Statistical Modeling of Neuroimaging Data: Targeting Activation, Task-Related Connectivity, and Prediction

Size: px
Start display at page:

Download "Statistical Modeling of Neuroimaging Data: Targeting Activation, Task-Related Connectivity, and Prediction"

Transcription

1 Statistical Modeling of Neuroimaging Data: Targeting Activation, Task-Related Connectivity, and Prediction F. DuBois Bowman Department of Biostatistics and Bioinformatics Emory University, Atlanta, GA, CBIS Five-Year Anniversary Symposium February 8, 2013 F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 1 / 25

2 Acknowledgements Research Team Lijun Zhang, PhD, Emory, Biostatistics and Bioinformatics Jian Kang, PhD, Emory, Biostatistics and Bioinformatics Ying Guo, PhD, Emory, Biostatistics and Bioinformatics Gordana Derado, PhD, CDC Shuo Chen, PhD, Univ. of Maryland, Epidemiology and Biostatistics Wenqiong Xue, MS, Emory, Biostatistics and Bioinformatics Anthony Pileggi, Emory, Biostatistics and Bioinformatics Daniel Huddleston, MD, Kaiser Permanente Georgia Xiaoping Hu, PhD, Emory/GA Tech, Biomedical Engineering F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 2 / 25

3 Outline 1 Spatial Modeling for Activation and Connectivity 2 Determining Multimodal Imaging Biomarkers for Parkinson s Disease 3 Future Directions F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 3 / 25

4 Data Example Working Memory in Schizophrenia Patients N=28 subjects: 15 schizophrenia patients and 13 healthy controls fmri Tasks: Serial Item Recognition Paradigm (SIRP) Encoding set: Subjects asked to memorize 1, 3, or 5 target digits. Probing set: Subjects sequentially shown single digit probes and asked to press a button: with their index finger, if the probe matched with their middle finger, if not. 6 runs per subject: (177 scans per run for each subject) 3 runs of working memory tasks on each of 2 days Objective: Compare working memory-related brain activity between patients and controls Data from the Biomedical Informatics Research Network (BIRN) [1]: Potkin et al. (2002), Proc. 41st Annu. Meeting Am. College Neuropsychopharm. F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 4 / 25

5 fmri Data Characteristics Massive Data Sets Roughly 300,000 brain voxels for each scan at time of analysis S = 177 scans per run, 3 runs each day, 2 days (sessions) Over 300 million spatio-temporal data points per subject! Over 5 billion for all subjects!! Temporal correlations Scan to scan correlations Between session correlations Complex spatial correlations Correlations between neighboring voxels Long-range correlations between different brain regions Roughly 45 billion voxel pairs F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 5 / 25

6 Spatial Correlations Distances Functional Physical (Geometric) Anatomical (a) Functional (b) Geometric The complex neuroanatomy and neurophysiology make basic assumptions of many spatial methods questionable for neuroimaging Figure: Alternative measures of distance Bowman (2007), JASA. F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 6 / 25

7 Common Activation Analysis Framework Two-stage Model First, fit a linear model separately for each subject (at each voxel) Temporal correlations between scans: AR models (+ white noise) Second, fit linear model that combines subject-specific estimates For Inference: Compute t-statistics at each voxel and threshold Consider a multiple testing adjustment (Bonferonni-type, FDR, RFT) Properties Two-stage (random effects) model Simplifies computations Sacrifices efficiency Assumes independence between different brain locations Targets activation analyses, disregarding functional connectivity F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 7 / 25

8 Spatial Modeling Framework Bayesian Spatial Model for Activation and Connectivity (BSMac): Stage I: Individual level - addresses temporal correlations Stage II: Group level Define brain regions using neuroanatomic parcellation (e.g. Brodmann or AAL) Spatial correlations Within regions Between regions Inferences Voxel-level Regional Bowman et al. (2008), NeuroImage Zhang et al. (2011), Journal of Neuroscience Methods F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 8 / 25

