Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem

Size: px
Start display at page:

Download "Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem"

Transcription

1 Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem Jonathan Klawitter Martin Nöllenburg Torsten Ueckerdt Karlsruhe Institute of Technology September 25, rd International Symposium on Graph Drawing & Network Visualization Los Angeles

2 road map Combinatorial Properties of Triangle-Free Rectangle Arrangements The Squarability Problem

3 introduction discretize Contact Representations Combinatorial Descriptions realize

4 introduction discretize Contact Representations Combinatorial Descriptions realize

5 combinatorial descriptions Thm. For any quadrangulation G each of the following are in bijection. [de Fraysseix-Ossona de Mendez 2001] 1 axis-aligned segment representations of G 2 2-orientations of G 3 separating decompositions of G segments 2-orientations separating decompositions

6 combinatorial descriptions Thm. For any triangulation G each of the following are in bijection. 1 bottom-aligned triangle representations of G 2 3-orientations of G 3 Schnyder realizer of G [Schnyder 1991] triangles 3-orientations Schnyder realizer

7 combinatorial descriptions Thm. For any plane Laman graph G each of the following are in bijection. [Kobourov-U-Verbeek 2013] 1 axis-aligned L-shape representations of G 2 3-orientations of the vertex-face augmentation G 3 angular edge labelings of G L-shapes 3-orientations of G angular edge labelings

8 combinatorial descriptions Thm. For any rectangular dual G each of the following are in bijection. 1 rectangle contact representations of G 2 bipolar orientations of G 3 transversal structures of G [Kant-He 1997] rectangles bipolar orientations tranversal structures

9 motivation Applications incremental construction graph representations enumeration underlying poset structure small grid drawings local searches random generation

10 overview corners = outgoing edges axis-aligned segments separating decompositions bottom-aligned triangles Schnyder realizer axis-aligned L-shapes angular edge labelings axis-aligned rectangles sides = several outgoing edges transversal structures

11 overview corners = outgoing edges axis-aligned segments separating decompositions bottom-aligned triangles Schnyder realizer axis-aligned L-shapes angular edge labelings Our Contribution: axis-aligned rectangles corner edge labelings axis-aligned rectangles sides = several outgoing edges transversal structures

12 our combinatorial description 1) Orientation 2) Coloring who pokes who? with which feature? 3) Local Rules 4) Graph Class planar maximal triangle-free inner vertex outer vertices

13 orientation and graph class 1) Orientation corners = outgoing edges 4) Graph Class planar

14 orientation and graph class 1) Orientation corners = outgoing edges 4) Graph Class triangle 2 edges for 1 corner planar

15 orientation and graph class 1) Orientation corners = outgoing edges 4) Graph Class triangle 2 edges for 1 corner planar maximal triangle-free (only 4-faces and 5-faces)

16 orientation and graph class 1) Orientation corners = outgoing edges 4) Graph Class triangle 2 edges for 1 corner planar maximal triangle-free (only 4-faces and 5-faces) every contact involves 2 corners

17 orientation and graph class 1) Orientation corners = outgoing edges 4) Graph Class triangle 2 edges for 1 corner planar maximal triangle-free (only 4-faces and 5-faces) every contact involves 2 corners 5) Augment Input Graph double each edge

18 orientation and graph class 1) Orientation corners = outgoing edges 4) Graph Class triangle 2 edges for 1 corner planar maximal triangle-free (only 4-faces and 5-faces) every contact involves 2 corners 5) Augment Input Graph double each edge? 1 unused corner in each 5-face

19 orientation and graph class 1) Orientation corners = outgoing edges 4) Graph Class triangle 2 edges for 1 corner planar maximal triangle-free (only 4-faces and 5-faces) every contact involves 2 corners 5) Augment Input Graph double each edge add vertices for inner faces 1 unused corner in each 5-face?

20 orientation and graph class 5) Augment Input Graph double each edge add vertices for inner faces add 2 half-edges to each outer vertex input graph G the closure Ḡ

21 orientation and graph class 1) Orientation original vertices: outgoing edges = corners face-vertices: outgoing edges = extremal sides 4-orientation: outdegree 4 at every vertex 4-orientation of Ḡ the closure Ḡ

22 our combinatorial description 1) Orientation 2) Coloring who pokes who? with which feature? 3) Local Rules 4) Graph Class planar maximal triangle-free inner vertex outer vertices

23 coloring and local rules 2) Coloring original vertices: one color per corner face-vertices: outgoing edges not colored 4-orientation of Ḡ corner edge labeling

