Introductory Concepts for Voxel-Based Statistical Analysis

Size: px
Start display at page:

Download "Introductory Concepts for Voxel-Based Statistical Analysis"

Transcription

1 Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics ADVANCED STATISTICAL CONCEPTS FOR MULTIMODAL MRI: THEORY AND APPLICATIONS June 19, 2010

2 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from presentations available on the SPM web site.

3 Overview 1. Motivation 2. Linear modeling 3. Multiple comparison correction 4. Multivariate methods

4 Motivation Imaging data statistical methods to look for regional effects Tissue differences between groups or over time VBM, TBM (voxel/tensor-based morphometry) PET (positron emmission tomography), fmri (functional MRI) determine activation in the brain due to thought, stimulus or task Diffusion (DWI, DTI, tractography), Bone mineral density etc. etc.

5 image data kernel design matrix parameter estimates realignment & motion correction smoothing Linear Model model fitting statistic image thresholding & multiple comparisons normalisation anatomical reference Statistical Parametric Map (test statistics) Corrected thresholds & p-values

6 Software SPM PET, fmri, VBM and TBM, EEG/MEG ( needs Matlab) FSL fmri primarily + DTI ( R AnalyzeFMRI package + linear models in general ( and then go to your nearest CRAN mirror)

7 Part 1 Linear Modeling

8 image data kernel design matrix parameter estimates realignment & motion correction smoothing Linear Model model fitting statistic image thresholding & multiple comparisons normalisation anatomical reference Statistical Parametric Map (test statistics) Corrected thresholds & p-values

9 Definitions Univariate response variable y ij subject i - at voxel j in Covariates (x i1, x i2,..., x ik ) = (variables of interest and nuisance variables) Continuous covariates: e.g. age, blood pressure, stimulus intensity, etc., (random or controlled) Factors: e.g. diagnosis, gender, drinking level, experimental condition, (low, medium, high) etc. x i T Complete data is: y ij,x T i ;i 1,...,n; j 1,...,m (n subjects, m voxels)

10 The (General) Linear Model The linear model is applied at each individual voxel: A linear model takes the form: y ij 1 j x i2 2 j x i3 3 j... x im mj ij e.g. y ij mean, j x i,age age, j x i,gender gender, j... x i,diagnosis diagnosis, j ij ij ~ N(0, 2 ), i.i.d. i 1,...,n j 1,...,m i.i.d. = independently and identically distributed

11 Eg. Hippocampal Volume HCV ~ Age + Diagnosis + Age*Diagnosis Diagnosis can be normal control (NC) or Alzheimer s disease (AD)

12 Eg. Hippocampal Volume Structural T1 weighted MRI s Volume measures at each voxel in HC (Voxel or Deformation Based Morphometry) Volume measure = response for each subject Disease status encoded 1 for AD and 0 for NC (the term) x diagnosis

13 y ij 1 x i,age age, j x i,diag. diag., j x i.age x i,diag. inter, j ij HCV Case 1 age, j 0, diag., j 0, inter, j 0 age

14 y ij 1 x i,age age, j x i,diag. diag., j x i.age x i,diag. inter, j ij HCV Case 2 age, j 0, diag., j 0, inter, j 0 age

15 y ij 1 x i,age age, j x i,diag. diag., j x i.age x i,diag. inter, j ij HCV Case 3 age, j 0, diag., j 0, inter, j 0 NC AD age

16 y ij 1 x i,age age, j x i,diag. diag., j x i.age x i,diag. inter, j ij HCV Case 4 age, j 0, diag., j 0, inter, j 0 NC AD age

17 y ij 1 x i,age age, j x i,diag. diag., j x i.age x i,diag. inter, j ij HCV Case 4 age, j 0, diag., j 0, inter, j 0 NC AD age

18 F-test for General Linear Hypothesis Goal: detect voxels with significant disease or condition effects y X T N n 0, c.f. simpler model 2 I n H 0 : A c This is the General Linear Hypothesis and uses F-test (based on ratio of models sum of squares residuals) Can answer e.g., does disease status affect HCV? Or does an age by disease interaction exist? Or is condition A equivalent to condition B in an fmri expmt?

