors understand geometry (Rustamov, 2007)

24 Spectral clustering More information in von Luxburg (2007)

25 Spectral clustering explained Why the eigenvectors of L with small eigenvalues are used as the new representation? The minimizers f i for the following total smoothness term are eigenvectors of L with the smallest eigenvalues

26 Results

27 Laplacian eigenmap Using Laplacian eigenvectors with the smallest eigenvalues as the new representation Can be seen as a non-linear extension of PCA (Belkin & Niyogi, 2003)

28 Results on real data Transform data using Laplacian eigenmap, and use linear regression on the new representation (Belkin & Niyogi, 2004)

29 Manifold regularization A comprehensive regularization framework Through applying the representer theorem in functional analysis, the optimal solution is as follows (Belkin et al., 2006)

30 Results on real data (Belkin et al., 2006)

31 Summary Learning on graphs provides a set of powerful techniques for data analysis and predictive analytics that understand the geometry of underlying data Spectral clustering addresses the limitation with traditional K-means Laplacian eigenmap & manifold regularization learn a label function respecting underlying data geometry, and hence provide benefits over standard methods like PCA and linear regression Lots of other approaches as well will talk about label propagation based on graphs later in this presentation

32 Outline Graph based machine learning Basic structures Algorithms Examples Applications in media analytics Social analysis of videos Content analysis of images

33 Applications in media analytics High-level analysis Social relational inference People to communities Mid-level analysis Event detection Visual features to events Low-level analysis Segmentation Pixels to semantic objects

34 Application 1: social analysis of multimedia data Friends or foes? Acquaintances or strangers? In same or different teams?

35 Social network learning and analysis

36 Social network learning and analysis

37 Social network learning and analysis (Ding & Yilmaz, 2010; 2011)

38 Application areas Social content: given the growing popularity of social media, inferring relations among people is becoming important Visual recognition: social context is shown to help improve recognition results from images (e.g. Wang et al., ECCV 10) Surveillance: social network learning and analysis for surveillance applications (e.g. Yu et al., CVPR 2009) Sociology: necessary step in building intelligent systems for aiding sociological discovery

39 Basic video processing Videos segmented into semantic segments Scenes, or visually coherent sets of shots, for movies and TV shows Shot detection and merging based on key-frame similarity (Rasheed & Shah, 03) Identifying the actors appearing in each segment Using scripts and closed captions for movies Face detection and recognition for other videos

40 Actor appearance matrix

41 Overall process Social Relations video-level A number [-1,+1] for each scene: positive if actors in a scene are likely in the same community, negative if otherwise Grouping cues Estimate the likely events in a scene Event estimates scene-level Dynamic systems represent scenes Scene models Feature observations frame-level

42 Key steps

43 Visual features Generic optical flow orientation histogram

44 Auditory features

45 Using visual concepts Visual concept detection provides useful semantic features for inferring social relations Using Columbia s 374 SVM concept detectors on color/texture/edge features, a concept score vector is generated for each scene

46 Evidence synthesis by Gaussian processes

47 Learned social affinity Learned social network is represented by affinity matrix K

48 Learned social networks

49 RACOM dataset Ten example movies: (1) G.I. Joe: The Rise of Cobra (2009); (2) Harry Potter and the Half-Blood Prince (2009); (3) Public Enemies (2009); (4) Troy (2004); (5) Braveheart (1995); (6) Year One (2009); (7) Coraline (2009); (8) True Lies (1994); (9) The Chronicles of Narnia: The Lion, the Witch and the Wardrobe (2005); (10) The Lord of the Rings: The Return of the King (2003).