24 coloring and local rules 3) Local Rules blue-green alternated black-red green-black alternated black-red alternated red-blue alternated red-blue blue-green greenblack inner vertices outer vertices

25 main result Thm. For any maximal triangle-free, plane graph G with quadrilateral outer face, each of the following are in bijection. 1 rectangle contact representations of G 2 4-orientations of the closure Ḡ 3 corner edge labelings of the closure Ḡ rectangles 4-orientations corner edge labelings

26 additional properties Lem. In every augmented corner edge labeling each of the following holds. Each color class is a tree. Every non-trivial directed cycle has all 4 colors. Lem. For every maximal triangle-free plane graph G its closure Ḡ has a 4-orientation. Hence, G has a rectangle contact representation. G G Ḡ Ḡ Ḡ

27 road map Combinatorial Properties of Triangle-Free Rectangle Arrangements The Squarability Problem

28 introduction (2) discretize Intersection Representations Combinatorial Descriptions realize? lines pseudo-lines

29 introduction (2) discretize Intersection Representations Combinatorial Descriptions realize? circles pseudo-circles

30 introduction (2) discretize Intersection Representations Combinatorial Descriptions realize? squares rectangles

31 computational complexity Thm. It is NP-hard to decide whether a given pseudo-line arrangement is realizable with lines. [Mnëv 1988, Shor 1991] Thm. It is NP-hard to decide whether a given pseudo-circle arrangement is realizable with circles. [Kang-Müller 2014]

32 computational complexity Thm. It is NP-hard to decide whether a given pseudo-line arrangement is realizable with lines. [Mnëv 1988, Shor 1991] Thm. It is NP-hard to decide whether a given pseudo-circle arrangement is realizable with circles. [Kang-Müller 2014] Our Contribution: Question Is it NP-hard to decide whether a given rectangle arrangement is realizable with squares? The Squarability Problem

33 first examples some unsquarable rectangles (a)

34 first examples some unsquarable rectangles (a) (b)

35 first examples some unsquarable rectangles (a) (b) (c)

36 first examples some unsquarable rectangles (a) (b) (c) (d)

37 our results line-pierced arrangement cross side-intersection Thm. Every line-pierced, triangle-free and cross-free rectangle arrangement is squarable. Thm. Every line-pierced and cross-free rectangle arrangement without side-intersections is squarable. Question Is every cross-free rectangle arrangement without side-intersections squarable?

38 Combinatorial Properties of Triangle-Free Rectangle Arrangements The Squarability Problem Thank you for your attention! (joint work with Jonathan Klawitter and Martin Nöllenburg)

Straight-line drawing of quadrangulations

Straight-line drawing of quadrangulations traight-line drawing of quadrangulations Éric Fusy Algorithms Project (IRIA Rocquencourt) and LIX (École Polytechnique) eric.fusy@inria.fr Abstract. This article introduces a straight-line drawing algorithm

More information

Bijective Links on Planar Maps via Orientations

Bijective Links on Planar Maps via Orientations Bijective Links on Planar Maps via Orientations Éric Fusy Dept. Math, University of British Columbia. p.1/1 Planar maps Planar map = graph drawn in the plane without edge-crossing, taken up to isotopy

More information

Area-Universal Rectangular Layouts

Area-Universal Rectangular Layouts Area-Universal Rectangular Layouts David Eppstein University of California, Irvine Elena Mumford, Bettina Speckmann, and Kevin Verbeek TU Eindhoven Rectangular layout not allowed Rectangular layout partition

More information

arxiv: v2 [cs.cg] 3 May 2015

arxiv: v2 [cs.cg] 3 May 2015 Contact Representations of Graphs in 3D Md. Jawaherul Alam, William Evans, Stephen G. Kobourov, Sergey Pupyrev, Jackson Toeniskoetter, and Torsten Ueckerdt 3 arxiv:50.00304v [cs.cg] 3 May 05 Department

More information

Graph Drawing via Canonical Orders

Graph Drawing via Canonical Orders Algorithms for Graph Visualization Summer Semester 2016 Lecture # 3 Graph Drawing via Canonical Orders (Partly based on lecture slides by Philipp Kindermann & Alexander Wolff) 1 Outline Planar Graphs:

More information

Transversal Structures on Triangulations, with Application to Straight-Line Drawing

Transversal Structures on Triangulations, with Application to Straight-Line Drawing Transversal Structures on Triangulations, with Application to Straight-Line Drawing Éric Fusy Algorithm Project (INRIA Rocquencourt) and LIX (École Polytechnique) eric.fusy@inria.fr Abstract. We define

More information

Transversal structures on triangulations: a combinatorial study and straight-line drawings