19 Parameter Estimates Same model for all voxels Different parameters for each voxel beta_0001.img ˆ beta_0002.img ˆ ˆ beta_0003.img

20 Parameter Estimates Same model for all voxels Different parameters for each voxel beta_0001.img Note: This approach estimates parameters at each voxel for conditions that affect the brain ˆ beta_0002.img But what if the brain affects the condition - e.g. loss of tissue affects cognitive ability - is this still the right model? Then there is only 1 outcome and the brain voxels form a set of predictors. ˆ ˆ beta_0003.img

21 Summary of Part 1 Linear model fitted separately to each voxel to estimate effects of interest Hypothesis test statistics are obtained at each voxel and combined to form a statistical parametric map (SPM)

22 Part 2 Multiple Comparison Correction

23 image data kernel design matrix parameter estimates realignment & motion correction smoothing Linear Model model fitting statistic image thresholding & multiple comparisons normalisation anatomical reference Statistical Parametric Map (test statistics) Corrected thresholds & p-values

24 Multiple Comparison Problem Each voxel obtains a test statistic from the linear model, e.g. t or F Forms statistical maps of the statistics (statistical parametric maps, SPMs) E.g., which of 100,000 voxels are significant? =0.05 5,000 false positive voxels

25 How can we determine a sensible threshold level? Assessing Statistic Images Where s the signal or change? High Threshold Med. Threshold Low Threshold t > 5.5 t > 3.5 t > 0.5 Good Specificity Poor Power (risk of false negatives) Poor Specificity (risk of false positives) Good Power

26 Multiple Comparison Solutions: Measuring False Positives 1. Familywise Error Rate (FWER) Familywise Error Existence of one or more false positives 2. False Discovery Rate (FDR) FDR = E(V/R) R voxels declared active, V falsely so Realized false discovery rate: V/R 3. Permutation Testing

27 FWER: Bonferroni Correction FWE, α, for N independent voxels is α = Nv (v = voxelwise error rate) To control FWE set v = α / N Independent Voxels Spatially Correlated Voxels Bonferroni is too conservative for brain images

28 FWER: Random Field Theory Euler Characteristic u Topological Measure #blobs - #holes At high thresholds = blobs Threshold Random Field See description at Suprathreshold Sets

29 Multiple Comparison Solutions: Measuring False Positives 1. Familywise Error Rate (FWER) Familywise Error Existence of one or more false positives 2. False Discovery Rate (FDR) FDR = E(V/R) R voxels declared active, V falsely so Realized false discovery rate: V/R 3. Permutation Testing

30 p-value 0 1 FDR: Benjamini & Hochberg Procedure Select desired limit q on FDR Order p-values, p (1) p (2)... p (V) Let r be largest i such that p (i) i/v q/c(v) Reject all hypotheses corresponding to p (1),..., p (r) NB, no spatial consideration Journal of the Royal Statistical Society Series B (1995) 57: i/v i/v p (i) q/c(v) 0 1

31 FDR v FWER (GRF) Illustration Noise Signal Signal+Noise

32 Control of Per Comparison Rate at 10% 11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% Percentage of Null Pixels that are False Positives Control of Familywise Error Rate at 10% Occurrence of Familywise Error FWE Control of False Discovery Rate at 10% 6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7% Percentage of Observed Above Threshold Pixels that are False Positives

33 Summary of Part 2 Massive multiple comparison problem Spatial correlation Multiple approaches (FWER, FDR, NP) and levels (voxel, cluster, set) for multiple comparison correction

34 Part 3 Multivariate Methods

35 PCA and ICA Principal Components Analysis and Independent Components Analysis Methods to succinctly summarize highdimensional data sets (transform many variables to a few variables) Many variables are summarized in terms of just a few new variables (the components) Projection of data: high- to low-dimension

36 PCA Finds a series of projections/principal Components (PCs) each with maximal variability The first PC explains as much of the variability in the full data set as possible The second PC explains as much variability as possible after the variability from the first (PC) has been removed (uncorrelated/orthogonal to the first) Constraint: each PC is a linear combination of the original variables

37 Linear Combinations A linear combination of N variables is defined as: x, x,..., x 1 2 N a x a x... a x N N x, x,..., xn where 1 2 could be voxel intensities or points in time

