Static and Dynamic Boundary Labeling

Size: px
Start display at page:

Download "Static and Dynamic Boundary Labeling"

Transcription

1 Static and Dynamic Boundary Labeling Hsu-Chun Yen Dept. of Electrical Engineering National Taiwan University

2 Map Labeling Question: where to put the labels? Basic requirements: No overlaps No ambiguity Optimizing quality measure etc 2

3 Classification Where? Internal vs. External When? Static vs. Dynamic How? Manual vs. Automated 3

4 Internal vs. External Labeling Internal labeling Labels placed next to objects Easier to associate labels with objects External labeling Labels placed in the external region Utilize space more efficiently 4

5 Static vs. Dynamic Labeling Scale=1 Fixed label size Scale=0.5 5

6 Dynamic Internal Labeling Zooming/panning (Been et al., IEEE TVCG 2006) Rotating (Gemsa et al., EuroCG 2013) Trajectory-based (Gemsa et al., WADS 2011) 6

7 7

8 Boundary Labeling (Bekos et al., GD 2004) Given a set P = {p1,..., pn} of points and an axisparallel rectangle R that contains P. p i is associated with an axis-parallel rectangular open label. labels placed and connected to their corresponding sites by polygonal lines (leaders). no two labels/leaders intersect labels lie outside R. R P.8 8

9 Boundary Labeling (Bekos et al., GD 2004) Type-opo leaders Type-po leders Type-s leaders site leader label Min (total leader length) s.t. #(leader crossing) = 0 1-side, 2-side, 4-side (Bekos & Symvonis, GD 2005) 9

10 Objectives LEGAL : find a legal label placement TLLM : find a legal label placement such that the total leader length is minimum TLHM : find a legal label placement such that the total label height is minimum TBM : find a legal label placement such that the total number of bends is minimum or, equivalently, the number of type-o leaders is maximum LSM : find the maximum label size for which a legal label placement is possible P.10 10

11 Some Known Results (Bekos et al., GD 2004; GD 2005, ) Model opo, 1-s, var-labels opo, 4-s, uni-labels po, 1-s, uniform opo, 2-s, uni-max-labels po, 2-s, uni-max-labels opo, 4-s, uni-sqr-labels opo, 2-s, var-labels s, 1-s, uni-labels s, 1-s, uni-labels s, 4-s, uni-sqr-labels Objective legal # bends legal legal Total Leader Length (TLL) TLL TLL TLL legal TLL TLL Complexity O(n log n) O(n 2 ) O(n log n) O(n 2 ) O(n 2 ) O(n 2 ) O(n 5 ) O(nH 2 ) O(n log n) O(n 2 ) O(n 2 ) 11

12 Some Variants Polygons labeling (Bekos et. al, APVIS 2006) Multi-stack boundary labeling (Bekos et. al, FSTTCS 2006) Octilinear leader: (Bekos et. al, SWAT 2008) 12

13 Many-to-one Boundary Labeling (Lin, Kao,Yen, JGAA 2008) Distribution of some animals in Taiwan: Brown booby Taiwan hill partridge Masked palm civet Hawk Melogale moschata Bamboo partridge Chinese pangolin Mallard 13

14 2-sided May-to-one BL (Lin, Kao,Yen, JGAA 2008) Taiwan hill partridge Brown booby Melogale moschata Masked palm civet Bamboo partridge Hawk Mallard Chinese pangolin 14

15 Algorithmic Analysis of Some Many-to-One BL Problems (Lin, Kao, Yen, JGAA 2008) objective Min #(crossing) Min Total leader length # of sides leader type complexity solution 1-side opo NP-complete 3-approx. 2-side opo NP-complete 3(1+.301/c)- approx. 1-side po NP-complete heuristic 2-side po NP-complete heuristic any any polynomial time 15