50 Analyzing social networks We extend the max-min modularity principle such that it works with the learned social networks, in order to detect the two communities for each movie We also identify the leaders of each community, which interestingly, correspond to the hero/villain most of the time

51 Max-min modularity

52 Visual maps

53 Quantitative evaluation

54 Detected social communities

55 Youtube dataset 10 videos for soccer games; 10 videos for demonstration; The goal here is to predict a grouping cue for each scene. We evaluate against ground truth labeling

56 Youtube results Event categories are considered and labeled in a middle step Soccer: (chasing, confronting, hugging, others) Demonstration: (marching, confronting, public speaking, others) Precision (+) for within-community instances and Precision (-) for acrosscommunity instances are reported separately

57 Application 2: image content analysis Interactive whole-object segmentation Inputs: an image & labeled pixels (seeds) for objects/background Outputs: labels for all other pixels (Ding & Yilmaz, 2010)

58 Overview To segment whole objects from images given user-supplied seeds Different from unsupervised segmentation from a single image, which typically generates homogeneous regions The challenge is to segment objects using a small number of seeds In addressing this problem, we have proposed Probabilistic hypergraph image model (PHIM) Automatic label set augmentation using boundary features Multiple view learning synthesizing features

59 Graphs vs. hypergraphs Graph based approaches have been popular for interactive segmentation Graph cut (Rother et al., 2004) Random walk (Grady, 2006) Hypergraphs vs. graphs for images Higher order relations among pixels that tend to form a segment are encoded as hyperedges, which are collections of vertices Model long-range dependencies among the entities (known and unknown labels)

60 Our model: PHIM We propose to use probabilistic hypergraph image model (PHIM) The relation between a hyperedge and a vertex is probabilistic, based on probabilities learned from image appearance characteristics Vertices: superpixels Hyperedges: pair-wise + higher-order (generated by meanshift weak segmentation with varying color bandwidths)

61 Our model: PHIM (cont d) Feature vector Fs of a superpixel s contains average LUV color values Incidences: kernel density estimator taking superpixel features as the input Hyperedge weights: inhomogeneous hyperedges are down-weighted Reduces to standard graph based edge weights when the hyperedge is of size 2

62 Laplacians on PHIM Normalized Laplacians on PHIM: induced quadratic form measures the smoothness of a function with respect to the underlying edge system We use probabilistic incidences (hv,e) in defining Laplacians on PHIM Notations f: vector of function values on vertices (+1 for object; -1 for background) H: probabilistic incidence matrix; W: hyperedge weight matrix De: hyperedge degree matrix; Dv: vertex degree matrix

63 How to do segmentation Constrained smoothness minimization Essentially an interpolation, as we have confidence in user-supplied segment labels This interpolation can also be solved in an iterative manner using the natural random walk

64 Dataset GrabCut dataset of 50 images (Rother et al., 2004) Seed pixels are provided in the form of trimaps Ground-truth segmentations are supplied

65 Results on segmentation Error rates averaged over the GrabCut dataset of 50 images PHIM performs better than a standard graph Our error rate 5.33% is much better than 7.9% achieved in (Blake et al., 2006), and is comparable to state-of-the-art results from pixel-level optimization

66 Comparative results

67 The end Thanks! References Ulrike von Luxburg, A Tutorial on Spectral Clustering, 2007 Charles Sutton and Andrew McCallum, An Introduction to Conditional Random Fields for Relational Learning, 2007 Raif Rustamov, Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation, 2007 Mikhail Belkin and Partha Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, 2003 Mikhail Belkin and Partha Niyogi, Semi-Supervised Learning on Riemannian Manifolds, 2004 Mikhail Belkin, Partha Niyogi and Vikas Sindwani, Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples, 2006 Mikhail Belkin and Partha Niyogi, Convergence of Laplacian Eigenmaps, 2008 Lei Ding and Alper Yilmaz, Learning Relations Among Movie Characters: A Social Network Perspective, 2010 Lei Ding and Alper Yilmaz, Interactive Image Segmentation Using Probabilistic Hypergraphs, 2010 Lei Ding and Alper Yilmaz, Inferring Social Relations from Visual Concepts, 2011

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Spectral Clustering X I AO ZE N G + E L HA M TA BA S SI CS E CL A S S P R ESENTATION MA RCH 1 6,

Spectral Clustering X I AO ZE N G + E L HA M TA BA S SI CS E CL A S S P R ESENTATION MA RCH 1 6, Spectral Clustering XIAO ZENG + ELHAM TABASSI CSE 902 CLASS PRESENTATION MARCH 16, 2017 1 Presentation based on 1. Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