38 2D Toy Example Var 1 Var 2

39 2D Toy Example 1 st PC Var 1 Var 2

40 2D Toy Example Minimize sum of squares 1 st PC Var 1 Var 2

41 2D Toy Example 1 st PC Var 1 2 nd PC Var 2

42 Note: that there is an issue of scaling Var 1 2D Toy Example 1 st PC 2 nd PC Var 2

43 Voxel-Based Analysis Applications Consider a set of images e.g. repeated brain images in time for a single subject or single images of many subjects The first PC (image) may explain the effect of group or time The second PC image may explain between subject variability of brain shape It is hoped that each of the PCs is meaningful

44 Independent Components Analysis (ICA) ICA differs from PCA for technical reasons (but can produce very different results) In PCA the PCs have to be uncorrelated however, uncorrelated does not imply independent independence is a stronger requirement (if data are Gaussian then uncorrelated does imply independent)

45 Uncorrelated but not independent Var 1 Var 2

46 Independent Components Analysis (ICA) ICA demands that the components are (maximally) independent of each other It provides a different decomposition of the full data than does PCA (i.e. it gives a different set of linear combinations / components) ICA is computationally more challenging and does not have an inherent ordering of components

47 Summary of Part 3 PCA & ICA attempt to summarize highdimensional datasets in terms of just a few components PCA seeks linear combinations of the data matrix that are of high variance and uncorrelated ICA seeks linear combinations that are independent PCA & ICA both find components of variability that can be explained by linear combinations of input variables

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011 Linear Models in Medical Imaging John Kornak MI square February 22, 2011 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Linear Models in Medical Imaging. John Kornak MI square February 23, 2010

Linear Models in Medical Imaging. John Kornak MI square February 23, 2010 Linear Models in Medical Imaging John Kornak MI square February 23, 2010 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Linear Models in Medical Imaging. John Kornak MI square February 19, 2013

Linear Models in Medical Imaging. John Kornak MI square February 19, 2013 Linear Models in Medical Imaging John Kornak MI square February 19, 2013 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Linear Models in Medical Imaging. John Kornak MI square February 21, 2012

Linear Models in Medical Imaging. John Kornak MI square February 21, 2012 Linear Models in Medical Imaging John Kornak MI square February 21, 2012 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Multiple Testing and Thresholding

Multiple Testing and Thresholding Multiple Testing and Thresholding NITP, 2009 Thanks for the slides Tom Nichols! Overview Multiple Testing Problem Which of my 100,000 voxels are active? Two methods for controlling false positives Familywise

More information

Extending the GLM. Outline. Mixed effects motivation Evaluating mixed effects methods Three methods. Conclusions. Overview

Extending the GLM. Outline. Mixed effects motivation Evaluating mixed effects methods Three methods. Conclusions. Overview Extending the GLM So far, we have considered the GLM for one run in one subject The same logic can be applied to multiple runs and multiple subjects GLM Stats For any given region, we can evaluate the

More information

Multiple Testing and Thresholding

Multiple Testing and Thresholding Multiple Testing and Thresholding UCLA Advanced NeuroImaging Summer School, 2007 Thanks for the slides Tom Nichols! Overview Multiple Testing Problem Which of my 100,000 voxels are active? Two methods

More information

Multiple Testing and Thresholding

Multiple Testing and Thresholding Multiple Testing and Thresholding NITP, 2010 Thanks for the slides Tom Nichols! Overview Multiple Testing Problem Which of my 100,000 voxels are active? Two methods for controlling false positives Familywise

More information

Multiple comparisons problem and solutions

Multiple comparisons problem and solutions Multiple comparisons problem and solutions James M. Kilner http://sites.google.com/site/kilnerlab/home What is the multiple comparisons problem How can it be avoided Ways to correct for the multiple comparisons

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis Instructor: Moo K. Chung mchung@stat.wisc.edu Lecture 10. Multiple Comparisons March 06, 2007 This lecture will show you how to construct P-value maps fmri Multiple Comparisons 4-Dimensional

More information

New and best-practice approaches to thresholding

New and best-practice approaches to thresholding New and best-practice approaches to thresholding Thomas Nichols, Ph.D. Department of Statistics & Warwick Manufacturing Group University of Warwick FIL SPM Course 17 May, 2012 1 Overview Why threshold?