9 BSMac Stage II: Bayesian Spatial Model for Activation and Connectivity (BSMac): Y igj µ gj, α igj, σ 2 gj Normal(µ gj + 1α igj, σ 2 gji) µ gj λ 2 gj Normal(1µ 0gj, λ 2 gji) σ 2 gj Gamma(a 0, b 0 ) α ij Γ j Normal(0, Γ j ) λ 2 gj Gamma(c 0, d 0 ) Γ 1 j Wishart { (h 0 H 0j ) 1 }, h 0 Y igj = (Y igj1,..., Y igjvg ), µ gj = (µ gj1,..., µ gjvg ), and α ij = (α i1j,..., α igj ) Bowman et al. (2008), NeuroImage Zhang et al. (2011), Journal of Neuroscience Methods F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 9 / 25

10 BSMac MATLAB Toolbox GUI Interface: Available at F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 10 / 25

11 BSMac MATLAB Toolbox Interactive Activation Maps F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 11 / 25

12 BSMac MATLAB Toolbox Task-Related Connectivity Maps: Schizophrenia Patients, WM Load 5 F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 12 / 25

13 BSMac MATLAB Toolbox Task-Related Connectivity Maps: Healthy Controls, WM Load 5 F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 13 / 25

14 BSMac Properties BSMac framework Considers activation objectives and task-related FC Models spatial correlations in brain activity Within and between defined neuroanatomic regions Yields easily interpretable posterior probabilities of activation Permits voxel-level and region-level inferences Can apply FDR-like concepts Limitations Does not account for temporal dependence between multiple sessions Fairly simple intra-regional correlation model F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 14 / 25

15 Extensions: Spatial Modeling Model Correlations Between scanning sessions [Derado et al. (2010), Biometrics] E.g. between days or treatment periods Does NOT model between-region spatial correlations Between sessions, between regions, and locally between voxels (within regions) [Derado et al. (2012), Statistical Methods in Medical Research] Use imaging data to predict future neural responses Forecast neural representations of disease progression Predict neural responses to various treatments *Between brain regions, between subregions (within regions), between voxels locally within subregions [Xue et al. (2013), in progress] Use imaging data to predict/classify patient characteristics Forecast clinical diagnosis Predict clinical response to various treatments Permits multimodal imaging data F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 15 / 25

16 Determining Multimodal Biomarkers for PD Data from Multimodal Imaging Studies The data will include 81 subjects across three studies 38 Parkinson s disease patients 32 Healthy control subjects 11 Alzheimers disease patients Potential Biomarkers Imaging (MRI, fmri, DTI, NM-MRI, CSI) Genetic Neurocognitive Testing Questionnaire-Derived Scores Clinical CSF Neuroinflammation CSF Catecholamine Metabolites F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 16 / 25

17 Determining Multimodal Biomarkers for PD Project in the NINDS Parkinson s Disease Biomarker Program Aim 1: To develop new statistical techniques to reveal multimodal biomarkers for PD including imaging, clinical, and biologic variables. Develop statistical models for high-dimensional data, which pool predictive strength across multiple data modalities for classifying PD versus HC. Joint multimodal probability models Penalized likelihood approaches, with variable selection using modality-specific penalties l p (β, λ) = l(β) + k λ kp k (β k ) l(β) = i [y ilogπ i + (1 y i )log(1 π i ] Model development, training, testing, and validation F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 17 / 25

18 Objectives Multimodal biomarker detection Numerous findings suggest links between PD and single genetic, imaging, and biologic factors Many of these are non-specific or insensitive Single modality biomarkers may not fully address the complexity of PD We regard PD as a complex, systems-level, multi-dimensional disorder with discrete, but functionally integrated manifestations We will develop methods to define multimodal PD biomarkers from a massive number of hypothesis driven and exploratory candidate markers F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 18 / 25

19 Exploratory Analysis Selected features from multiple imaging modalities [Blue represents PD patients and red represents HC subjects. Networks: FC; Local activity: ALFF; Volumetric: VBM; Chemical shift imaging: RLC and LLC] [NM-MRI Estimated Locus Coeruleus Volume. Controls: N=6; PD: N=9] F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 19 / 25

20 Bayesian Spatial Prediction Model We predict (or classify according to) patient characteristics from multimodal imaging data (and other patient information) Two-level parcellation: AAL Regions Subregions Spatial correlations: Between AAL regions: Unstructured covariance matrix Borrow strength between subregions within each AAL region: CAR model Between voxels within each subregion: Exchangeable structure F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 20 / 25

