Morphological Active Contours for Image Segmentation

Size: px
Start display at page:

Download "Morphological Active Contours for Image Segmentation"

Transcription

1 Morphological Active Contours for Image Segmentation Juan Manuel Rendón Mancha 1, Vannary Meas-Yedid 2, Santiago Venegas Martínez 1, Jean-Christophe Olivo-Marin 2 and Georges Stamon 1 1 SIP Lab CRIP5 UFR de mathématiques et Informatique 45, rue des Saints-Pères Paris - FRANCE {rendon, venegas, stamon}@math-info.univ-paris5.fr 2 LAIQ - Institut Pasteur 25, rue du Docteur Roux Paris - FRANCE {vmeasyed, jcolivo}@pasteur.fr Abstract In this paper we introduce a new method of front propagation for image segmentation based on geodesic active contours. We propose a morphological active contour as another implementation of theory of curve evolution. This method uses a binary image morphology combined with substitutions of 3x3 pixel configurations, which represent an approximation of the curve evolution related to curvature, in order to overcome the difficulty and to reduce the computational cost of the Level Sets method. This method can be considered as a fast algorithm of curve evolution under anisotropic diffusion. Two kinds of images have been segmented and results are encouraging. The tests show the robustness of the algorithm. The proposed approach allows automatic topological changes and its implementation is very simple and can be extended to higher dimension. Keywords: Image segmentation, active contours, curve evolution, snakes, mathematical morphology, biological application. 1. Introduction Image segmentation is an important problem in low-level image processing, and many methods have been proposed. Among them, deformable models, first presented by Kass et al. [Kass, 1987], which are based on the paradigm that a method giving different possible answers depending on the choice of "energy" terms is better than a method with an unique answer. This paradigm explains the success of image segmentation based on active contours models [McInerney, 1996]. The model presented by Kass et al. is called snakes and is one example of the general technique of matching a deformable model to an image using energy minimisation. However, snakes present some drawbacks: because of the use of strictly information, they are sensitive to the initialisation step and as they are implemented with the Lagrangian approach, they can not deal with changes of topology. The geodesic active contour model [Caselles, 1995] was introduced as a geometric alternative for snakes and overcomes handicaps implied by snake model, in order to increase the convergence rate, and to deal with local minima the motion equation proposed in [Caselles, 1997] is:

2 where c 1 [ 0,1],c 2 [ 1,2] constant C t = g( I)c ( + c 1 2κ )N ( g( I ) N)N { } are positive constants. c 1 is a expanding/shrinking force and c 2 is the regularity Geodesic Active Contours based on Level Set methods [Sethian, 1999] handle topological change problems and allow straightforward extensions to higher dimensions. But their implementation is difficult and tedious and they are time consuming (because of reinitialisation of the distance function) even if some algorithms have been proposed to reduce this time [Paragios, 2000]. In order to perform a fast and robust segmentation we have developed a new method for front propagation. According to the theory of curve evolution and based on geodesic active contours, our algorithm propagates a front by performing morphological [Serra 1982] operations on a binary image instead of using a level sets implementation which works with a real 2D array. Our approach allows automatic topological changes and its implementation is very simple. In the next section, we present the developed methodology and we detail the algorithm and point out its forces and limits. In section 3, some results are shown. The first result is obtained on a noisy synthetic image and the second on a biological image. In the last section, we conclude and present some future works. 2. Methodology Three terms compose propagating speed: an expanding/shrinking term, a regularisation term and a term related to image. We handle separately two speed terms: the constant component (c 1 N) and the component related to the curvature (c 2 κn). The curve fit the border of a binary region. Our algorithm performs curve evolution with a constant speed using morphological erosions or dilations in the binary image (with a 4 neighbourhood mask). This is equivalent to an evolution under anisotropic diffusion. The curve evolution related to curvature is achieved by performing substitutions of 3x3 pixel patterns on the region boundary (central pixel must be black). These patterns represent all different configurations of the curve (with curvature values different from zero) for a specific point of the curve in the discrete domain. The substitutions simulate a curve evolution depending on its curvature. Figure 1 shows different patterns and their substitutions, where black pixels belong to region. The complete list can be created from all rotations and mirrors of shown patterns. 1) 2) 3) 4) 5) 6) 7) 8) Fig. 1: Configurations of different substitutions This configurations are not arbitrary selected, but represent the all possible configurations with central pixel belonging to region (black pixel).