16 Variants of Many-to-one BL Original many-to-one BL (Lin, Kao,Yen, JGAA 2008) M-t-O BL with hyperleaders & dummy labels (Lin, PacificVis 2010) PS2 Port 8 DIMMs 2 CPUs 6 DIMMs USB Port COM Port VGA Port 4 CPUs 6 Expansion IDE Slot ATX Power Supply 2 LAN Ports Battery BIOS 2 Chipsets 6 SATA PS2 Port 6 DIMMs COM Port VGA Port 2 LAN Ports 6 Expansion IDE Slot 2 CPUs 2 DIMMs ATX Power Supply Battery BIOS 2 Chipsets 6 SATA M-t-O BL with backbones (Bekos et al., GD 2013) PS2 Port USB Port COM Port VGA Port 8 DIMMs ATX Power Supply 2 LAN Ports Battery 4 CPUs BIOS 6 Expansion 2 Chipsets IDE Slot 6 SATA 16

17 1.5-sided Boundary Labeling 1.5-sided Boundary Labeling (Lin, Poon, Takahashi, Wu, Yen, COCOA 2011) type-opo: direct leader vs. indirect leader #1 #2 #3 #4 #5 indirect leader #1 #6 #2 #3 #4 #6 Annotation system for wordprocessing S/W #5 direct leader 17

18 1.5-sided Boundary Labeling (labelsize, labelport, Objective) (labelsize, labelport, Objective) #1 #2 #3 #1 #2 #1 #2 #3 longer length #3 #1 #2 shorter length #1 #2 #3 #4 #4 #1 #2 #3 #(bends) = 6 #(bends) = 2 Uniform label Nonuniform label Min (total leader length) (TLLM for short) Min (total bend num) (TBM for short) (labelsize, labelport, Objective) #1 #2 #1 #2 #1 #2 Fixed-ratio port Fixed-position port Sliding port 18

19 Algorithmic Problem Setting Analysis (LabelSize, LabelPort, Objective) time (uniform, FR/sliding, TLLM) O(n log n) (uniform, FP, TLLM) O(n 5 ) (uniform, FR/FP/sliding, TBM) O(n 5 ) (nonuniform, FR/FP/sliding, TLLM) NP-complete* (nonuniform, FR/FP/sliding, TBM) NP-complete* * Pseudo-polynomial time algorithms and fixed-parameter algorithms are designed for those intractable problems. 19

20 Other Variants of BL BL with free spaces Convex Boundary (Priesner, 2013) (Jami, 2012) Panorama images (Gemsa, et al., ACM SIGSPATIAL GIS 2011) 20

21 21

22 Dynamic External (Boundary) Labeling Zooming/panning Rotating Trajectory-based 22

23 Dynamic One-sided Boundary Labeling ( Nollenburg, Polishchuk, Sysikaski, ACM SIGSPATIAL GIS 2010) Label Size Invariance: Labels on screen have fixed size, invariant under zooming Minimize total leader length Optimal label placement as a function of z (zoom level) Single stack model Clustered model Zooming f(z)? 23

24 Dynamic Boundary Labeling Viewing window moves along some trajectory Maintain mental map Maximize total # of label assignments Solution? 24

25 Necklace Map (Speckmann, Verbeek, IEEE TVCG 2010) Map Labeling + Cartogram? Regions have sizes The surrounding necklace is given The center of each circle lies in the wedge Circles do not overlap Maximize circles 25

26 Cartograms Given a weighted planar graph G=(V, E, w), find a contact representation of G s.t. the area of each region equals the weight of the vertex. Weight: geographic size, population, trade amount 26

27 Area Universality Eevery possible area assignment can be realized by a combinatorially equivalent one

28 Area-universal Rectilinear Cartograms For rectangular cartograms, onesidedness is sufficient and necessary (Eppstein et al. 2012) Simple characterization for rectilinear cartograms is not known Linear time algorithm for 10-sided rectilinear cartograms (Alam et al., 2011) 8-sided rectilinear cartograms are sufficient; but a constructive algorithm is not known 28

29 Cartogram + Labeling? Label placement under dynamic environment, i.e., weight assignment of the map changes Label Label Label Label Label Label Label Label Label Label A challenging problem! 29

30 Contact Representations Contact Representation Disk contact Rectilinear polygons are popular in cartograms Planar graph Rectangular dual Triangle contact 30