21 Bayesian Spatial Prediction Model Example of modelling framework using ALFF and VBM data Let D i {0, 1} represent disease status (e.g. 1=PD, 0=HC) Let X ilg (v) and Z ilg (v) respectively denote the ALFF and VBM for subject i at voxel v in subregion l (in region g), and B i = [X ilg (v), Z ilg (v)] Construct a Bayesian joint (multimodal) probability model f (X ilg (v), Z ilg (v) D i ) f 1 (X ilg (v) Zilg(v), D i ) f 2 (Z ilg (v) D i ) Generate predictions for a new subject n + 1 based on Pr(D n+1 = k B n+1, {B i, D i } n i=1 ) F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 21 / 25

22 Bayesian Spatial Prediction Model Generates whole brain, region-level, and voxel-level predictions Region- and voxel-level predictions reveal brain regions with strong discriminatory power Use leave-one-out cross validation to assess accuracy Whole-brain prediction achieves 100% accuracy for distinguishing PD patients from healthy controls based on ALFF and VBM data F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 22 / 25

23 Bayesian Spatial Prediction Model Regional accuracies: F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 23 / 25

24 Future Directions Expand the imaging modalities used to determine PD biomarkers MRI, fmri, DTI, NM-MRI, CSI Some provide whole-brain assessments Some focus on specific regions of interest: locus coeruleus (LC) and substantia nigra (SN) Expand our joint Bayesian multimodal probability model Consider penalized likelihood approaches: l p (β, λ) = l(β) + k λ kp k (β k ) l(β) = i [y ilogπ i + (1 y i )log(1 π i ] Validation of identified biomarkers F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 24 / 25

25 Acknowledgements Thank you! F. D. Bowman (Emory University) Spatial Modeling CBIS Symposium 25 / 25

Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri

Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri Galin L. Jones 1 School of Statistics University of Minnesota March 2015 1 Joint with Martin Bezener and John Hughes Experiment

More information

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy Basic Introduction to Data Analysis Block Design Demonstration Robert Savoy Sample Block Design Experiment Demonstration Use of Visual and Motor Task Separability of Responses Combined Visual and Motor

More information

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data Seyoung Kim, Padhraic Smyth, and Hal Stern Bren School of Information and Computer Sciences University of California,

More information

Graphical Models, Bayesian Method, Sampling, and Variational Inference

Graphical Models, Bayesian Method, Sampling, and Variational Inference Graphical Models, Bayesian Method, Sampling, and Variational Inference With Application in Function MRI Analysis and Other Imaging Problems Wei Liu Scientific Computing and Imaging Institute University

More information

Spatio-Temporal Registration of Biomedical Images by Computational Methods

Spatio-Temporal Registration of Biomedical Images by Computational Methods Spatio-Temporal Registration of Biomedical Images by Computational Methods Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

Statistical Analysis of MRI Data

Statistical Analysis of MRI Data Statistical Analysis of MRI Data Shelby Cummings August 1, 2012 Abstract Every day, numerous people around the country go under medical testing with the use of MRI technology. Developed in the late twentieth

More information

Bayesian Methods in Functional Magnetic Resonance Imaging

Bayesian Methods in Functional Magnetic Resonance Imaging Bayesian Methods in Functional Magnetic Resonance Imaging Galin L. Jones Kuo-Jung Lee Brian S. Caffo Susan Spear Bassett Abstract: One of the major objectives of functional magnetic resonance imaging studies

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Bayesian Inference in fmri Will Penny

Bayesian Inference in fmri Will Penny Bayesian Inference in fmri Will Penny Bayesian Approaches in Neuroscience Karolinska Institutet, Stockholm February 2016 Overview Posterior Probability Maps Hemodynamic Response Functions Population

More information

Parametric Response Surface Models for Analysis of Multi-Site fmri Data

Parametric Response Surface Models for Analysis of Multi-Site fmri Data Parametric Response Surface Models for Analysis of Multi-Site fmri Data Seyoung Kim 1, Padhraic Smyth 1, Hal Stern 1, Jessica Turner 2, and FIRST BIRN 1 Bren School of Information and Computer Sciences,

More information

An independent component analysis based tool for exploring functional connections in the brain

An independent component analysis based tool for exploring functional connections in the brain An independent component analysis based tool for exploring functional connections in the brain S. M. Rolfe a, L. Finney b, R. F. Tungaraza b, J. Guan b, L.G. Shapiro b, J. F. Brinkely b, A. Poliakov c,