Transversal structures on triangulations: a combinatorial study and straight-line drawings Transversal structures on triangulations: a combinatorial study and straight-line drawings Éric Fusy Algorithms Project, INRIA Rocquencourt and LIX, École Polytechnique Abstract This article focuses on

More information

Computing Cartograms with Optimal Complexity

Computing Cartograms with Optimal Complexity Computing Cartograms with Optimal Complexity Md. Jawaherul Alam 1 University of Arizona, Tucson, AZ, USA mjalam@email.arizona.edu Stefan Felsner 3 Technische Universität Berlin, Berlin, Germany felsner@math.tu-berlin.de

More information

Orientations of Planar Graphs

Orientations of Planar Graphs Orientations of Planar Graphs Doc-Course Bellaterra March 11, 2009 Stefan Felsner Technische Universität Berlin felsner@math.tu-berlin.de Topics α-orientations Sample Applications Counting I: Bounds Counting

More information

AN INTRODUCTION TO ORIENTATIONS ON MAPS 2nd lecture May, 16th 2017

AN INTRODUCTION TO ORIENTATIONS ON MAPS 2nd lecture May, 16th 2017 AN INTRODUCTION TO ORIENTATIONS ON MAPS 2nd lecture May, 16th 2017 Marie Albenque (CNRS, LIX, École Polytechnique) Mini-school on Random Maps and the Gaussian Free Field ProbabLyon Plan Yesterday : Construction

More information

Transversal structures on triangulations, with application to straight-line drawing

Transversal structures on triangulations, with application to straight-line drawing Transversal structures on triangulations, with application to straight-line drawing Éric Fusy INRIA Rocquencourt, Algorithm Project and LIX, École Polytechnique eric.fusy@inria.fr Abstract. We define and

More information

Journal of Graph Algorithms and Applications

Journal of Graph Algorithms and Applications Journal of Graph Algorithms and Applications http://www.cs.brown.edu/publications/jgaa/ vol. 5, no. 5, pp. 93 105 (2001) Connectivity of Planar Graphs H. de Fraysseix P. Ossona de Mendez CNRS UMR 8557

More information

Three-Dimensional Shapes

Three-Dimensional Shapes Lesson 11.1 Three-Dimensional Shapes Three-dimensional objects come in different shapes. sphere cone cylinder rectangular prism cube Circle the objects that match the shape name. 1. rectangular prism 2.

More information

Computational Geometry Exercise Duality

Computational Geometry Exercise Duality Computational Geometry Exercise Duality LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Guido Brückner 20.07.2018 1 Duality Transforms We have seen duality for

More information

The Order Dimension of Planar Maps Revisited

The Order Dimension of Planar Maps Revisited The Order Dimension of Planar Maps Revisited Stefan Felsner y Technische Universitat Berlin, Institut fur Mathematik Strasse des 17. Juni 136, 10623 Berlin, Germany felsner@math.tu-berlin.de Abstract.

More information

Describe Plane Shapes

Describe Plane Shapes Lesson 12.1 Describe Plane Shapes You can use math words to describe plane shapes. point an exact position or location line endpoints line segment ray a straight path that goes in two directions without

More information

A master bijection for planar maps and its applications. Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX)

A master bijection for planar maps and its applications. Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX) A master bijection for planar maps and its applications Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX) UCLA, March 0 Planar maps. Definition A planar map is a connected planar graph embedded

More information

HYPERBOLAS BY: Valencia Williams

HYPERBOLAS BY: Valencia Williams HYPERBOLAS BY: Valencia Williams A hyperbola is the set of all points (x, y) in a plane such that the absolute value of the difference of the distance from 2 fixed points (foci) is a positive constant.

More information

Computing Cartograms with Optimal Complexity

Computing Cartograms with Optimal Complexity Discrete Comput Geom (2013) 50:784 810 DOI 10.1007/s00454-013-9521-1 Computing Cartograms with Optimal Complexity Md. Jawaherul Alam Therese Biedl Stefan Felsner Michael Kaufmann Stephen G. Kobourov Torsten

More information

New bijective links on planar maps

New bijective links on planar maps FPSAC 2008, Valparaiso-Viña del Mar, Chile DMTCS proc. AJ, 2008, 153 166 New bijective links on planar maps Éric Fusy Dept. Mathematics, Simon Fraser University, Vancouver. E-mail: eric.fusy@inria.fr Abstract.