Cluster Analysis (b) Lijun Zhang

Cluster Analysis (b) Lijun Zhang Cluster Analysis (b) Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Grid-Based and Density-Based Algorithms Graph-Based Algorithms Non-negative Matrix Factorization Cluster Validation Summary

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Data fusion and multi-cue data matching using diffusion maps

Data fusion and multi-cue data matching using diffusion maps Data fusion and multi-cue data matching using diffusion maps Stéphane Lafon Collaborators: Raphy Coifman, Andreas Glaser, Yosi Keller, Steven Zucker (Yale University) Part of this work was supported by

More information

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 Spectral Clustering Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 What are we going to talk about? Introduction Clustering and

More information

Energy Minimization for Segmentation in Computer Vision

Energy Minimization for Segmentation in Computer Vision S * = arg S min E(S) Energy Minimization for Segmentation in Computer Vision Meng Tang, Dmitrii Marin, Ismail Ben Ayed, Yuri Boykov Outline Clustering/segmentation methods K-means, GrabCut, Normalized

More information

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao Classifying Images with Visual/Textual Cues By Steven Kappes and Yan Cao Motivation Image search Building large sets of classified images Robotics Background Object recognition is unsolved Deformable shaped

More information

A Geometric Perspective on Machine Learning

A Geometric Perspective on Machine Learning A Geometric Perspective on Machine Learning Partha Niyogi The University of Chicago Collaborators: M. Belkin, V. Sindhwani, X. He, S. Smale, S. Weinberger A Geometric Perspectiveon Machine Learning p.1

More information

Spectral Clustering and Community Detection in Labeled Graphs

Spectral Clustering and Community Detection in Labeled Graphs Spectral Clustering and Community Detection in Labeled Graphs Brandon Fain, Stavros Sintos, Nisarg Raval Machine Learning (CompSci 571D / STA 561D) December 7, 2015 {btfain, nisarg, ssintos} at cs.duke.edu

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Discriminative Clustering for Image Co-Segmentation

Discriminative Clustering for Image Co-Segmentation Discriminative Clustering for Image Co-Segmentation Joulin, A.; Bach, F.; Ponce, J. (CVPR. 2010) Iretiayo Akinola Josh Tennefoss Outline Why Co-segmentation? Previous Work Problem Formulation Experimental

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Semi-supervised Data Representation via Affinity Graph Learning

Semi-supervised Data Representation via Affinity Graph Learning 1 Semi-supervised Data Representation via Affinity Graph Learning Weiya Ren 1 1 College of Information System and Management, National University of Defense Technology, Changsha, Hunan, P.R China, 410073

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial Image Similarities for Learning Video Manifolds Selen Atasoy MICCAI 2011 Tutorial Image Spaces Image Manifolds Tenenbaum2000 Roweis2000 Tenenbaum2000 [Tenenbaum2000: J. B. Tenenbaum, V. Silva, J. C. Langford:

More information

Topology-Invariant Similarity and Diffusion Geometry

Topology-Invariant Similarity and Diffusion Geometry 1 Topology-Invariant Similarity and Diffusion Geometry Lecture 7 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Intrinsic

More information

Modern Medical Image Analysis 8DC00 Exam

Modern Medical Image Analysis 8DC00 Exam Parts of answers are inside square brackets [... ]. These parts are optional. Answers can be written in Dutch or in English, as you prefer. You can use drawings and diagrams to support your textual answers.

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones What is machine learning? Data interpretation describing relationship between predictors and responses

More information

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007 Lecture 11: E-M and MeanShift CAP 5415 Fall 2007 Review on Segmentation by Clustering Each Pixel Data Vector Example (From Comanciu and Meer) Review of k-means Let's find three clusters in this data These

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University Shape Co-analysis Daniel Cohen-Or Tel-Aviv University 1 High-level Shape analysis [Fu et al. 08] Upright orientation [Mehra et al. 08] Shape abstraction [Kalograkis et al. 10] Learning segmentation [Mitra

More information

Scalable Clustering of Signed Networks Using Balance Normalized Cut

Scalable Clustering of Signed Networks Using Balance Normalized Cut Scalable Clustering of Signed Networks Using Balance Normalized Cut Kai-Yang Chiang,, Inderjit S. Dhillon The 21st ACM International Conference on Information and Knowledge Management (CIKM 2012) Oct.