31 Simplicity Issues Issue # 1: Shape of bounding rectilinear region? Issue # 2: Shape of internal rectilinear region? 31

32 Orthogonally Convex Floorplan (Chang, Yen, GD 2013) Issue # 1 Simple, connected, int. triangulated plane graph G dual Orthogonally convex polygon Q Q-floorplan of G dual 32

33 Issue # 2 Polygonal complexity I-, L-, and T-modules are sufficient for floorplans of maximal plane graphs. (Liao, Lu, Yen, J. Algorithm 2003) 33

34 T-free Rectilinear Duals How many sides ae needed for rectilinear duals without T-shape modules? (Non-rotated) Staircase module: 34

35 T-free Rectangular Duals (Chang, Yen, 2014) For maximal plane graphs, T-free rectilinear duals have polygonal complexity of 12. A linear time algorithm that constructs nonrotated 12-sided staircase rectilinear duals Exists one such that every non-rotated staircase rectilinear dual is not area-universal. 35

36 Conclusion and future work Boundary labeling raises many interesting and challenging algorithmic problems with real-world applications Future work includes: More on dynamic boundary labeling Other variants of boundary labeling Cartogram design + (boundary) labeling 3D boundary labeling 36

37 Thank You for Your Attention P.37 37

On Multi-Stack Boundary Labeling Problems

On Multi-Stack Boundary Labeling Problems On Multi-Stack Boundary Labeling Problems MICHAEL A. BEKOS 1, MICHAEL KAUFMANN 2, KATERINA POTIKA 1, ANTONIOS SYMVONIS 1 1 National Technical University of Athens School of Applied Mathematical & Physical

More information

Multi-Stack Boundary Labeling Problems

Multi-Stack Boundary Labeling Problems Multi-Stack Boundary Labeling Problems Michael A. Bekos 1, Michael Kaufmann 2, Katerina Potika 1, and Antonios Symvonis 1 1 National Technical University of Athens, School of Applied Mathematical & Physical

More information

Boundary-Labeling Algorithms for Panorama Images

Boundary-Labeling Algorithms for Panorama Images Boundary-Labeling Algorithms for Panorama Images Andreas Gemsa Karlsruhe Institute of Technology gemsa@kit.edu Jan-Henrik Haunert Universität Würzburg jan.haunert@uniwuerzburg.de Martin Nöllenburg Karlsruhe

More information

Area-Universal Rectangular Layouts

Area-Universal Rectangular Layouts Area-Universal Rectangular Layouts David Eppstein University of California, Irvine Elena Mumford, Bettina Speckmann, and Kevin Verbeek TU Eindhoven Rectangular layout not allowed Rectangular layout partition

More information

Efficient Labeling of Collinear Sites

Efficient Labeling of Collinear Sites Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 12, no. 3, pp. 357 380 (2008) Efficient Labeling of Collinear Sites Michael A. Bekos 1 Michael Kaufmann 2 Antonios Symvonis 1 1 National

More information

T. Biedl and B. Genc. 1 Introduction

T. Biedl and B. Genc. 1 Introduction Complexity of Octagonal and Rectangular Cartograms T. Biedl and B. Genc 1 Introduction A cartogram is a type of map used to visualize data. In a map regions are displayed in their true shapes and with

More information

Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem

Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem Jonathan Klawitter Martin Nöllenburg Torsten Ueckerdt Karlsruhe Institute of Technology September 25, 2015

More information

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps Michael A. Bekos 1, Michael Kaufmann 2, Antonios Symvonis 1, Alexander Wolff 3 1 National Technical University of Athens, Dept. of

More information

Many-to-One Boundary Labeling with Backbones

Many-to-One Boundary Labeling with Backbones Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 19, no. 3, pp. 779 816 (2015) DOI: 10.7155/jgaa.00379 Many-to-One Boundary Labeling with Backbones Michael A. Bekos 1 Sabine Cornelsen

More information

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15.