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011 Linear Models in Medical Imaging John Kornak MI square February 22, 2011 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2012 Voxel-Based Morphometry & DARTEL Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Aims of computational neuroanatomy * Many interesting and clinically

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Advances in FDR for fmri -p.1

Advances in FDR for fmri -p.1 Advances in FDR for fmri Ruth Heller Department of Statistics, University of Pennsylvania Joint work with: Yoav Benjamini, Nava Rubin, Damian Stanley, Daniel Yekutieli, Yulia Golland, Rafael Malach Advances

More information

Data mining for neuroimaging data. John Ashburner

Data mining for neuroimaging data. John Ashburner Data mining for neuroimaging data John Ashburner MODELLING The Scientific Process MacKay, David JC. Bayesian interpolation. Neural computation 4, no. 3 (1992): 415-447. Model Selection Search for the best

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Issues Regarding fmri Imaging Workflow and DICOM

Issues Regarding fmri Imaging Workflow and DICOM Issues Regarding fmri Imaging Workflow and DICOM Lawrence Tarbox, Ph.D. Fred Prior, Ph.D Mallinckrodt Institute of Radiology Washington University in St. Louis What is fmri fmri is used to localize functions

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

mritc: A Package for MRI Tissue Classification

mritc: A Package for MRI Tissue Classification mritc: A Package for MRI Tissue Classification Dai Feng 1 Luke Tierney 2 1 Merck Research Labratories 2 University of Iowa July 2010 Feng & Tierney (Merck & U of Iowa) MRI Tissue Classification July 2010

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

Structural MRI analysis

Structural MRI analysis Structural MRI analysis volumetry and voxel-based morphometry cortical thickness measurements structural covariance network mapping Boris Bernhardt, PhD Department of Social Neuroscience, MPI-CBS bernhardt@cbs.mpg.de

More information

Linear Models in Medical Imaging. John Kornak MI square February 19, 2013

Linear Models in Medical Imaging. John Kornak MI square February 19, 2013 Linear Models in Medical Imaging John Kornak MI square February 19, 2013 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Correction of Partial Volume Effects in Arterial Spin Labeling MRI

Correction of Partial Volume Effects in Arterial Spin Labeling MRI Correction of Partial Volume Effects in Arterial Spin Labeling MRI By: Tracy Ssali Supervisors: Dr. Keith St. Lawrence and Udunna Anazodo Medical Biophysics 3970Z Six Week Project April 13 th 2012 Introduction

More information

Understanding multivariate pattern analysis for neuroimaging applications

Understanding multivariate pattern analysis for neuroimaging applications Understanding multivariate pattern analysis for neuroimaging applications Maria Giulia Preti Dimitri Van De Ville Medical Image Processing Lab, Institute of Bioengineering, Ecole Polytechnique Fédérale

More information

Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri

Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri Weierstrass Institute for Applied Analysis and Stochastics Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri Karsten Tabelow UseR!2011 Mohrenstrasse 39 10117 Berlin Germany

More information

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Sea Chen Department of Biomedical Engineering Advisors: Dr. Charles A. Bouman and Dr. Mark J. Lowe S. Chen Final Exam October

More information

A New GPU-Based Level Set Method for Medical Image Segmentation

A New GPU-Based Level Set Method for Medical Image Segmentation A New GPU-Based Level Set Method for Medical Image Segmentation Wenzhe Xue Research Assistant Radiology Department Mayo Clinic, Scottsdale, AZ Ph.D. Student Biomedical Informatics Arizona State University,

More information

Correction for multiple comparisons. Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh

Correction for multiple comparisons. Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh Correction for multiple comparisons Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh Overview Multiple comparisons correction procedures Levels of inferences (set, cluster, voxel) Circularity issues

More information

Segmenting Glioma in Multi-Modal Images using a Generative Model for Brain Lesion Segmentation

Segmenting Glioma in Multi-Modal Images using a Generative Model for Brain Lesion Segmentation Segmenting Glioma in Multi-Modal Images using a Generative Model for Brain Lesion Segmentation Bjoern H. Menze 1,2, Koen Van Leemput 3, Danial Lashkari 4 Marc-André Weber 5, Nicholas Ayache 2, and Polina