More information

On the Characterization of Plane Bus Graphs

On the Characterization of Plane Bus Graphs On the Characterization of Plane Bus Graphs Till Bruckdorfer 1, Stefan Felsner 2, and Michael Kaufmann 1 1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany, {bruckdor,mk}@informatik.uni-tuebingen.de

More information

On Graphs Supported by Line Sets

On Graphs Supported by Line Sets On Graphs Supported by Line Sets Vida Dujmović, William Evans, Stephen Kobourov, Giuseppe Liotta, Christophe Weibel, and Stephen Wismath School of Computer Science Carleton University cgm.cs.mcgill.ca/

More information

An angle that has a measure less than a right angle.

An angle that has a measure less than a right angle. Unit 1 Study Strategies: Two-Dimensional Figures Lesson Vocab Word Definition Example Formed by two rays or line segments that have the same 1 Angle endpoint. The shared endpoint is called the vertex.

More information

Partitions of Graphs into Trees

Partitions of Graphs into Trees Partitions of Graphs into Trees Therese Biedl and Franz J. Brandenburg School of Computer Science, University of Waterloo, NL3G, Canada biedl@uwaterloo.ca Lehrstuhl für Informatik, Universität Passau,

More information

NESTED AND FULLY AUGMENTED LINKS

NESTED AND FULLY AUGMENTED LINKS NESTED AND FULLY AUGMENTED LINKS HAYLEY OLSON Abstract. This paper focuses on two subclasses of hyperbolic generalized fully augmented links: fully augmented links and nested links. The link complements

More information

A Simple, but NP-Hard, Motion Planning Problem

A Simple, but NP-Hard, Motion Planning Problem A Simple, but NP-Hard, Motion Planning Problem Lawrence H. Erickson and Steven M. LaValle University of Illinois at Urbana-Champaign Department of Computer Science 201 N. Goodwin Ave. Urbana, IL 61801

More information

6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, :05-12pm Two hand-written sheet of notes (4 pages) allowed 1 SSD [ /17]

6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, :05-12pm Two hand-written sheet of notes (4 pages) allowed 1 SSD [ /17] 6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, 2011 9:05-12pm Two hand-written sheet of notes (4 pages) allowed NAME: 1 / 17 2 / 12 3 / 35 4 / 8 5 / 18 Total / 90 1 SSD [ /17]

More information

Unit 10 Study Guide: Plane Figures

Unit 10 Study Guide: Plane Figures Unit 10 Study Guide: Plane Figures *Be sure to watch all videos within each lesson* You can find geometric shapes in art. Whether determining the amount of leading or the amount of glass needed for a piece

More information

Lesson 1. Unit 2 Practice Problems. Problem 2. Problem 1. Solution 1, 4, 5. Solution. Problem 3

Lesson 1. Unit 2 Practice Problems. Problem 2. Problem 1. Solution 1, 4, 5. Solution. Problem 3 Unit 2 Practice Problems Lesson 1 Problem 1 Rectangle measures 12 cm by 3 cm. Rectangle is a scaled copy of Rectangle. Select all of the measurement pairs that could be the dimensions of Rectangle. 1.

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

Graph Representations: Rectangles and Squares

Graph Representations: Rectangles and Squares Graph Representations: Rectangles and Squares Spring School SGT 2018 Seté, June 11-15, 2018 Stefan Felsner Technische Universität Berlin felsner@math.tu-berlin.de A Rectangular Dissection Rectangular Dissections

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 10 Topic Practice Papers: Polygons Polygons 1 Grade 4 Look at the shapes below A B C Shape A, B and C are polygons Write down the mathematical name for each of the polygons

More information

Nets and Drawings for Visualizing Geometry. Unit 1 Lesson 1

Nets and Drawings for Visualizing Geometry. Unit 1 Lesson 1 Nets and Drawings for Visualizing Geometry Unit 1 Lesson 1 Students will be able to: Represent three-dimensional figures using nets. Make isometric and orthographic drawings. Key Vocabulary: Net Isometric

More information

Guided Problem Solving

Guided Problem Solving -1 Guided Problem Solving GPS Student Page 57, Exercises 1 1: Match each rule with the correct translation. A. (x, y) (x, y 1 ) I. P(, 1) P (3, ) B. (x, y) (x 1 3, y) II. Q(3, 0) Q (3, ) C. (x, y) (x 1,

More information

New bijective links on planar maps via orientations

New bijective links on planar maps via orientations New bijective links on planar maps via orientations Eric Fusy To cite this version: Eric Fusy. New bijective links on planar maps via orientations. Extended and revised journal version of a conference

More information

Drawing Trees on Fixed Points with L-shaped Edges

Drawing Trees on Fixed Points with L-shaped Edges Drawing Trees on Fixed Points with L-shaped Edges Martin Derka mderka@uwaterloo.ca David R. Cheriton School of Computer Science University of Waterloo GD 2017 September 26, 2017 Joint work with T. Biedl,