More information

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd CHAPTER 2 Morphometry on rodent brains A.E.H. Scheenstra J. Dijkstra L. van der Weerd This chapter was adapted from: Volumetry and other quantitative measurements to assess the rodent brain, In vivo NMR

More information

Correction for multiple comparisons. Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh

Correction for multiple comparisons. Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh Correction for multiple comparisons Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh Overview Multiple comparisons correction procedures Levels of inferences (set, cluster, voxel) Circularity issues

More information

Controlling for multiple comparisons in imaging analysis. Wednesday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison

Controlling for multiple comparisons in imaging analysis. Wednesday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison Controlling for multiple comparisons in imaging analysis Wednesday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison Motivation Run 100 hypothesis tests on null data using p

More information

Introduction to Neuroimaging Janaina Mourao-Miranda

Introduction to Neuroimaging Janaina Mourao-Miranda Introduction to Neuroimaging Janaina Mourao-Miranda Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical

More information

Controlling for mul2ple comparisons in imaging analysis. Where we re going. Where we re going 8/15/16

Controlling for mul2ple comparisons in imaging analysis. Where we re going. Where we re going 8/15/16 Controlling for mul2ple comparisons in imaging analysis Wednesday, Lecture 2 Jeane?e Mumford University of Wisconsin - Madison Where we re going Review of hypothesis tes2ng introduce mul2ple tes2ng problem

More information

Controlling for mul-ple comparisons in imaging analysis. Wednesday, Lecture 2 Jeane:e Mumford University of Wisconsin - Madison

Controlling for mul-ple comparisons in imaging analysis. Wednesday, Lecture 2 Jeane:e Mumford University of Wisconsin - Madison Controlling for mul-ple comparisons in imaging analysis Wednesday, Lecture 2 Jeane:e Mumford University of Wisconsin - Madison Where we re going Review of hypothesis tes-ng introduce mul-ple tes-ng problem

More information

Contents. comparison. Multiple comparison problem. Recap & Introduction Inference & multiple. «Take home» message. DISCOS SPM course, CRC, Liège, 2009

Contents. comparison. Multiple comparison problem. Recap & Introduction Inference & multiple. «Take home» message. DISCOS SPM course, CRC, Liège, 2009 DISCOS SPM course, CRC, Liège, 2009 Contents Multiple comparison problem Recap & Introduction Inference & multiple comparison «Take home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium

More information

Advances in FDR for fmri -p.1

Advances in FDR for fmri -p.1 Advances in FDR for fmri Ruth Heller Department of Statistics, University of Pennsylvania Joint work with: Yoav Benjamini, Nava Rubin, Damian Stanley, Daniel Yekutieli, Yulia Golland, Rafael Malach Advances

More information

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal!

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal! ARE YOUR ANALYSES TOO PARAMETRIC? That s not Normal! Martin M Monti http://montilab.psych.ucla.edu WHY IS YOUR ANALYSIS PARAMETRIC? i. Optimal power (defined as the probability to detect a real difference)

More information

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy Basic Introduction to Data Analysis Block Design Demonstration Robert Savoy Sample Block Design Experiment Demonstration Use of Visual and Motor Task Separability of Responses Combined Visual and Motor

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Statistical Methods in functional MRI. False Discovery Rate. Issues with FWER. Lecture 7.2: Multiple Comparisons ( ) 04/25/13

Statistical Methods in functional MRI. False Discovery Rate. Issues with FWER. Lecture 7.2: Multiple Comparisons ( ) 04/25/13 Statistical Methods in functional MRI Lecture 7.2: Multiple Comparisons 04/25/13 Martin Lindquist Department of iostatistics Johns Hopkins University Issues with FWER Methods that control the FWER (onferroni,

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis

The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis Brent R. Logan and Daniel B. Rowe, Division of Biostatistics and Department of Biophysics Division of Biostatistics

More information

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2015 Voxel-Based Morphometry Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Examples applications of VBM Many scientifically or clinically interesting

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Sea Chen Department of Biomedical Engineering Advisors: Dr. Charles A. Bouman and Dr. Mark J. Lowe S. Chen Final Exam October

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

Function-Structure Integration in FreeSurfer

Function-Structure Integration in FreeSurfer Function-Structure Integration in FreeSurfer Outline Function-Structure Integration Function-Structure Registration in FreeSurfer fmri Analysis Preprocessing First-Level Analysis Higher-Level (Group) Analysis