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

better images mean better results

better images mean better results better images mean better results A better way for YOU and YOUR patient brought to you by Advanced Neuro analysis with access to studies wherever you need it Advanced Neuro from Invivo Advancements in

More information

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares Biomedical Image Analysis based on Computational Registration Methods João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Methods a) Spatial Registration of (2D

More information

MULTIVARIATE ANALYSES WITH fmri DATA

MULTIVARIATE ANALYSES WITH fmri DATA MULTIVARIATE ANALYSES WITH fmri DATA Sudhir Shankar Raman Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering University of Zurich & ETH Zurich Motivation Modelling Concepts Learning

More information

Improving CCA based fmri Analysis by Covariance Pooling - Using the GPU for Statistical Inference

Improving CCA based fmri Analysis by Covariance Pooling - Using the GPU for Statistical Inference Improving CCA based fmri Analysis by Covariance Pooling - Using the GPU for Statistical Inference Anders Eklund, Mats Andersson and Hans Knutsson Linköping University Post Print N.B.: When citing this

More information

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd CHAPTER 2 Morphometry on rodent brains A.E.H. Scheenstra J. Dijkstra L. van der Weerd This chapter was adapted from: Volumetry and other quantitative measurements to assess the rodent brain, In vivo NMR

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

What is a network? Network Analysis

What is a network? Network Analysis What is a network? Network Analysis Valerie Cardenas Nicolson Associate Adjunct Professor Department of Radiology and Biomedical Imaging Complex weblike structures Cell is network of chemicals connected

More information

Pattern Recognition for Neuroimaging Toolbox: PRoNTo

Pattern Recognition for Neuroimaging Toolbox: PRoNTo Click to edit Master title style Pattern Recognition for Neuroimaging Toolbox: PRoNTo Jessica Schrouff PRNI 2018 June 14 th NUS, Singapore Click Outline to edit Master title style PRoNTo s goals and history

More information

Introduction to Neuroimaging Janaina Mourao-Miranda

Introduction to Neuroimaging Janaina Mourao-Miranda Introduction to Neuroimaging Janaina Mourao-Miranda Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION Abstract: MIP Project Report Spring 2013 Gaurav Mittal 201232644 This is a detailed report about the course project, which was to implement

More information

Network statistics and thresholding

Network statistics and thresholding Network statistics and thresholding Andrew Zalesky azalesky@unimelb.edu.au HBM Educational Course June 25, 2017 Network thresholding Unthresholded Moderate thresholding Severe thresholding Strong link

More information

A TEMPORAL FREQUENCY DESCRIPTION OF THE SPATIAL CORRELATION BETWEEN VOXELS IN FMRI DUE TO SPATIAL PROCESSING. Mary C. Kociuba

A TEMPORAL FREQUENCY DESCRIPTION OF THE SPATIAL CORRELATION BETWEEN VOXELS IN FMRI DUE TO SPATIAL PROCESSING. Mary C. Kociuba A TEMPORAL FREQUENCY DESCRIPTION OF THE SPATIAL CORRELATION BETWEEN VOXELS IN FMRI DUE TO SPATIAL PROCESSING by Mary C. Kociuba A Thesis Submitted to the Faculty of the Graduate School, Marquette University,

More information

SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am

SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am Performance of Deep Convolutional Neural Networks for Classification of Acute Territorial Infarct on Brain MRI:

More information

Ischemic Stroke Lesion Segmentation Proceedings 5th October 2015 Munich, Germany

Ischemic Stroke Lesion Segmentation   Proceedings 5th October 2015 Munich, Germany 0111010001110001101000100101010111100111011100100011011101110101101012 Ischemic Stroke Lesion Segmentation www.isles-challenge.org Proceedings 5th October 2015 Munich, Germany Preface Stroke is the second

More information

K-Means Segmentation of Alzheimer s Disease In Pet Scan Datasets An Implementation

K-Means Segmentation of Alzheimer s Disease In Pet Scan Datasets An Implementation K-Means Segmentation of Alzheimer s Disease In Pet Scan Datasets An Implementation Meena A 1, Raja K 2 Research Scholar, Sathyabama University, Chennai, India Principal, Narasu s Sarathy Institute of Technology,

More information

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert Schuff Professor of Radiology Medical Center and UCSF Norbert.schuff@ucsf.edu 2010, N.Schuff Slide 1/67 Overview Definitions Role of Segmentation Segmentation methods Intensity based Shape based

More information

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal!