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15. ICS 161 Algorithms Winter 1998 Final Exam Name: ID: 1: out of 15 2: out of 15 3: out of 20 4: out of 15 5: out of 20 6: out of 15 total: out of 100 1. Solve the following recurrences. (Just give the solutions;

More information

Boundary Labeling with Octilinear Leaders

Boundary Labeling with Octilinear Leaders lgorithmica manuscript No. (will be inserted by the editor) oundary Labeling with Octilinear Leaders Michael. ekos Michael Kaufmann Martin Nöllenburg ntonios Symvonis the date of receipt and acceptance

More information

Some Open Problems in Graph Theory and Computational Geometry

Some Open Problems in Graph Theory and Computational Geometry Some Open Problems in Graph Theory and Computational Geometry David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science ICS 269, January 25, 2002 Two Models of Algorithms Research

More information

Complexity of Octagonal and Rectangular Cartograms

Complexity of Octagonal and Rectangular Cartograms Complexity of Octagonal and Rectangular Cartograms T. Biedl and B. Genc December 1, 2005 Abstract In this paper, we study the complexity of rectangular cartograms, i.e., maps where every region is a rectangle,

More information

Multi-Stack Boundary Labeling Problems

Multi-Stack Boundary Labeling Problems Multi-Stack Boundary Labeling Problems Micael A. Bekos 1, Micael Kaufmann 2, Katerina Potika 1 Antonios Symvonis 1 1 National Tecnical University of Atens, Scool of Applied Matematical & Pysical Sciences,

More information

Computing Cartograms with Optimal Complexity

Computing Cartograms with Optimal Complexity Computing Cartograms with Optimal Complexity Md. Jawaherul Alam 1 University of Arizona, Tucson, AZ, USA mjalam@email.arizona.edu Stefan Felsner 3 Technische Universität Berlin, Berlin, Germany felsner@math.tu-berlin.de

More information

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps Michael A. Bekos Michael Kaufmann Antonios Symvonis Alexander Wolff Computational Geometry: Theory & Applications Submitted October

More information

Edge-weighted contact representations of planar graphs

Edge-weighted contact representations of planar graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 7, no. 4, pp. 44 47 (20) DOI: 0.755/jgaa.00299 Edge-weighted contact representations of planar graphs Martin Nöllenburg Roman Prutkin

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

A Zone-Based Approach for Placing Annotation Labels on Metro Maps

A Zone-Based Approach for Placing Annotation Labels on Metro Maps A Zone-Based Approach for Placing Annotation Labels on Metro Maps Hsiang-Yun Wu 1, Shigeo Takahashi 1, Chun-Cheng Lin 2, and Hsu-Chun Yen 3 1 Dept. of Complexity Science and Engineering, The University

More information

Computing Cartograms with Optimal Complexity

Computing Cartograms with Optimal Complexity Discrete Comput Geom (2013) 50:784 810 DOI 10.1007/s00454-013-9521-1 Computing Cartograms with Optimal Complexity Md. Jawaherul Alam Therese Biedl Stefan Felsner Michael Kaufmann Stephen G. Kobourov Torsten

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

Algorithms for Multi-Criteria One-Sided Boundary Labeling

Algorithms for Multi-Criteria One-Sided Boundary Labeling Algorithms for Multi-Criteria One-Sided Boundary Labeling Marc Benkert 1,, Herman Haverkort 2, Moritz Kroll 1, and Martin Nöllenburg 1, 1 Faculty of Informatics, Karlsruhe University, P.O. Box 6980, 76128

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Linear-Time Algorithms for Proportional Contact Graph Representations

Linear-Time Algorithms for Proportional Contact Graph Representations Linear-Time Algorithms for Proportional Contact Graph Representations Technical Report CS-2011-19 Md. J. Alam ½, T. Biedl ¾, S. Felsner, A. Gerasch, M. Kaufmann, and S. G. Kobourov ½ ¾ ½ Department of

More information

3D Modeling & Sketchup

3D Modeling & Sketchup 3D Modeling & Sketchup Lecture 118, Tuesday October 30th, 2014 SketchUp / SkechUp Pro Available to CS 410 students on Windows Machines in USB 110. 10/30/14 Bruce A. Draper & J. Ross Beveridge 2014 2 Sketchup