3 Substitutions are inspired by evolution of continued curve driven by curvature (see figure 2). Fig. 2: Two examples of discretisation of curve evolution driven by curvature for a 3x3 window Details of implementation: To manage all these configurations, we can of course compute a Research Table. Instead of programming a Research Table, as the central pixel is always black (it belongs to region) so only eight pixels are considered. These pixels with binary values will form the address of a 256 bytes large vector containing substitutions (figure 3). In this way the complexity of the algorithm is reduced from O(n) to O(1). Computational cost can be reduced by working only with a variable-size window containing the region evolving instead of whole image. Fig. 3: Direct addressing. The 8 pixels (black or white, 0 or 1) are the address of each configuration. The configurations not listed in figure 1 are left unchanged. This way, the reader can observe that all vertical, horizontal and diagonal lines are preserved. Lines whose angles are different from 0, 90 and 45 are unchanged by the combination of the two last patterns (Fig. 1 n 7 and 8), called 'convex' and 'concave'. The other five patterns are referred to as 'of priority 1' because they may belong to a part of the curve with a high curvature. See Figure 4. Fig. 4. Straight lines are preserved. For horizontal, vertical and diagonal lines, no changes are made (Left and middle), so there is no configuration in our list for these cases. Right, marked pixels are removed by configuration 7 and then recovered by configuration 8. If all substitutions are performed at the same time, it could generate curve instability. To overcome this problem, a 4 steps algorithm is proposed: 1. Substitutions of Priority 1 Patterns 2. Substitutions of Concave Patterns 3. Substitutions of Priority 1 Patterns (again) 4. Substitutions of Convex Patterns These four steps constitute the evolution depending on curvature. One iteration of a complete evolution, including both speed terms is composed as follow: 1. Substitutions of Priority 1 Patterns 2. Substitutions of Concave Patterns

4 3. Substitutions of Priority 1 Patterns 4. Substitutions of Convex Patterns 5. Substitutions of Priority 1 Patterns 6. Erosion or Dilation Noise points (points which satisfy stopping criterion but do not belong to an edge) are simply eliminated in traditional Active Contours and Level Set approaches. With our method these points are detected and isolated as little regions. An additional removed algorithm can be used or preferably, we can add a single pixel pattern to our configuration list, which will remove noise consisting of an isolated pixel (figure 5). Fig. 5: Configuration of the substitution to remove isolated pixels. Let us now mention some drawbacks. A limitation of our method is apparent from fig. 6, which shows a curve evolution driven only by its local curvature. When a certain curvature value is reached, the repetition of the 4 steps does not produce any change in the curve. This limitation is due to our choice of the 3x3 window size. In edge detection applications, active contours approaches give closed contours, even if the object boundaries exhibit discontinuities, such as subjective contour illusion [Kass, 1987]. The limitation mentioned above restricts the applicability of our method to images whose discontinuities are smaller than 8 pixels. Fig 6: An example of curve evolution driven by local curvature. After the last image no change occurs.