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Clustering Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 / 19 Outline

More information

Using the Kolmogorov-Smirnov Test for Image Segmentation

Using the Kolmogorov-Smirnov Test for Image Segmentation Using the Kolmogorov-Smirnov Test for Image Segmentation Yong Jae Lee CS395T Computational Statistics Final Project Report May 6th, 2009 I. INTRODUCTION Image segmentation is a fundamental task in computer

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Data Clustering. Danushka Bollegala

Data Clustering. Danushka Bollegala Data Clustering Danushka Bollegala Outline Why cluster data? Clustering as unsupervised learning Clustering algorithms k-means, k-medoids agglomerative clustering Brown s clustering Spectral clustering

More information

CSE 158. Web Mining and Recommender Systems. Midterm recap

CSE 158. Web Mining and Recommender Systems. Midterm recap CSE 158 Web Mining and Recommender Systems Midterm recap Midterm on Wednesday! 5:10 pm 6:10 pm Closed book but I ll provide a similar level of basic info as in the last page of previous midterms CSE 158

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

Locally Linear Landmarks for large-scale manifold learning

Locally Linear Landmarks for large-scale manifold learning Locally Linear Landmarks for large-scale manifold learning Max Vladymyrov and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu

More information

The clustering in general is the task of grouping a set of objects in such a way that objects

The clustering in general is the task of grouping a set of objects in such a way that objects Spectral Clustering: A Graph Partitioning Point of View Yangzihao Wang Computer Science Department, University of California, Davis yzhwang@ucdavis.edu Abstract This course project provide the basic theory

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Day 3 Lecture 1. Unsupervised Learning

Day 3 Lecture 1. Unsupervised Learning Day 3 Lecture 1 Unsupervised Learning Semi-supervised and transfer learning Myth: you can t do deep learning unless you have a million labelled examples for your problem. Reality You can learn useful representations

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures

Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures Manifold Learning and its Applications: Papers from the AAAI Fall Symposium (FS-09-04) Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures Avinash Sharma, Radu Horaud, David Knossow and

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Describable Visual Attributes for Face Verification and Image Search

Describable Visual Attributes for Face Verification and Image Search Advanced Topics in Multimedia Analysis and Indexing, Spring 2011, NTU. 1 Describable Visual Attributes for Face Verification and Image Search Kumar, Berg, Belhumeur, Nayar. PAMI, 2011. Ryan Lei 2011/05/05

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Learning Two-View Stereo Matching

Learning Two-View Stereo Matching Learning Two-View Stereo Matching Jianxiong Xiao Jingni Chen Dit-Yan Yeung Long Quan Department of Computer Science and Engineering The Hong Kong University of Science and Technology The 10th European

More information

The K-modes and Laplacian K-modes algorithms for clustering

The K-modes and Laplacian K-modes algorithms for clustering The K-modes and Laplacian K-modes algorithms for clustering Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://faculty.ucmerced.edu/mcarreira-perpinan

More information

A Semantic Image Category for Structuring TV Broadcast Video Streams

A Semantic Image Category for Structuring TV Broadcast Video Streams A Semantic Image Category for Structuring TV Broadcast Video Streams Jinqiao Wang 1, Lingyu Duan 2, Hanqing Lu 1, and Jesse S. Jin 3 1 National Lab of Pattern Recognition Institute of Automation, Chinese

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Image Segmentation continued Graph Based Methods

Image Segmentation continued Graph Based Methods Image Segmentation continued Graph Based Methods Previously Images as graphs Fully-connected graph node (vertex) for every pixel link between every pair of pixels, p,q affinity weight w pq for each link

More information

Region-based Segmentation and Object Detection

Region-based Segmentation and Object Detection Region-based Segmentation and Object Detection Stephen Gould Tianshi Gao Daphne Koller Presented at NIPS 2009 Discussion and Slides by Eric Wang April 23, 2010 Outline Introduction Model Overview Model

More information

Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis:midyear Report

Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis:midyear Report Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis:midyear Report Yiran Li yl534@math.umd.edu Advisor: Wojtek Czaja wojtek@math.umd.edu

More information

Supervised Learning for Image Segmentation

Supervised Learning for Image Segmentation Supervised Learning for Image Segmentation Raphael Meier 06.10.2016 Raphael Meier MIA 2016 06.10.2016 1 / 52 References A. Ng, Machine Learning lecture, Stanford University. A. Criminisi, J. Shotton, E.