More information

Morphing Planar Graph Drawings

Morphing Planar Graph Drawings Morphing Planar Graph Drawings Giuseppe Di Battista Università degli Studi Roma Tre The 12th International Conference and Workshops on Algorithms and Computation WALCOM 2018 Basic definitions Graph drawing

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Decomposing Coverings and the Planar Sensor Cover Problem

Decomposing Coverings and the Planar Sensor Cover Problem Intro. previous work. Restricted Strip Cover Decomposing Multiple Coverings Decomposing Coverings and the Planar Sensor Cover Problem Matt Gibson Kasturi Varadarajan presented by Niv Gafni 2012-12-12 Intro.

More information

Geometric Red-Blue Set Cover for Unit Squares and Related Problems

Geometric Red-Blue Set Cover for Unit Squares and Related Problems Geometric Red-Blue Set Cover for Unit Squares and Related Problems Timothy M. Chan Nan Hu December 1, 2014 Abstract We study a geometric version of the Red-Blue Set Cover problem originally proposed by

More information

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms Geometric data structures Sudebkumar Prasant Pal Department of Computer Science and Engineering IIT Kharagpur, 721302. email: spp@cse.iitkgp.ernet.in January 10-12, 2012 - NIT Surathkal Introduction to

More information

Optimal Angular Resolution for Face-Symmetric Drawings

Optimal Angular Resolution for Face-Symmetric Drawings Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 15, no. 4, pp. 551 564 (2011) Optimal Angular Resolution for Face-Symmetric Drawings David Eppstein 1 Kevin A. Wortman 2 1 Department

More information

Optimal Möbius Transformation for Information Visualization and Meshing

Optimal Möbius Transformation for Information Visualization and Meshing Optimal Möbius Transformation for Information Visualization and Meshing Marshall Bern Xerox Palo Alto Research Ctr. David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information

Industrial Single Board Computer 5.25 Embedded Miniboard

Industrial Single Board Computer 5.25 Embedded Miniboard Industrial Single Board Computer 5.25 Embedded Miniboard LS-573 Support Intel Penryn CPU with DDRIII SO-DIMM, CRT, LVDS, DVI, HDTV, Gigabit LAN, PCI slot, USB, Serial ATAII, Mini PCI, PCI Express mini

More information

Continuous. Covering. Location. Problems. Louis Luangkesorn. Introduction. Continuous Covering. Full Covering. Preliminaries.

Continuous. Covering. Location. Problems. Louis Luangkesorn. Introduction. Continuous Covering. Full Covering. Preliminaries. Outline 1 Full IE 1079/2079 Logistics and Supply Chain Full 2 Full Empty University of Pittsburgh Department of Industrial Engineering June 24, 2009 Empty 3 4 Empty 5 6 Taxonomy of Full Full A location

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing. David Eppstein Computer Science Dept. Univ. of California, Irvine

The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing. David Eppstein Computer Science Dept. Univ. of California, Irvine The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing David Eppstein Computer Science Dept. Univ. of California, Irvine Graph drawing: visual display of symbolic information Vertices and

More information

Week 8 Voronoi Diagrams

Week 8 Voronoi Diagrams 1 Week 8 Voronoi Diagrams 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908 3 Voronoi Diagram Fire observation towers: an

More information

Configurable Rectilinear Steiner Tree Construction for SoC and Nano Technologies

Configurable Rectilinear Steiner Tree Construction for SoC and Nano Technologies Configurable Rectilinear Steiner Tree Construction for SoC and Nano Technologies Iris Hui-Ru Jiang and Yen-Ting Yu Department of Electronics Engineering & Institute of Electronics National Chiao Tung University,

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James with a lot of slides stolen from Steve Seitz and David Brogan, Breaking out of 2D now we are ready to break out of 2D And enter the

More information

heptagon; not regular; hexagon; not regular; quadrilateral; convex concave regular; convex

heptagon; not regular; hexagon; not regular; quadrilateral; convex concave regular; convex 10 1 Naming Polygons A polygon is a plane figure formed by a finite number of segments. In a convex polygon, all of the diagonals lie in the interior. A regular polygon is a convex polygon that is both