5 3. Results We present different results of experimental tests performed on synthetic images and microscopic images. Figure 7 exhibits an edge detection performed by morphological active contours in a noisy synthetic image. The image test has been first, created by drawing grey patterns on white background. And then 50% of random noise was added. Fig 7. Edge detection in a noisy synthetic image. One of every ten iterations (120 iterations in total). Image size: 256 x 256, computational cost: 1.45 seconds including initialisation (PIII 450Mhz, 128Mb RAM). Biological application Entamoeba histolytica is a unicellular parasite that causes amoebic dysentery to humans. The amoeba s mechanisms of virulence are not yet understood, but they depend critically on its movement and morphology properties, which control the cell s ability to phagocyte and penetrate host tissue. In order to study these properties, biologists perform videomicroscopy observations of amoeba in vitro, using different mutants and various concentrations of signalling molecules. For these studies, it is essential to quantify and compare the motion and shape characteristics of the cells under various experimental conditions. This information is used to characterise the effect of potential drugs against the pathogenecity of the parasite. This task requires a precise knowledge of the cell contours at each instant. Our aim of in this context is to automatically detect cell contours and track their evolution in time throughout the sequences. Because of the highly deformable character of the cells and the good temporal resolution of the data, active contours seem particularly suited to this problem.

6 In another work, the GVF approach [Meas-Yedid, 2000] combined with a topological snake [Zimmer, 2001] has been implemented to segment the sequence images and the results are quite good but some problems still persist. In particular, the initialisation and topology problems are not well handled. The initialisation of the first image is done crudely by polygons drawn manually around each cell. For the following images, the detected contours of the previous image are used as initialisation of the contour deformation. But with this method, new objects appearing in the focal plane can not be automatically detected. The presented method could overcome this problem (see figure 8), and even with a rectangle over the whole image (720x540) as curve initialisation, the algorithm is fast. Fig 8. Original image and output of a Canny edge filter Figure 9 shows some preliminary results, where all groups of objects are correctly detected. The detected curves can be used as the initialisation for parametric active contour methods. To distinguish two amoeba in aggregation, a dilation should be performed instead of an erosion.

7 Fig 9. Curve evolution on the amoeba image, the stopping criterion is defined from the thresholding of a Canny image. 300 iterations have been performed. Image size: 720x540. Results show that the topology change is automatically handled by our algorithm and that this method is fast and robust against noise. 4. Conclusion and Future Work This paper introduces a new method of curve evolution in 2D which is simple, fast and robust. This method uses morphological operators to propagate a front and makes an approximation of a curvature motion by the way of successive substitutions of predetermined patterns. A possible drawback is pixelic resolution of the final curve (in comparison with level sets method), and the weight of speed curvature component of the curve is not adjustable. For tracking problem, the algorithm should be adapted to manage both directions simultaneously of the curve evolution (erosion, dilation) by introducing a region-based criterion which helps to decide whether dilation or erosion should be performed. Another development is a multiscale approach in order to reduce the computational cost. A Gaussian pyramid of images is built upon the full resolution image and similar morphologic active contours problems are defined across the different levels. This multiresolution structure can be used according to a coarse-to-fine strategy. An order-zero extrapolation is sufficient to go through different resolution levels. We have developed a 3D version of the algorithm and we are currently testing it. Results with 3D image segmentation and 3D reconstruction will be presented later.

8 5 Acknowledgements This work was partially founded by an Institut Pasteur's PTR grant. Juan M. Rendón M. and Santiago Venegas M. would like to acknowledge the financial support of CONACYT, Mexican Council of Science and Technology. 6 References [Adalsteinsson, 1995] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating interfaces. Journal Of Computational Physics, 120: , [Caselles, 1995] V. Caselles, R. Kimmel and G. Sapiro. Geodesic active contours. In IEEE International Conference en Computer Vision, Boston, USA, [Caselles, 1997] V. Caselles, R. Kimmel and G. Sapiro. Geodesic active contours. International Journal of Computer Vision, 22:61-79, [Deriche, 1995] Rachid Deriche et Oliver Faugeras. Les EDP en Traitement des Images et Vision par Ordinateur. Rapport de recherche INRIA Sophia-Antipolis. Nov [Kass, 1987] M Kass, A. Witking, & D. Terzopoulos, (1987) Snakes : Active contour models, Int. J. Comput. Vis. Vol 1, pp [McInerney, 1996] T. Mc.Inerney and D. Terzopoulos, Deformable models in medical image analysis: a survey, Medical mage Analysis, 1996, 1(2): [Meas-Yedid, 2000] V. Meas-Yedid, J.-C. Olivo-Marin, "Active contours for biological motility analysis", ICIP 2000, Vancouver, sept [Paragios, 2000] N. Paragios and R. Deriche. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. N. IEEE Trans. On Pattern Analysis and Machine Intelligence, 22(3) : , March [Serra, 1982] Serra, Image Analysis and Mathematical Morphology. Academic Press, London, [Sethian, 1999] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, [Zhu, 1996] S. C. Zhu and A. Yuille. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Trans. On Pattern Analysis and Machine Intelligence, 18(9) : , [Zimmer, 2001] C. Zimmer, V. Meas-Yedid, E. Glory, E. Labruyere, N. Guillen, J-C Olivo-Marin, Active contours applied to the shape and motion analysis of amoeba, SPIE International Symposium on Optical Science and Technology, 29 July-3 August, San Diego