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal! ARE YOUR ANALYSES TOO PARAMETRIC? That s not Normal! Martin M Monti http://montilab.psych.ucla.edu WHY IS YOUR ANALYSIS PARAMETRIC? i. Optimal power (defined as the probability to detect a real difference)

More information

Pattern Recognition for Neuroimaging Data

Pattern Recognition for Neuroimaging Data Pattern Recognition for Neuroimaging Data Edinburgh, SPM course April 2013 C. Phillips, Cyclotron Research Centre, ULg, Belgium http://www.cyclotron.ulg.ac.be Overview Introduction Univariate & multivariate

More information

Data Mining of the E-Pelvis Simulator Database: A Quest for a Generalized Algorithm for Objectively Assessing Medical Skill

Data Mining of the E-Pelvis Simulator Database: A Quest for a Generalized Algorithm for Objectively Assessing Medical Skill 355 Data Mining of the E-Pelvis Simulator Database: A Quest for a Generalized Algorithm for Objectively Assessing Medical Skill Thomas MACKEL 1, Jacob ROSEN 1,2, Ph.D., Carla PUGH 3, M.D., Ph.D. 1 Department

More information

Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy-study. Supplementary material

Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy-study. Supplementary material Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy-study. Nikolaos Koutsouleris a,ca, MD; Stefan Borgwardt b, MD; Eva M. Meisenzahl, MD;

More information

An Improved Optimization Method for the Relevance Voxel Machine

An Improved Optimization Method for the Relevance Voxel Machine An Improved Optimization Method for the Relevance Voxel Machine Melanie Ganz 1,, Mert R. Sabuncu 1, and Koen Van Leemput 1,3,4 1 Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, USA

More information

Interpreting predictive models in terms of anatomically labelled regions

Interpreting predictive models in terms of anatomically labelled regions Interpreting predictive models in terms of anatomically labelled regions Data Feature extraction/selection Model specification Accuracy and significance Model interpretation 2 Data Feature extraction/selection

More information

RADIOMICS: potential role in the clinics and challenges

RADIOMICS: potential role in the clinics and challenges 27 giugno 2018 Dipartimento di Fisica Università degli Studi di Milano RADIOMICS: potential role in the clinics and challenges Dr. Francesca Botta Medical Physicist Istituto Europeo di Oncologia (Milano)

More information

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Wei Liu 1, Peihong Zhu 1, Jeffrey S. Anderson 2, Deborah Yurgelun-Todd 3, and P. Thomas Fletcher 1 1 Scientific

More information

INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS

INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS V. Calhoun 1,2, T. Adali, 2 and G. Pearlson 1 1 Johns Hopkins University Division of Psychiatric Neuro-Imaging,

More information

Network connectivity via inference over curvature-regularizing line graphs

Network connectivity via inference over curvature-regularizing line graphs Network connectivity via inference over curvature-regularizing line graphs Asian Conference on Computer Vision Maxwell D. Collins 1,2, Vikas Singh 2,1, Andrew L. Alexander 3 1 Department of Computer Sciences

More information

LST: A lesion segmentation tool for SPM

LST: A lesion segmentation tool for SPM LST: A lesion segmentation tool for SPM Manual/Documentation for version 2.0.15 June 2017 Paul Schmidt Lucie Wink Contents 1 Getting started 3 1.1 License................................. 3 1.2 Installation...............................

More information

arxiv: v1 [stat.ap] 1 Jun 2016

arxiv: v1 [stat.ap] 1 Jun 2016 Permutation-based cluster size correction for voxel-based lesion-symptom mapping arxiv:1606.00475v1 [stat.ap] 1 Jun 2016 June 3, 2016 Daniel Mirman a,b,1 Jon-Frederick Landrigan a Spiro Kokolis a Sean

More information

Spatio-temporal modeling of localized brain activity

Spatio-temporal modeling of localized brain activity Biostatistics (2005), 6, 4, pp. 558 575 doi:10.1093/biostatistics/kxi027 Advance Access publication on April 20, 2005 Spatio-temporal modeling of localized brain activity F. DUBOIS BOWMAN Department of