More information

arxiv: v2 [cs.cg] 28 Feb 2018

arxiv: v2 [cs.cg] 28 Feb 2018 Non-crossing paths with geographic constraints Rodrigo I. Silveira 1, Bettina Speckmann 2, and Kevin Verbeek 2 1 Dept. de Matemàtiques, Universitat Politècnica de Catalunya, rodrigo.silveira@upc.edu 2

More information

Unit 3 Transformations and Clipping

Unit 3 Transformations and Clipping Transformation Unit 3 Transformations and Clipping Changes in orientation, size and shape of an object by changing the coordinate description, is known as Geometric Transformation. Translation To reposition

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

TR UCSB Approximation Algorithms for the Minimum-Length Corridor and. Related Problems

TR UCSB Approximation Algorithms for the Minimum-Length Corridor and. Related Problems TR UCSB 2007-03 Approximation Algorithms for the Minimum-Length Corridor and Related Problems Arturo Gonzalez-Gutierrez and Teofilo F. Gonzalez Department of Computer Science University of California Santa

More information

Morphing Planar Graphs in Spherical Space

Morphing Planar Graphs in Spherical Space Morphing Planar Graphs in Spherical Space Stephen G. Kobourov and Matthew Landis Department of Computer Science University of Arizona {kobourov,mlandis}@cs.arizona.edu Abstract. We consider the problem

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Scalar Visualization

Scalar Visualization Scalar Visualization 5-1 Motivation Visualizing scalar data is frequently encountered in science, engineering, and medicine, but also in daily life. Recalling from earlier, scalar datasets, or scalar fields,

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James with a lot of slides stolen from Steve Seitz and David Brogan, 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Classes

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

Journal of Graph Algorithms and Applications

Journal of Graph Algorithms and Applications Journal of Graph Algorithms and Applications http://www.cs.brown.edu/publications/jgaa/ vol. 6, no. 1, pp. 115 129 (2002) Embedding Vertices at Points: Few Bends suffice for Planar Graphs Michael Kaufmann

More information

Polygon decomposition. Motivation: Art gallery problem

Polygon decomposition. Motivation: Art gallery problem CG Lecture 3 Polygon decomposition 1. Polygon triangulation Triangulation theory Monotone polygon triangulation 2. Polygon decomposition into monotone pieces 3. Trapezoidal decomposition 4. Convex decomposition

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

The Touring Polygons Problem (TPP)

The Touring Polygons Problem (TPP) The Touring Polygons Problem (TPP) [Dror-Efrat-Lubiw-M]: Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2014 Steve

More information

Edges and Switches, Tunnels and Bridges. David Eppstein Marc van Kreveld Elena Mumford Bettina Speckmann

Edges and Switches, Tunnels and Bridges. David Eppstein Marc van Kreveld Elena Mumford Bettina Speckmann Edges and Switches, Tunnels and Bridges David Eppstein Marc van Kreveld Elena Mumford Bettina Speckmann Cased drawing Let D be a non-planar drawing of a graph G. A cased drawing D of G is a drawing where

More information

Geometric Red-Blue Set Cover for Unit Squares and Related Problems

Geometric Red-Blue Set Cover for Unit Squares and Related Problems Geometric Red-Blue Set Cover for Unit Squares and Related Problems Timothy M. Chan Nan Hu Abstract We study a geometric version of the Red-Blue Set Cover problem originally proposed by Carr, Doddi, Konjevod,

More information

Drawing Graphs for Cartographic Applications. Elena Mumford

Drawing Graphs for Cartographic Applications. Elena Mumford Drawing Graphs for Cartographic Applications Elena Mumford Drawing Graphs for Cartographic Applications PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

Optimal Polygonal Representation of Planar Graphs

Optimal Polygonal Representation of Planar Graphs Optimal Polygonal Representation of Planar Graphs Emden Gansner 1, Yifan Hu 1, Michael Kaufmann 2, and Stephen G. Kobourov 1 1 AT&T Labs - Research Florham Park, NJ USA {erg, yifanhu, skobourov}@research.att.com