More information

2. A straightedge can create straight line, but can't measure. A ruler can create straight lines and measure distances.

2. A straightedge can create straight line, but can't measure. A ruler can create straight lines and measure distances. 5.1 Copies of Line Segments and Angles Answers 1. A drawing is a rough sketch and a construction is a process to create an exact and accurate geometric figure. 2. A straightedge can create straight line,

More information

DRAWING PLANAR GRAPHS WITH PRESCRIBED FACE AREAS

DRAWING PLANAR GRAPHS WITH PRESCRIBED FACE AREAS DRAWING PLANAR GRAPHS WITH PRESCRIBED FACE AREAS Linda Kleist Abstract. We study straight-line drawings of planar graphs where every inner face has a prescribed area. A plane graph is area-universal if

More information

Lesson 99. Three-Dimensional Shapes. sphere cone cylinder. Circle the objects that match the shape name.

Lesson 99. Three-Dimensional Shapes. sphere cone cylinder. Circle the objects that match the shape name. Three-Dimensional Shapes Lesson 99 COMMON CORE STANDARD CC.2.G.1 Lesson Objective: Identify threedimensional shapes. Three-dimensional objects come in different shapes. sphere cone cylinder rectangular

More information

INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM

INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM NOTE: All images in this booklet are scale drawings only of template shapes and scales. Preparation: Your SUPER RULE TM is a valuable acquisition for classroom

More information

Transforming rectangles into squares

Transforming rectangles into squares Transforming rectangles into squares An introduction to the squarability problem Bachelor Thesis of Jonathan Klawitter At the Department of Mathematics Institute for Algebra and Geometry Research Group

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

Line Arrangements. Applications

Line Arrangements. Applications Computational Geometry Chapter 9 Line Arrangements 1 Line Arrangements Applications On the Agenda 2 1 Complexity of a Line Arrangement Given a set L of n lines in the plane, their arrangement A(L) is the

More information

Grade 6 Mathematics Item Specifications Florida Standards Assessments

Grade 6 Mathematics Item Specifications Florida Standards Assessments Content Standard MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. Assessment Limits Calculator s Context A shape is shown. MAFS.6.G.1.1

More information

Geometry !!!!! Tri-Folds 3.G.1 - # 1. 4 Mystery Shape 5 Compare & Contrast. 3rd Grade Math. Compare. Name: Date: Contrast

Geometry !!!!! Tri-Folds 3.G.1 - # 1. 4 Mystery Shape 5 Compare & Contrast. 3rd Grade Math. Compare. Name: Date: Contrast 4 Mystery Shape 5 Compare & Contrast 1. Draw and label a shape that has one more side than a triangle. Draw it. 2. Draw and label a shape that has three more sides than a triangle. 3. Draw and label a

More information

GEOMETRY & INEQUALITIES. (1) State the Triangle Inequality. In addition, give an argument explaining why it should be true.

GEOMETRY & INEQUALITIES. (1) State the Triangle Inequality. In addition, give an argument explaining why it should be true. GEOMETRY & INEQUALITIES LAMC INTERMEDIATE GROUP - 2/23/14 The Triangle Inequality! (1) State the Triangle Inequality. In addition, give an argument explaining why it should be true. (2) Now we will prove

More information

Bijections for Baxter Families and Related Objects

Bijections for Baxter Families and Related Objects arxiv:0803.1546v1 [math.co] 11 Mar 2008 Bijections for Baxter Families and Related Objects Stefan Felsner Institut für Mathematik, Technische Universität Berlin. felsner@math.tu-berlin.de Marc Noy Departament

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES JUSTIN HUANG Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes. Contents

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

create 2 new grid lines

create 2 new grid lines STEP 1: open your class-01 Project file _ go to Level 1 _ select grid line 1 _ type CO (copy) _ repeat for grid line 3 as shown in image 1 Architectural Column STEP 2: from the Ribbon under the Home tab

More information

The Full Survey on The Euclidean Steiner Tree Problem

The Full Survey on The Euclidean Steiner Tree Problem The Full Survey on The Euclidean Steiner Tree Problem Shikun Liu Abstract The Steiner Tree Problem is a famous and long-studied problem in combinatorial optimization. However, the best heuristics algorithm

More information

Shape & Space Part C: Transformations

Shape & Space Part C: Transformations Name: Homeroom: Shape & Space Part C: Transformations Student Learning Expectations Outcomes: I can describe and analyze position and motion of objects and shapes by Checking for Understanding identifying

More information

Static and Dynamic Boundary Labeling

Static and Dynamic Boundary Labeling Static and Dynamic Boundary Labeling Hsu-Chun Yen Dept. of Electrical Engineering National Taiwan University Map Labeling Question: where to put the labels? Basic requirements: No overlaps No ambiguity

More information

Lesson 1: Creating T- Spline Forms. In Samples section of your Data Panel, browse to: Fusion 101 Training > 03 Sculpt > 03_Sculpting_Introduction.