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Vikram Appia Anthony Yezzi Georgia Institute of Technology, Atlanta, GA, USA. Abstract We present an active

More information

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Huan Xu, and Xiao-Feng Wang,,3 Intelligent Computation Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Science,

More information

Geodesic Active Regions for Tracking I.N.R.I.A Sophia Antipolis CEDEX, France.

Geodesic Active Regions for Tracking I.N.R.I.A Sophia Antipolis CEDEX, France. Geodesic Active Regions for Tracking Nikos Paragios? Rachid Deriche I.N.R.I.A BP. 93, 24 Route des Lucioles 692 Sophia Antipolis CEDEX, France e-mail: fnparagio,derg@sophia.inria.fr Abstract. In this paper

More information

Video Surveillance System for Object Detection and Tracking Methods R.Aarthi, K.Kiruthikadevi

Video Surveillance System for Object Detection and Tracking Methods R.Aarthi, K.Kiruthikadevi IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November 2015. Video Surveillance System for Object Detection and Tracking Methods R.Aarthi, K.Kiruthikadevi

More information

Dr. Ulas Bagci

Dr. Ulas Bagci Lecture 9: Deformable Models and Segmentation CAP-Computer Vision Lecture 9-Deformable Models and Segmentation Dr. Ulas Bagci bagci@ucf.edu Lecture 9: Deformable Models and Segmentation Motivation A limitation

More information

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey Extract Object Boundaries in Noisy Images using Level Set by: Quming Zhou Literature Survey Submitted to Professor Brian Evans EE381K Multidimensional Digital Signal Processing March 15, 003 Abstract Finding

More information

Segmentation in Noisy Medical Images Using PCA Model Based Particle Filtering

Segmentation in Noisy Medical Images Using PCA Model Based Particle Filtering Segmentation in Noisy Medical Images Using PCA Model Based Particle Filtering Wei Qu a, Xiaolei Huang b, and Yuanyuan Jia c a Siemens Medical Solutions USA Inc., AX Division, Hoffman Estates, IL 60192;

More information

Multiple Contour Finding and Perceptual Grouping as a set of Energy Minimizing Paths

Multiple Contour Finding and Perceptual Grouping as a set of Energy Minimizing Paths Multiple Contour Finding and Perceptual Grouping as a set of Energy Minimizing Paths Laurent D. COHEN and Thomas DESCHAMPS CEREMADE, UMR 7534, Université Paris-Dauphine 75775 Paris cedex 16, France cohen@ceremade.dauphine.fr

More information

Active Contour-Based Visual Tracking by Integrating Colors, Shapes, and Motions Using Level Sets

Active Contour-Based Visual Tracking by Integrating Colors, Shapes, and Motions Using Level Sets Active Contour-Based Visual Tracking by Integrating Colors, Shapes, and Motions Using Level Sets Suvarna D. Chendke ME Computer Student Department of Computer Engineering JSCOE PUNE Pune, India chendkesuvarna@gmail.com

More information

Local or Global Minima: Flexible Dual-Front Active Contours

Local or Global Minima: Flexible Dual-Front Active Contours Local or Global Minima: Flexible Dual-Front Active Contours Hua Li 1,2 and Anthony Yezzi 1 1 School of ECE, Georgia Institute of Technology, Atlanta, GA, USA 2 Dept. of Elect. & Info. Eng., Huazhong Univ.