More information

Computational Geometry Exercise Duality

Computational Geometry Exercise Duality Computational Geometry Exercise Duality LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Guido Brückner 20.07.2018 1 Duality Transforms We have seen duality for

More information

CS6100: Topics in Design and Analysis of Algorithms

CS6100: Topics in Design and Analysis of Algorithms CS6100: Topics in Design and Analysis of Algorithms Guarding and Triangulating Polygons John Augustine CS6100 (Even 2012): Guarding and Triangulating Polygons The Art Gallery Problem A simple polygon is

More information

Improved Results on Geometric Hitting Set Problems

Improved Results on Geometric Hitting Set Problems Improved Results on Geometric Hitting Set Problems Nabil H. Mustafa nabil@lums.edu.pk Saurabh Ray saurabh@cs.uni-sb.de Abstract We consider the problem of computing minimum geometric hitting sets in which,

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 18: Putting Lines Together: Polylines and Polygons Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book

More information

Upward Planar Drawings and Switch-regularity Heuristics

Upward Planar Drawings and Switch-regularity Heuristics Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 1, no. 2, pp. 259 285 (26) Upward Planar Drawings and Switch-regularity Heuristics Walter Didimo Dipartimento di Ingegneria Elettronica

More information

Drawing planar graphs with prescribed face areas

Drawing planar graphs with prescribed face areas Drawing planar graphs with prescribed face areas by Lesvia Elena Ruiz Velázquez A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information

Tessellations. Irena Swanson Reed College, Portland, Oregon. MathPath, Lewis & Clark College, Portland, Oregon, 24 July 2018

Tessellations. Irena Swanson Reed College, Portland, Oregon. MathPath, Lewis & Clark College, Portland, Oregon, 24 July 2018 Tessellations Irena Swanson Reed College, Portland, Oregon MathPath, Lewis & Clark College, Portland, Oregon, 24 July 2018 What is a tessellation? A tiling or a tessellation of the plane is a covering

More information

Introduction VLSI PHYSICAL DESIGN AUTOMATION

Introduction VLSI PHYSICAL DESIGN AUTOMATION VLSI PHYSICAL DESIGN AUTOMATION PROF. INDRANIL SENGUPTA DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Introduction Main steps in VLSI physical design 1. Partitioning and Floorplanning l 2. Placement 3.

More information

Machine vision. Summary # 6: Shape descriptors

Machine vision. Summary # 6: Shape descriptors Machine vision Summary # : Shape descriptors SHAPE DESCRIPTORS Objects in an image are a collection of pixels. In order to describe an object or distinguish between objects, we need to understand the properties

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

CLK. Slot1 VIA ATX Mainboard. User s Manual 4

CLK. Slot1 VIA ATX Mainboard. User s Manual 4 2.1. Mainboard Layout Drawing CLK AGP 1 H14.318 Slot1 VIA693-133 ATX Mainboard ISA2 ISA1 User s Manual 4 2.2. Hardware Installation Steps 2.2.1. Installing System Memory The mainboard is equipped with

More information

arxiv: v2 [cs.cg] 3 May 2015

arxiv: v2 [cs.cg] 3 May 2015 Contact Representations of Graphs in 3D Md. Jawaherul Alam, William Evans, Stephen G. Kobourov, Sergey Pupyrev, Jackson Toeniskoetter, and Torsten Ueckerdt 3 arxiv:50.00304v [cs.cg] 3 May 05 Department

More information

Simulations of the quadrilateral-based localization

Simulations of the quadrilateral-based localization Simulations of the quadrilateral-based localization Cluster success rate v.s. node degree. Each plot represents a simulation run. 9/15/05 Jie Gao CSE590-fall05 1 Random deployment Poisson distribution

More information

Graph Drawing via Canonical Orders

Graph Drawing via Canonical Orders Algorithms for Graph Visualization Summer Semester 2016 Lecture # 3 Graph Drawing via Canonical Orders (Partly based on lecture slides by Philipp Kindermann & Alexander Wolff) 1 Outline Planar Graphs:

More information

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2 Symmetry 2011, 3, 325-364; doi:10.3390/sym3020325 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal

More information

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2 Symmetry 2011, 3, 325-364; doi:10.3390/sym3020325 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal

More information

On Graphs Supported by Line Sets

On Graphs Supported by Line Sets On Graphs Supported by Line Sets Vida Dujmović, William Evans, Stephen Kobourov, Giuseppe Liotta, Christophe Weibel, and Stephen Wismath School of Computer Science Carleton University cgm.cs.mcgill.ca/

More information

The Full Survey on The Euclidean Steiner Tree Problem

The Full Survey on The Euclidean Steiner Tree Problem The Full Survey on The Euclidean Steiner Tree Problem Shikun Liu Abstract The Steiner Tree Problem is a famous and long-studied problem in combinatorial optimization. However, the best heuristics algorithm

More information

LV-681. Mini-ITX motherboard. User s Manual. Edition: /04/09. LV-681 User s Manual 1

LV-681. Mini-ITX motherboard. User s Manual. Edition: /04/09. LV-681 User s Manual 1 LV-681 Mini-ITX motherboard User s Manual Edition: 1.00 2007/04/09 LV-681 User s Manual 1 Copyright The trademarks mentioned in the manual are legally registered to their respective companies. Disclaimer

More information

Morphing Planar Graphs in Spherical Space

Morphing Planar Graphs in Spherical Space Morphing Planar Graphs in Spherical Space Stephen G. Kobourov and Matthew Landis Department of Computer Science University of Arizona {kobourov,mlandis}@cs.arizona.edu Abstract. We consider the problem

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

Tutorial 4: Texture Mapping Techniques

Tutorial 4: Texture Mapping Techniques Tutorial 4: Texture Mapping Techniques Completion time 40 minutes In the previous tutorial we learned how to create materials, and how to assign texture maps to those materials. In this tutorial we will

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

AMS 345/CSE 355 Computational Geometry

AMS 345/CSE 355 Computational Geometry AMS 345/CSE 355 Computational Geometry Lecture: Polygons, Guarding Joe Mitchell Do You Like Puzzles? Come to the new Stony Brook Puzzle Society Meets: Friday 1:05-2:30 pm at CSE 2120 Organizer: Pramod

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8!

CS 410/584, Algorithm Design & Analysis, Lecture Notes 8! CS 410/584, Algorithm Design & Analysis, Computational Geometry! Algorithms for manipulation of geometric objects We will concentrate on 2-D geometry Numerically robust try to avoid division Round-off

More information

Ansoft HFSS Solids Menu

Ansoft HFSS Solids Menu Ansoft HFSS Use the commands on the Solids menu to: Draw simple 3D objects such as cylinders, boxes, cones, and spheres. Draw a spiral or helix. Sweep a 2D object to create a 3D object. 2D objects can

More information

On the Complexity of Graph Cuboidal Dual Problems for 3-D Floorplanning of Integrated Circuit Design

On the Complexity of Graph Cuboidal Dual Problems for 3-D Floorplanning of Integrated Circuit Design On the Complexity of Graph Cuboidal Dual Problems for 3-D Floorplanning of Integrated Circuit Design Renshen Wang Chung-Kuan Cheng Department of Computer Science & Engineering University of California,

More information

arxiv:cs/ v1 [cs.cg] 13 Jun 2001

arxiv:cs/ v1 [cs.cg] 13 Jun 2001 Hinged Kite Mirror Dissection David Eppstein arxiv:cs/0106032v1 [cs.cg] 13 Jun 2001 Abstract Any two polygons of equal area can be partitioned into congruent sets of polygonal pieces, and in many cases

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

Intersecting Simple Surfaces. Dr. Scott Schaefer

Intersecting Simple Surfaces. Dr. Scott Schaefer Intersecting Simple Surfaces Dr. Scott Schaefer 1 Types of Surfaces Infinite Planes Polygons Convex Ray Shooting Winding Number Spheres Cylinders 2/66 Infinite Planes Defined by a unit normal n and a point

More information