More information

Network statistics and thresholding

Network statistics and thresholding Network statistics and thresholding Andrew Zalesky azalesky@unimelb.edu.au HBM Educational Course June 25, 2017 Network thresholding Unthresholded Moderate thresholding Severe thresholding Strong link

More information

Chapter 6: Linear Model Selection and Regularization

Chapter 6: Linear Model Selection and Regularization Chapter 6: Linear Model Selection and Regularization As p (the number of predictors) comes close to or exceeds n (the sample size) standard linear regression is faced with problems. The variance of the

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

An independent component analysis based tool for exploring functional connections in the brain

An independent component analysis based tool for exploring functional connections in the brain An independent component analysis based tool for exploring functional connections in the brain S. M. Rolfe a, L. Finney b, R. F. Tungaraza b, J. Guan b, L.G. Shapiro b, J. F. Brinkely b, A. Poliakov c,

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

MultiVariate Bayesian (MVB) decoding of brain images

MultiVariate Bayesian (MVB) decoding of brain images MultiVariate Bayesian (MVB) decoding of brain images Alexa Morcom Edinburgh SPM course 2015 With thanks to J. Daunizeau, K. Brodersen for slides stimulus behaviour encoding of sensorial or cognitive state?

More information

Cognitive States Detection in fmri Data Analysis using incremental PCA

Cognitive States Detection in fmri Data Analysis using incremental PCA Department of Computer Engineering Cognitive States Detection in fmri Data Analysis using incremental PCA Hoang Trong Minh Tuan, Yonggwan Won*, Hyung-Jeong Yang International Conference on Computational

More information

Journal of Articles in Support of The Null Hypothesis

Journal of Articles in Support of The Null Hypothesis Data Preprocessing Martin M. Monti, PhD UCLA Psychology NITP 2016 Typical (task-based) fmri analysis sequence Image Pre-processing Single Subject Analysis Group Analysis Journal of Articles in Support

More information

Statistical Methods in functional MRI. Standard Analysis. Data Processing Pipeline. Multiple Comparisons Problem. Multiple Comparisons Problem

Statistical Methods in functional MRI. Standard Analysis. Data Processing Pipeline. Multiple Comparisons Problem. Multiple Comparisons Problem Statistical Methods in fnctional MRI Lectre 7: Mltiple Comparisons 04/3/13 Martin Lindqist Department of Biostatistics Johns Hopkins University Data Processing Pipeline Standard Analysis Data Acqisition

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

NA-MIC National Alliance for Medical Image Computing fmri Data Analysis

NA-MIC National Alliance for Medical Image Computing   fmri Data Analysis NA-MIC fmri Data Analysis Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D. Acknowledgments NIH U54EB005149 Neuroimage Analysis Center NIH P41RR013218 FIRST Biomedical Informatics Research

More information

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Quantities Measured by MR - Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Static parameters (influenced by molecular environment): T, T* (transverse relaxation)

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension

Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension Claudia Sannelli, Mikio Braun, Michael Tangermann, Klaus-Robert Müller, Machine Learning Laboratory, Dept. Computer

More information

Independent Component Analysis of fmri Data

Independent Component Analysis of fmri Data Independent Component Analysis of fmri Data Denise Miller April 2005 Introduction Techniques employed to analyze functional magnetic resonance imaging (fmri) data typically use some form of univariate

More information

FMRI Pre-Processing and Model- Based Statistics

FMRI Pre-Processing and Model- Based Statistics FMRI Pre-Processing and Model- Based Statistics Brief intro to FMRI experiments and analysis FMRI pre-stats image processing Simple Single-Subject Statistics Multi-Level FMRI Analysis Advanced FMRI Analysis

More information

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2012 Voxel-Based Morphometry & DARTEL Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Aims of computational neuroanatomy * Many interesting and clinically

More information

Computational Methods in NeuroImage Analysis

Computational Methods in NeuroImage Analysis Computational Methods in NeuroImage Analysis Instructor: Moo K. Chung mchung@wisc.edu September3, 2010 Instructor Moo K. Chung Associate Professor of Biostatistics and Medical Informatics University of

More information

Neuroimage Processing

Neuroimage Processing Neuroimage Processing Instructor: Moo K. Chung mkchung@wisc.edu Lecture 2-3. General Linear Models (GLM) Voxel-based Morphometry (VBM) September 11, 2009 What is GLM The general linear model (GLM) is a