Lesson 1: Creating T- Spline Forms. In Samples section of your Data Panel, browse to: Fusion 101 Training > 03 Sculpt > 03_Sculpting_Introduction. 3.1: Sculpting Sculpting in Fusion 360 allows for the intuitive freeform creation of organic solid bodies and surfaces by leveraging the T- Splines technology. In the Sculpt Workspace, you can rapidly

More information

Edge-weighted contact representations of planar graphs

Edge-weighted contact representations of planar graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 7, no. 4, pp. 44 47 (20) DOI: 0.755/jgaa.00299 Edge-weighted contact representations of planar graphs Martin Nöllenburg Roman Prutkin

More information

Student Outcomes. Lesson Notes. Classwork. Opening Exercise (3 minutes)

Student Outcomes. Lesson Notes. Classwork. Opening Exercise (3 minutes) Student Outcomes Students solve problems related to the distance between points that lie on the same horizontal or vertical line Students use the coordinate plane to graph points, line segments and geometric

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Optimal Polygonal Representation of Planar Graphs

Optimal Polygonal Representation of Planar Graphs Optimal Polygonal Representation of Planar Graphs Emden Gansner 1, Yifan Hu 1, Michael Kaufmann 2, and Stephen G. Kobourov 1 1 AT&T Labs - Research Florham Park, NJ USA {erg, yifanhu, skobourov}@research.att.com

More information

ADJACENCY POSETS OF PLANAR GRAPHS

ADJACENCY POSETS OF PLANAR GRAPHS ADJACENCY POSETS OF PLANAR GRAPHS STEFAN FELSNER, CHING MAN LI, AND WILLIAM T. TROTTER Abstract. In this paper, we show that the dimension of the adjacency poset of a planar graph is at most 8. From below,

More information

planar graph embeddings and stat mech

planar graph embeddings and stat mech planar graph embeddings and stat mech Richard Kenyon (Brown University) In 2D stat mech models, appropriate graph embeddings are important e.g. Bond percolation on Z 2. p c = 1 2 What about unequal probabilities?

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Course Guide (/8/teachers/teacher_course_guide.html) Print (/8/teachers/print_materials.html) LMS (/8

Course Guide (/8/teachers/teacher_course_guide.html) Print (/8/teachers/print_materials.html) LMS (/8 (http://openupresources.org)menu Close OUR Curriculum (http://openupresources.org) Professional Development (http://openupresources.org/illustrative-mathematics-professional-development) Implementation

More information

Mathematics Curriculum

Mathematics Curriculum 6 G R A D E Mathematics Curriculum GRADE 6 5 Table of Contents 1... 1 Topic A: Area of Triangles, Quadrilaterals, and Polygons (6.G.A.1)... 11 Lesson 1: The Area of Parallelograms Through Rectangle Facts...

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

Instructional Alignment Chart

Instructional Alignment Chart CLUSTER HEADING: STANDARD: N/A CLUSTER HEADING: Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). STANDARD: K.G.3 Identify shapes as

More information

ADV Math 8 Unit 1 Study Guide Transformations, Congruence, & Similarity

ADV Math 8 Unit 1 Study Guide Transformations, Congruence, & Similarity Name Period ADV Math 8 Unit 1 Study Guide Transformations, Congruence, & Similarity MGSE8.G.1 Verify experimentally the properties of rotations, reflections, and translations: lines are taken to lines

More information

Veering triangulations admit strict angle structures

Veering triangulations admit strict angle structures Veering triangulations admit strict angle structures Craig Hodgson University of Melbourne Joint work with Hyam Rubinstein, Henry Segerman and Stephan Tillmann. Geometric Triangulations We want to understand

More information

DO NOW Geometry Regents Lomac Date. due. 3D: Area, Dissection, and Cavalieri

DO NOW Geometry Regents Lomac Date. due. 3D: Area, Dissection, and Cavalieri DO NOW Geometry Regents Lomac 2014-2015 Date. due. 3D: Area, Dissection, and Cavalieri (DN) ON BACK OF PACKET Name Per LO: I can define area, find area, and explain dissection and Cavalieri s Principle