More information

Action recognition in videos

Action recognition in videos Action recognition in videos Cordelia Schmid INRIA Grenoble Joint work with V. Ferrari, A. Gaidon, Z. Harchaoui, A. Klaeser, A. Prest, H. Wang Action recognition - goal Short actions, i.e. drinking, sit

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

Aarti Singh. Machine Learning / Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg

Aarti Singh. Machine Learning / Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg Spectral Clustering Aarti Singh Machine Learning 10-701/15-781 Apr 7, 2010 Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg 1 Data Clustering Graph Clustering Goal: Given data points X1,, Xn and similarities

More information

Behavioral Data Mining. Lecture 18 Clustering

Behavioral Data Mining. Lecture 18 Clustering Behavioral Data Mining Lecture 18 Clustering Outline Why? Cluster quality K-means Spectral clustering Generative Models Rationale Given a set {X i } for i = 1,,n, a clustering is a partition of the X i

More information

The goals of segmentation

The goals of segmentation Image segmentation The goals of segmentation Group together similar-looking pixels for efficiency of further processing Bottom-up process Unsupervised superpixels X. Ren and J. Malik. Learning a classification

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Mathematics of Networks Manar Mohaisen Department of EEC Engineering Adjacency matrix Network types Edge list Adjacency list Graph representation 2 Adjacency matrix Adjacency matrix

More information

Saliency Detection in Aerial Imagery

Saliency Detection in Aerial Imagery Saliency Detection in Aerial Imagery using Multi-scale SLIC Segmentation Samir Sahli 1, Daniel A. Lavigne 2 and Yunlong Sheng 1 1- COPL, Image Science group, Laval University, Quebec, Canada 2- Defence

More information

Lecture 11: Clustering Introduction and Projects Machine Learning

Lecture 11: Clustering Introduction and Projects Machine Learning Lecture 11: Clustering Introduction and Projects Machine Learning Andrew Rosenberg March 12, 2010 1/1 Last Time Junction Tree Algorithm Efficient Marginals in Graphical Models 2/1 Today Clustering Project

More information

ADVANCED MACHINE LEARNING. Mini-Project Overview

ADVANCED MACHINE LEARNING. Mini-Project Overview 11 Mini-Project Overview Lecture : Prof. Aude Billard (aude.billard@epfl.ch) Teaching Assistants : Nadia Figueroa, Ilaria Lauzana, Brice Platerrier 22 Deadlines for projects / surveys Sign up for lit.

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

Multiple cosegmentation

Multiple cosegmentation Armand Joulin, Francis Bach and Jean Ponce. INRIA -Ecole Normale Supérieure April 25, 2012 Segmentation Introduction Segmentation Supervised and weakly-supervised segmentation Cosegmentation Segmentation

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Human Head-Shoulder Segmentation

Human Head-Shoulder Segmentation Human Head-Shoulder Segmentation Hai Xin, Haizhou Ai Computer Science and Technology Tsinghua University Beijing, China ahz@mail.tsinghua.edu.cn Hui Chao, Daniel Tretter Hewlett-Packard Labs 1501 Page

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Image Segmentation Some material for these slides comes from https://www.csd.uwo.ca/courses/cs4487a/

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Alternating Minimization. Jun Wang, Tony Jebara, and Shih-fu Chang

Alternating Minimization. Jun Wang, Tony Jebara, and Shih-fu Chang Graph Transduction via Alternating Minimization Jun Wang, Tony Jebara, and Shih-fu Chang 1 Outline of the presentation Brief introduction and related work Problems with Graph Labeling Imbalanced labels

More information

Feature Selection for fmri Classification

Feature Selection for fmri Classification Feature Selection for fmri Classification Chuang Wu Program of Computational Biology Carnegie Mellon University Pittsburgh, PA 15213 chuangw@andrew.cmu.edu Abstract The functional Magnetic Resonance Imaging