More information

Package EBglmnet. January 30, 2016

Package EBglmnet. January 30, 2016 Type Package Package EBglmnet January 30, 2016 Title Empirical Bayesian Lasso and Elastic Net Methods for Generalized Linear Models Version 4.1 Date 2016-01-15 Author Anhui Huang, Dianting Liu Maintainer

More information

Biomedical Imaging Registration Trends and Applications. Francisco P. M. Oliveira, João Manuel R. S. Tavares

Biomedical Imaging Registration Trends and Applications. Francisco P. M. Oliveira, João Manuel R. S. Tavares Biomedical Imaging Registration Trends and Applications Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial Registration of (2D

More information

A Review of Statistical Methods in Imaging Genetics

A Review of Statistical Methods in Imaging Genetics arxiv:1707.07332v1 [stat.me] 23 Jul 2017 A Review of Statistical Methods in Imaging Genetics Farouk S. Nathoo 1, Linglong Kong 2, and Hongtu Zhu 3 1 Department of Mathematics and Statistics, University

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Atlas of Classifiers for Brain MRI Segmentation

Atlas of Classifiers for Brain MRI Segmentation Atlas of Classifiers for Brain MRI Segmentation B. Kodner 1,2, S. H. Gordon 1,2, J. Goldberger 3 and T. Riklin Raviv 1,2 1 Department of Electrical and Computer Engineering, 2 The Zlotowski Center for

More information

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, April 5

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, April 5 CS/NEUR125 Brains, Minds, and Machines Lab 8: Using fmri to Discover Language Areas in the Brain Due: Wednesday, April 5 In this lab, you will analyze fmri data from an experiment that was designed to

More information

for Images A Bayesian Deformation Model

for Images A Bayesian Deformation Model Statistics in Imaging Workshop July 8, 2004 A Bayesian Deformation Model for Images Sining Chen Postdoctoral Fellow Biostatistics Division, Dept. of Oncology, School of Medicine Outline 1. Introducing

More information

Linear Models in Medical Imaging. John Kornak MI square February 23, 2010

Linear Models in Medical Imaging. John Kornak MI square February 23, 2010 Linear Models in Medical Imaging John Kornak MI square February 23, 2010 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

PBSI: A symmetric probabilistic extension of the Boundary Shift Integral

PBSI: A symmetric probabilistic extension of the Boundary Shift Integral PBSI: A symmetric probabilistic extension of the Boundary Shift Integral Christian Ledig 1, Robin Wolz 1, Paul Aljabar 1,2, Jyrki Lötjönen 3, Daniel Rueckert 1 1 Department of Computing, Imperial College

More information

Multivariate analyses & decoding

Multivariate analyses & decoding Multivariate analyses & decoding Kay Henning Brodersen Computational Neuroeconomics Group Department of Economics, University of Zurich Machine Learning and Pattern Recognition Group Department of Computer

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Linear Models in Medical Imaging. John Kornak MI square February 21, 2012

Linear Models in Medical Imaging. John Kornak MI square February 21, 2012 Linear Models in Medical Imaging John Kornak MI square February 21, 2012 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Quantities Measured by MR - Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Static parameters (influenced by molecular environment): T, T* (transverse relaxation)

More information

Surface-based Analysis: Inter-subject Registration and Smoothing

Surface-based Analysis: Inter-subject Registration and Smoothing Surface-based Analysis: Inter-subject Registration and Smoothing Outline Exploratory Spatial Analysis Coordinate Systems 3D (Volumetric) 2D (Surface-based) Inter-subject registration Volume-based Surface-based

More information

H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, M. Kubicki, C-F Westin, M.E.Shenton, Y. Rathi

H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, M. Kubicki, C-F Westin, M.E.Shenton, Y. Rathi Harmonizing diffusion MRI data from multiple scanners H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, M. Kubicki, C-F Westin, M.E.Shenton, Y. Rathi Synopsis Diffusion MRI

More information

Introduction. Medical Images. Using Medical Images as Primary Outcome Measures. Joint work with Emma O Connor. Acknowledgements

Introduction. Medical Images. Using Medical Images as Primary Outcome Measures. Joint work with Emma O Connor. Acknowledgements Department of Statistics, University of Newcastle, // Zzzz Using Medical Images as Primary Outcome Measures Nick Fieller Department of Probability & Statistics University of Sheffield, UK Newcastle University,

More information

Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data

Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data Daniel B. Rowe Program in Computational Sciences Department of Mathematics, Statistics, and Computer Science Marquette

More information

MultiVariate Bayesian (MVB) decoding of brain images

MultiVariate Bayesian (MVB) decoding of brain images MultiVariate Bayesian (MVB) decoding of brain images Alexa Morcom Edinburgh SPM course 2015 With thanks to J. Daunizeau, K. Brodersen for slides stimulus behaviour encoding of sensorial or cognitive state?