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

MRI Brain Image Segmentation Using an AM-FM Model

MRI Brain Image Segmentation Using an AM-FM Model MRI Brain Image Segmentation Using an AM-FM Model Marios S. Pattichis', Helen Petropoulos2, and William M. Brooks2 1 Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque,

More information

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary) Towards image analysis Goal: Describe the contents of an image, distinguishing meaningful information from irrelevant one. Perform suitable transformations of images so as to make explicit particular shape

More information

Levelset and B-spline deformable model techniques for image segmentation: a pragmatic comparative study.

Levelset and B-spline deformable model techniques for image segmentation: a pragmatic comparative study. Levelset and B-spline deformable model techniques for image segmentation: a pragmatic comparative study. Diane Lingrand, Johan Montagnat Rainbow Team I3S Laboratory UMR 6070 University of Nice - Sophia

More information

Segmentation Using Active Contour Model and Level Set Method Applied to Medical Images

Segmentation Using Active Contour Model and Level Set Method Applied to Medical Images Segmentation Using Active Contour Model and Level Set Method Applied to Medical Images Dr. K.Bikshalu R.Srikanth Assistant Professor, Dept. of ECE, KUCE&T, KU, Warangal, Telangana, India kalagaddaashu@gmail.com

More information

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37 Extended Contents List Preface... xi About the authors... xvii CHAPTER 1 Introduction 1 1.1 Overview... 1 1.2 Human and Computer Vision... 2 1.3 The Human Vision System... 4 1.3.1 The Eye... 5 1.3.2 The

More information

Snakes operating on Gradient Vector Flow

Snakes operating on Gradient Vector Flow Snakes operating on Gradient Vector Flow Seminar: Image Segmentation SS 2007 Hui Sheng 1 Outline Introduction Snakes Gradient Vector Flow Implementation Conclusion 2 Introduction Snakes enable us to find

More information

Application of Radon Transform for Scaling and Rotation estimation of a digital image

Application of Radon Transform for Scaling and Rotation estimation of a digital image International Journal of Engineering Research and Development eissn : 2278-067X, pissn : 2278-800X, www.ijerd.com Volume 2, Issue 3 (July 2012), PP. 35-39 Application of Radon Transform for Scaling and

More information

Adaptive active contours (snakes) for the segmentation of complex structures in biological images

Adaptive active contours (snakes) for the segmentation of complex structures in biological images Adaptive active contours (snakes) for the segmentation of complex structures in biological images Philippe Andrey a and Thomas Boudier b a Analyse et Modélisation en Imagerie Biologique, Laboratoire Neurobiologie

More information

A Geometric Contour Framework with Vector Field Support

A Geometric Contour Framework with Vector Field Support A Geometric Contour Framework with Vector Field Support Zhenglong Li, Qingshan Liu, and Hanqing Lu National Laboratory of Pattern Recognition Automation of Institute, Chinese Academy of Sciences P.O. Box

More information

Implicit Active Shape Models for 3D Segmentation in MR Imaging

Implicit Active Shape Models for 3D Segmentation in MR Imaging Implicit Active Shape Models for 3D Segmentation in MR Imaging Mikaël Rousson 1, Nikos Paragios 2, and Rachid Deriche 1 1 I.N.R.I.A. Sophia Antipolis, France E-mail: {Mikael.Rousson,Rachid.Deriche}@sophia.inria.fr