More information

Statistical inference on images

Statistical inference on images 7 Statistical inference on images The goal of statistical inference is to make decisions based on our data, while accounting for uncertainty due to noise in the data. From a broad perspective, statistical

More information

A Non-Parametric Approach

A Non-Parametric Approach Andrew P. Holmes. Ph.D., 1994. Chapter Six A Non-Parametric Approach In this chapter, a non-parametric approach to assessing functional mapping experiments is presented. A multiple comparisons randomisation

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

fmri Basics: Single Subject Analysis

fmri Basics: Single Subject Analysis fmri Basics: Single Subject Analysis This session is intended to give an overview of the basic process of setting up a general linear model for a single subject. This stage of the analysis is also variously

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

First-level fmri modeling

First-level fmri modeling First-level fmri modeling Monday, Lecture 3 Jeanette Mumford University of Wisconsin - Madison What do we need to remember from the last lecture? What is the general structure of a t- statistic? How about

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS Anders Eklund a,b,c, Thomas Nichols d, Mats Andersson a,c, Hans Knutsson a,c a Department of Biomedical

More information

SGN (4 cr) Chapter 10

SGN (4 cr) Chapter 10 SGN-41006 (4 cr) Chapter 10 Feature Selection and Extraction Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology February 18, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006

More information

Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri

Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri Weierstrass Institute for Applied Analysis and Stochastics Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri Karsten Tabelow UseR!2011 Mohrenstrasse 39 10117 Berlin Germany

More information

SnPM is an SPM toolbox developed by Andrew Holmes & Tom Nichols

SnPM is an SPM toolbox developed by Andrew Holmes & Tom Nichols 1 of 14 3/30/2005 9:24 PM SnPM A Worked fmri Example SnPM is an SPM toolbox developed by Andrew Holmes & Tom Nichols This page... introduction example data background design setup computation viewing results

More information

Statistical Modeling of Neuroimaging Data: Targeting Activation, Task-Related Connectivity, and Prediction

Statistical Modeling of Neuroimaging Data: Targeting Activation, Task-Related Connectivity, and Prediction Statistical Modeling of Neuroimaging Data: Targeting Activation, Task-Related Connectivity, and Prediction F. DuBois Bowman Department of Biostatistics and Bioinformatics Emory University, Atlanta, GA,

More information

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP was developed as part of the COST Action "Arterial Spin Labelling Initiative in Dementia (AID)" by: Department of Neuroimaging, Institute

More information

Multivariate pattern classification

Multivariate pattern classification Multivariate pattern classification Thomas Wolbers Space & Ageing Laboratory (www.sal.mvm.ed.ac.uk) Centre for Cognitive and Neural Systems & Centre for Cognitive Ageing and Cognitive Epidemiology Outline

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan SPM Introduction Scott Peltier FMRI Laboratory University of Michigan! Slides adapted from T. Nichols SPM! SPM : Overview Library of MATLAB and C functions Graphical user interface Four main components:

More information

ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA USING SPM99: VOXEL-BASED MORPHOMETRY DONNA ROSE ADDIS

ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA USING SPM99: VOXEL-BASED MORPHOMETRY DONNA ROSE ADDIS Donna Rose Addis, TWRI, May 2004 1 ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA USING SPM99: VOXEL-BASED MORPHOMETRY DONNA ROSE ADDIS DEPT. OF PSYCHOLOGY, UNIVERSITY OF TORONTO TORONTO WESTERN

More information

Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question.

Single Subject Demo Data Instructions 1) click New and answer No to the spatially preprocess question. (1) conn - Functional connectivity toolbox v1.0 Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question. 2) in "Basic" enter "1" subject, "6" seconds

More information

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series Jingyuan Chen //Department of Electrical Engineering, cjy2010@stanford.edu//

More information

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data SPM Introduction Scott Peltier FMRI Laboratory University of Michigan Slides adapted from T. Nichols SPM! Software to perform computation, manipulation and display of imaging data 1 1 SPM : Overview Library