More information

Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question.

Single Subject Demo Data Instructions 1) click New and answer No to the spatially preprocess question. (1) conn - Functional connectivity toolbox v1.0 Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question. 2) in "Basic" enter "1" subject, "6" seconds

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis

The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis Brent R. Logan and Daniel B. Rowe, Division of Biostatistics and Department of Biophysics Division of Biostatistics

More information

the PyHRF package P. Ciuciu1,2 and T. Vincent1,2 Methods meeting at Neurospin 1: CEA/NeuroSpin/LNAO

the PyHRF package P. Ciuciu1,2 and T. Vincent1,2 Methods meeting at Neurospin 1: CEA/NeuroSpin/LNAO Joint detection-estimation of brain activity from fmri time series: the PyHRF package Methods meeting at Neurospin P. Ciuciu1,2 and T. Vincent1,2 philippe.ciuciu@cea.fr 1: CEA/NeuroSpin/LNAO www.lnao.fr

More information

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014 An Introduction To Automatic Tissue Classification Of Brain MRI Colm Elliott Mar 2014 Tissue Classification Tissue classification is part of many processing pipelines. We often want to classify each voxel

More information

Second revision: Supplementary Material Linking brain-wide multivoxel activation patterns to behaviour: examples from language and math

Second revision: Supplementary Material Linking brain-wide multivoxel activation patterns to behaviour: examples from language and math Second revision: Supplementary Material Linking brain-wide multivoxel activation patterns to behaviour: examples from language and math Rajeev D. S. Raizada, Feng Ming Tsao, Huei-Mei Liu, Ian D. Holloway,

More information

Applications of Elastic Functional and Shape Data Analysis

Applications of Elastic Functional and Shape Data Analysis Applications of Elastic Functional and Shape Data Analysis Quick Outline: 1. Functional Data 2. Shapes of Curves 3. Shapes of Surfaces BAYESIAN REGISTRATION MODEL Bayesian Model + Riemannian Geometry +

More information

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert Schuff Professor of Radiology Medical Center and UCSF Norbert.schuff@ucsf.edu Slide 1/67 Overview Definitions Role of Segmentation Segmentation methods Intensity based Shape based Texture based

More information

Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System

Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol.2, II-131 II-137, Dec. 2001. Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System

More information

The Relevance Voxel Machine (RVoxM): A Self-tuning Bayesian Model for Informative Image-based Prediction

The Relevance Voxel Machine (RVoxM): A Self-tuning Bayesian Model for Informative Image-based Prediction IEEE TRANSACTIONS ON MEDICAL IMAGING 1 The Relevance Voxel Machine (RVoxM): A Self-tuning Bayesian Model for Informative Image-based Prediction Mert R. Sabuncu Koen Van Leemput for the Alzheimer Disease

More information

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images Tina Memo No. 2008-003 Internal Memo Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images P. A. Bromiley Last updated 20 / 12 / 2007 Imaging Science and

More information

17th Annual Meeting of the Organization for Human Brain Mapping (HBM)

17th Annual Meeting of the Organization for Human Brain Mapping (HBM) 17th Annual Meeting of the Organization for Human Brain Mapping (HBM) Regionally constrained voxel-based network of left hippocampus in left medial temporal lobe epilepsy Submission No: 2740 Authors: Jarang

More information

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand Effect of age and dementia on topology of brain functional networks Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand 1 Structural changes in aging brain Age-related changes in

More information

Artifact detection and repair in fmri

Artifact detection and repair in fmri Artifact detection and repair in fmri Paul K. Mazaika, Ph.D. Center for Interdisciplinary Brain Sciences Research (CIBSR) Division of Interdisciplinary Behavioral Sciences Stanford University School of

More information