More information

Snakes reparameterization for noisy images segmentation and targets tracking

Snakes reparameterization for noisy images segmentation and targets tracking Snakes reparameterization for noisy images segmentation and targets tracking Idrissi Sidi Yassine, Samir Belfkih. Lycée Tawfik Elhakim Zawiya de Noaceur, route de Marrakech, Casablanca, maroc. Laboratoire

More information

Edge-Preserving Denoising for Segmentation in CT-Images

Edge-Preserving Denoising for Segmentation in CT-Images Edge-Preserving Denoising for Segmentation in CT-Images Eva Eibenberger, Anja Borsdorf, Andreas Wimmer, Joachim Hornegger Lehrstuhl für Mustererkennung, Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

DEFORMABLE contour models are commonly used in

DEFORMABLE contour models are commonly used in 640 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 5, MAY 2004 RAGS: Region-Aided Geometric Snake Xianghua Xie and Majid Mirmehdi Abstract An enhanced, region-aided, geometric active contour that

More information

Level Set Evolution without Reinitilization

Level Set Evolution without Reinitilization Level Set Evolution without Reinitilization Outline Parametric active contour (snake) models. Concepts of Level set method and geometric active contours. A level set formulation without reinitialization.

More information

Overview. Related Work Tensor Voting in 2-D Tensor Voting in 3-D Tensor Voting in N-D Application to Vision Problems Stereo Visual Motion

Overview. Related Work Tensor Voting in 2-D Tensor Voting in 3-D Tensor Voting in N-D Application to Vision Problems Stereo Visual Motion Overview Related Work Tensor Voting in 2-D Tensor Voting in 3-D Tensor Voting in N-D Application to Vision Problems Stereo Visual Motion Binary-Space-Partitioned Images 3-D Surface Extraction from Medical

More information

Edge Detection and Active Contours

Edge Detection and Active Contours Edge Detection and Active Contours Elsa Angelini, Florence Tupin Department TSI, Telecom ParisTech Name.surname@telecom-paristech.fr 2011 Outline Introduction Edge Detection Active Contours Introduction

More information

ISSN: X International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 6, Issue 8, August 2017

ISSN: X International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 6, Issue 8, August 2017 ENTROPY BASED CONSTRAINT METHOD FOR IMAGE SEGMENTATION USING ACTIVE CONTOUR MODEL M.Nirmala Department of ECE JNTUA college of engineering, Anantapuramu Andhra Pradesh,India Abstract: Over the past existing

More information

Network Snakes for the Segmentation of Adjacent Cells in Confocal Images

Network Snakes for the Segmentation of Adjacent Cells in Confocal Images Network Snakes for the Segmentation of Adjacent Cells in Confocal Images Matthias Butenuth 1 and Fritz Jetzek 2 1 Institut für Photogrammetrie und GeoInformation, Leibniz Universität Hannover, 30167 Hannover

More information

MORPHOLOGICAL EDGE DETECTION AND CORNER DETECTION ALGORITHM USING CHAIN-ENCODING

MORPHOLOGICAL EDGE DETECTION AND CORNER DETECTION ALGORITHM USING CHAIN-ENCODING MORPHOLOGICAL EDGE DETECTION AND CORNER DETECTION ALGORITHM USING CHAIN-ENCODING Neeta Nain, Vijay Laxmi, Ankur Kumar Jain & Rakesh Agarwal Department of Computer Engineering Malaviya National Institute

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

Applying Catastrophe Theory to Image Segmentation

Applying Catastrophe Theory to Image Segmentation Applying Catastrophe Theory to Image Segmentation Mohamad Raad, Majd Ghareeb, Ali Bazzi Department of computer and communications engineering Lebanese International University Beirut, Lebanon Abstract

More information

An Image Curvature Microscope

An Image Curvature Microscope An Jean-Michel MOREL Joint work with Adina CIOMAGA and Pascal MONASSE Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan Séminaire Jean Serra - 70 ans April 2, 2010 Jean-Michel