More information

Correction of Partial Volume Effects in Arterial Spin Labeling MRI

Correction of Partial Volume Effects in Arterial Spin Labeling MRI Correction of Partial Volume Effects in Arterial Spin Labeling MRI By: Tracy Ssali Supervisors: Dr. Keith St. Lawrence and Udunna Anazodo Medical Biophysics 3970Z Six Week Project April 13 th 2012 Introduction

More information

Multivariate Neuroimaging Analysis: An Approach for Multiple Image Modalities

Multivariate Neuroimaging Analysis: An Approach for Multiple Image Modalities Multivariate Neuroimaging Analysis: An Approach for Multiple Image Modalities Summation May 9, pp. -6 http://ripon.edu/macs/summation Christopher J. Larsen Department of Mathematics and Computer Science

More information

HHS Public Access Author manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 March 20.

HHS Public Access Author manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 March 20. Online Statistical Inference for Large-Scale Binary Images Moo K. Chung 1,2, Ying Ji Chuang 2, and Houri K. Vorperian 2 1 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison,

More information

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand Effect of age and dementia on topology of brain functional networks Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand 1 Structural changes in aging brain Age-related changes in

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Sparse & Functional Principal Components Analysis

Sparse & Functional Principal Components Analysis Sparse & Functional Principal Components Analysis Genevera I. Allen Department of Statistics and Electrical and Computer Engineering, Rice University, Department of Pediatrics-Neurology, Baylor College

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

Robust Realignment of fmri Time Series Data

Robust Realignment of fmri Time Series Data Robust Realignment of fmri Time Series Data Ben Dodson bjdodson@stanford.edu Olafur Gudmundsson olafurg@stanford.edu December 12, 2008 Abstract FMRI data has become an increasingly popular source for exploring

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

MR IMAGE SEGMENTATION

MR IMAGE SEGMENTATION MR IMAGE SEGMENTATION Prepared by : Monil Shah What is Segmentation? Partitioning a region or regions of interest in images such that each region corresponds to one or more anatomic structures Classification

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates

Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates Supporting Information Appendix Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates Anders Eklund, Thomas Nichols, Hans Knutsson Methods Resting state fmri data Resting

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 14 Shape ch. 9, sec. 1-8, 12-14 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

Prostate Detection Using Principal Component Analysis

Prostate Detection Using Principal Component Analysis Prostate Detection Using Principal Component Analysis Aamir Virani (avirani@stanford.edu) CS 229 Machine Learning Stanford University 16 December 2005 Introduction During the past two decades, computed

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

Online Statistical Inference for Quantifying Mandible Growth in CT Images

Online Statistical Inference for Quantifying Mandible Growth in CT Images Online Statistical Inference for Quantifying Mandible Growth in CT Images Moo K. Chung 1,2, Ying Ji Chuang 2, Houri K. Vorperian 2 1 Department of Biostatistics and Medical Informatics 2 Vocal Tract Development

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

Thresholding of Statistical Maps in Functional Neuroimaging via Independent Filtering

Thresholding of Statistical Maps in Functional Neuroimaging via Independent Filtering Clemson University TigerPrints All Theses Theses 8-2015 Thresholding of Statistical Maps in Functional Neuroimaging via Independent Filtering Jaqueline Kwiasowski Clemson University, jkwiaso@clemson.edu

More information

MULTI-RESOLUTION STATISTICAL ANALYSIS ON GRAPH STRUCTURED DATA IN NEUROIMAGING

MULTI-RESOLUTION STATISTICAL ANALYSIS ON GRAPH STRUCTURED DATA IN NEUROIMAGING MULTI-RESOLUTION STATISTICAL ANALYSIS ON GRAPH STRUCTURED DATA IN NEUROIMAGING, Vikas Singh, Moo Chung, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson University of Wisconsin Madison Apr. 19, 2015

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert Schuff Professor of Radiology Medical Center and UCSF Norbert.schuff@ucsf.edu 2010, N.Schuff Slide 1/67 Overview Definitions Role of Segmentation Segmentation methods Intensity based Shape based

More information

PRANA. Project Review and Analysis. March (Pre-release and still under development!)

PRANA. Project Review and Analysis. March (Pre-release and still under development!) PRANA Project Review and Analysis March 2010- (Pre-release and still under development!) A.A. Maudsley Contents: PRANA... 1 1. Introduction... 2 1.1. Examples... 2 2. Subject/Study Selection and Filter...

More information