More information

Introduction to spectral clustering

Introduction to spectral clustering Introduction to spectral clustering Vasileios Zografos zografos@isy.liu.se Klas Nordberg klas@isy.liu.se What this course is Basic introduction into the core ideas of spectral clustering Sufficient to

More information

Emotion Classification

Emotion Classification Emotion Classification Shai Savir 038052395 Gil Sadeh 026511469 1. Abstract Automated facial expression recognition has received increased attention over the past two decades. Facial expressions convey

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

Automatized & Interactive. Muscle tissues characterization using. Na MRI

Automatized & Interactive. Muscle tissues characterization using. Na MRI Automatized & Interactive Human Skeletal Muscle Segmentation Muscle tissues characterization using 23 Na MRI Noura Azzabou 30 April 2013 What is muscle segmentation? Axial slice of the thigh of a healthy

More information

COMPRESSED DETECTION VIA MANIFOLD LEARNING. Hyun Jeong Cho, Kuang-Hung Liu, Jae Young Park. { zzon, khliu, jaeypark

COMPRESSED DETECTION VIA MANIFOLD LEARNING. Hyun Jeong Cho, Kuang-Hung Liu, Jae Young Park.   { zzon, khliu, jaeypark COMPRESSED DETECTION VIA MANIFOLD LEARNING Hyun Jeong Cho, Kuang-Hung Liu, Jae Young Park Email : { zzon, khliu, jaeypark } @umich.edu 1. INTRODUCTION In many imaging applications such as Computed Tomography

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Lecture 7: Segmentation. Thursday, Sept 20

Lecture 7: Segmentation. Thursday, Sept 20 Lecture 7: Segmentation Thursday, Sept 20 Outline Why segmentation? Gestalt properties, fun illusions and/or revealing examples Clustering Hierarchical K-means Mean Shift Graph-theoretic Normalized cuts

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Segmentation. Bottom Up Segmentation

Segmentation. Bottom Up Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Bottom Up Segmentation 1 Segmentation as clustering Depending on what we choose as the feature space, we can group pixels in different ways. Grouping

More information

Introduction to digital image classification

Introduction to digital image classification Introduction to digital image classification Dr. Norman Kerle, Wan Bakx MSc a.o. INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Purpose of lecture Main lecture topics Review

More information

TA Section: Problem Set 4

TA Section: Problem Set 4 TA Section: Problem Set 4 Outline Discriminative vs. Generative Classifiers Image representation and recognition models Bag of Words Model Part-based Model Constellation Model Pictorial Structures Model

More information

MATH 567: Mathematical Techniques in Data

MATH 567: Mathematical Techniques in Data Supervised and unsupervised learning Supervised learning problems: MATH 567: Mathematical Techniques in Data (X, Y ) P (X, Y ). Data Science Clustering I is labelled (input/output) with joint density We

More information

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering is one of the fundamental and ubiquitous tasks in exploratory data analysis a first intuition about the

More information

Object Extraction Using Image Segmentation and Adaptive Constraint Propagation

Object Extraction Using Image Segmentation and Adaptive Constraint Propagation Object Extraction Using Image Segmentation and Adaptive Constraint Propagation 1 Rajeshwary Patel, 2 Swarndeep Saket 1 Student, 2 Assistant Professor 1 2 Department of Computer Engineering, 1 2 L. J. Institutes

More information

Spatio-temporal Feature Classifier

Spatio-temporal Feature Classifier Spatio-temporal Feature Classifier Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 2015, 7, 1-7 1 Open Access Yun Wang 1,* and Suxing Liu 2 1 School

More information

ORIGINAL RESEARCH PAPER

ORIGINAL RESEARCH PAPER ORIGINAL RESEARCH PAPER Computer Science A SMOOTHED DPMVL FOR INTERACTIVE IMAGE SEGMENTATION AND ENHANCED ADAPTIVE MRF FOR SEGMENTATION REFINEMENT KEY WORDS: Image Segmentation, Simulated Annealing, Adaptive

More information