More information

Optimal Angular Resolution for Face-Symmetric Drawings

Optimal Angular Resolution for Face-Symmetric Drawings Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 15, no. 4, pp. 551 564 (2011) Optimal Angular Resolution for Face-Symmetric Drawings David Eppstein 1 Kevin A. Wortman 2 1 Department

More information

About Finish Line Mathematics 5

About Finish Line Mathematics 5 Table of COntents About Finish Line Mathematics 5 Unit 1: Big Ideas from Grade 1 7 Lesson 1 1.NBT.2.a c Understanding Tens and Ones [connects to 2.NBT.1.a, b] 8 Lesson 2 1.OA.6 Strategies to Add and Subtract

More information

Module 5: Creating Sheet Metal Transition Piece Between a Square Tube and a Rectangular Tube with Triangulation

Module 5: Creating Sheet Metal Transition Piece Between a Square Tube and a Rectangular Tube with Triangulation 1 Module 5: Creating Sheet Metal Transition Piece Between a Square Tube and a Rectangular Tube with Triangulation In Module 5, we will learn how to create a 3D folded model of a sheet metal transition

More information

2.3. Graphing Calculators; Solving Equations and Inequalities Graphically

2.3. Graphing Calculators; Solving Equations and Inequalities Graphically 2.3 Graphing Calculators; Solving Equations and Inequalities Graphically Solving Equations and Inequalities Graphically To do this, we must first draw a graph using a graphing device, this is your TI-83/84

More information

R(-14, 4) R'(-10, -2) S(-10, 7) S'(-6, 1) T(-5, 4) T'(-1, -2)

R(-14, 4) R'(-10, -2) S(-10, 7) S'(-6, 1) T(-5, 4) T'(-1, -2) 1 Transformations Formative Assessment #1 - Translation Assessment Cluster & Content Standards What content standards can be addressed by this formative assessment? 8.G.3 Describe the effect of dilations

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 18: Putting Lines Together: Polylines and Polygons Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book

More information

Henneberg construction

Henneberg construction Henneberg construction Seminar über Algorithmen FU-Berlin, WS 2007/08 Andrei Haralevich Abstract: In this work will be explained two different types of steps of Henneberg construction. And how Henneberg

More information

Geometric Unique Set Cover on Unit Disks and Unit Squares

Geometric Unique Set Cover on Unit Disks and Unit Squares CCCG 2016, Vancouver, British Columbia, August 3 5, 2016 Geometric Unique Set Cover on Unit Disks and Unit Squares Saeed Mehrabi Abstract We study the Unique Set Cover problem on unit disks and unit squares.

More information

EXACT FACE-OFFSETTING FOR POLYGONAL MESHES

EXACT FACE-OFFSETTING FOR POLYGONAL MESHES 5.0 GEOMIMESIS/LANDFORMING HAMBLETON + ROSS EXACT FACE-OFFSETTING FOR POLYGONAL MESHES Elissa Ross MESH Consultants Inc. Daniel Hambleton MESH Consultants Inc. ABSTRACT Planar-faced mesh surfaces such

More information

Worksheet 3.1: Introduction to Double Integrals

Worksheet 3.1: Introduction to Double Integrals Boise State Math 75 (Ultman) Worksheet.: Introduction to ouble Integrals Prerequisites In order to learn the new skills and ideas presented in this worksheet, you must: Be able to integrate functions of

More information

T. Biedl and B. Genc. 1 Introduction

T. Biedl and B. Genc. 1 Introduction Complexity of Octagonal and Rectangular Cartograms T. Biedl and B. Genc 1 Introduction A cartogram is a type of map used to visualize data. In a map regions are displayed in their true shapes and with

More information

EPG-representations with small grid-size

EPG-representations with small grid-size EPG-representations with small grid-size Martin Derka mderka@uwaterloo.ca David R. Cheriton School of Computer Science University of Waterloo GD 2017 September 26, 2017 Joint work with T. Biedl, V. Dujmovic,

More information

Visualisierung von Graphen

Visualisierung von Graphen Visualisierung von Graphen Smooth Orthogonal Drawings of Planar Graphs. Vorlesung Sommersemester 205 Orthogonal Layouts all edge segments are horizontal or vertical a well-studied drawing convention many

More information

Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count

Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count David Eppstein 25th International Symposium on Graph Drawing & Network Visualization Boston, Massachusetts, September 2017 Circle packing

More information

Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry. We look at two types of isometries in this section: translations and rotations. Translations A

More information

Arizona Academic Standards

Arizona Academic Standards Arizona Academic Standards This chart correlates the Grade 8 performance objectives from the mathematics standard of the Arizona Academic Standards to the lessons in Review, Practice, and Mastery. Lesson

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

Lecture 5: Dual graphs and algebraic duality

Lecture 5: Dual graphs and algebraic duality Lecture 5: Dual graphs and algebraic duality Anders Johansson 2011-10-22 lör Outline Eulers formula Dual graphs Algebraic duality Eulers formula Thm: For every plane map (V, E, F ) we have V E + F = 2

More information

AMS 345/CSE 355 Computational Geometry

AMS 345/CSE 355 Computational Geometry AMS 345/CSE 355 Computational Geometry Lecture: Polygons, Guarding Joe Mitchell Do You Like Puzzles? Come to the new Stony Brook Puzzle Society Meets: Friday 1:05-2:30 pm at CSE 2120 Organizer: Pramod

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

Is there a different way to get the same result? Did we give enough information? How can we describe the position? CPM Materials modified by Mr.

Is there a different way to get the same result? Did we give enough information? How can we describe the position? CPM Materials modified by Mr. Common Core Standard: 8.G.3 Is there a different way to get the same result? Did we give enough information? How can we describe the position? CPM Materials modified by Mr. Deyo Title: IM8 Ch. 6.2.1 What

More information

Week 8 Voronoi Diagrams

Week 8 Voronoi Diagrams 1 Week 8 Voronoi Diagrams 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908 3 Voronoi Diagram Fire observation towers: an

More information

Geometric Red-Blue Set Cover for Unit Squares and Related Problems

Geometric Red-Blue Set Cover for Unit Squares and Related Problems Geometric Red-Blue Set Cover for Unit Squares and Related Problems Timothy M. Chan Nan Hu December 1, 2014 Abstract We study a geometric version of the Red-Blue Set Cover problem originally proposed by

More information

Find Closed Lines. Put an on the lines that are not closed. Circle the closed lines. Who wins:,, or nobody?

Find Closed Lines. Put an on the lines that are not closed. Circle the closed lines. Who wins:,, or nobody? Find Closed Lines Put an on the lines that are not closed. Circle the closed lines. Who wins:,, or nobody? Blackline Master Geometry Teacher s Guide for Workbook 2.1 1 Crossword Polygons Fill in the names

More information

Students pract ice. min. E xpe ri e nc e aligning polygons with a grid to determine area. P rac t i c e finding area of triangles and quadrilaterals

Students pract ice. min. E xpe ri e nc e aligning polygons with a grid to determine area. P rac t i c e finding area of triangles and quadrilaterals 1 U n t er r ich t splan Calculating Area of Polygons Altersgruppe: Grade 4, Grade 3 Virginia - Mathematics Standards of Learning (2009): 3.10b, 3.9d Virginia - Mathematics Standards of Learning (2016):

More information

Math 9: Chapter Review Assignment

Math 9: Chapter Review Assignment Class: Date: Math 9: Chapter 7.5-7.7 Review Assignment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which shapes have at least 2 lines of symmetry?

More information

5.1 Any Way You Slice It

5.1 Any Way You Slice It SECONDARY MATH III // MODULE 5 MODELING WITH GEOMETRY 5.1 Students in Mrs. Denton s class were given cubes made of clay and asked to slice off a corner of the cube with a piece of dental floss. Jumal sliced

More information

Geometry. Name. Use AngLegs to model each set of shapes. Complete each statement with the phrase "is" or "is not." Triangle 1 congruent to Triangle 2.

Geometry. Name. Use AngLegs to model each set of shapes. Complete each statement with the phrase is or is not. Triangle 1 congruent to Triangle 2. Lesson 1 Geometry Name Use AngLegs to model each set of shapes. Complete each statement with the phrase "is" or "is not." 1. 2. 1 2 1 2 3 4 3 4 Triangle 1 congruent to Triangle 2. Triangle 2 congruent

More information

Math 6, Unit 8 Notes: Geometric Relationships

Math 6, Unit 8 Notes: Geometric Relationships Math 6, Unit 8 Notes: Geometric Relationships Points, Lines and Planes; Line Segments and Rays As we begin any new topic, we have to familiarize ourselves with the language and notation to be successful.

More information

arxiv: v1 [cs.cg] 26 Aug 2014

arxiv: v1 [cs.cg] 26 Aug 2014 Simultaneous Embeddability of Two Partitions Jan Christoph Athenstädt 1, Tanja Hartmann 2, and Martin Nöllenburg 2 1 Department of Computer and Information Science, University of Konstanz, Germany 2 Institute

More information