More information

An Active Contour Model without Edges

An Active Contour Model without Edges An Active Contour Model without Edges Tony Chan and Luminita Vese Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095-1555 chan,lvese@math.ucla.edu

More information

Comparison of Vessel Segmentations using STAPLE

Comparison of Vessel Segmentations using STAPLE Comparison of Vessel Segmentations using STAPLE Julien Jomier, Vincent LeDigarcher, and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab The University of North Carolina at Chapel Hill, Department

More information

A Level-Set Based Volumetric CT Segmentation Technique: A Case Study with Pulmonary Air Bubbles

A Level-Set Based Volumetric CT Segmentation Technique: A Case Study with Pulmonary Air Bubbles A Level-Set Based Volumetric CT Segmentation Technique: A Case Study with Pulmonary Air Bubbles José Silvestre Silva 1,2, Beatriz Sousa Santos 1,3, Augusto Silva 1,3, and Joaquim Madeira 1,3 1 Departamento

More information

An Image Curvature Microscope

An Image Curvature Microscope An Jean-Michel MOREL Joint work with Adina CIOMAGA and Pascal MONASSE Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan Séminaire Jean Serra - 70 ans April 2, 2010 Jean-Michel

More information

Object Segmentation Using Graph Cuts Based Active Contours

Object Segmentation Using Graph Cuts Based Active Contours Object Segmentation Using Graph Cuts Based Active Contours Ning Xu Beckman Institute & ECE Dept. University of Illinois Urbana, IL, USA ningxu@vision.ai.uiuc.edu Ravi Bansal Department of Psychiatry Columbia

More information

A Survey on Moving Object Detection and Tracking in Video Surveillance System

A Survey on Moving Object Detection and Tracking in Video Surveillance System International Journal of Soft Computing and Engineering (IJSCE) A Survey on Moving Object Detection and Tracking in Video Surveillance System Kinjal A Joshi, Darshak G. Thakore Abstract This paper presents

More information

Binary Shape Characterization using Morphological Boundary Class Distribution Functions

Binary Shape Characterization using Morphological Boundary Class Distribution Functions Binary Shape Characterization using Morphological Boundary Class Distribution Functions Marcin Iwanowski Institute of Control and Industrial Electronics, Warsaw University of Technology, ul.koszykowa 75,

More information

MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS

MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS Miguel Alemán-Flores, Luis Álvarez-León Departamento de Informática y Sistemas, Universidad de Las Palmas

More information

Active contour: a parallel genetic algorithm approach

Active contour: a parallel genetic algorithm approach id-1 Active contour: a parallel genetic algorithm approach Florence Kussener 1 1 MathWorks, 2 rue de Paris 92196 Meudon Cedex, France Florence.Kussener@mathworks.fr Abstract This paper presents an algorithm

More information

Research Article Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation

Research Article Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation Discrete Dynamics in Nature and Society Volume 2008, Article ID 384346, 8 pages doi:10.1155/2008/384346 Research Article Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

Boundary Extraction Using Poincare Map Method

Boundary Extraction Using Poincare Map Method Boundary Extraction Using Poincare Map Method Ruchita V. Indulkar, Sanjay D. Jondhale ME Computer, Department of Computer Engineering,SVIT, Chincholi, Nashik, Maharastra,India. Associate Professor, Department

More information

Level lines based disocclusion

Level lines based disocclusion Level lines based disocclusion Simon Masnou Jean-Michel Morel CEREMADE CMLA Université Paris-IX Dauphine Ecole Normale Supérieure de Cachan 75775 Paris Cedex 16, France 94235 Cachan Cedex, France Abstract

More information

Isophote-Based Interpolation

Isophote-Based Interpolation Isophote-Based Interpolation Bryan S. Morse and Duane Schwartzwald Department of Computer Science, Brigham Young University 3361 TMCB, Provo, UT 84602 {morse,duane}@cs.byu.edu Abstract Standard methods

More information

Level-set MCMC Curve Sampling and Geometric Conditional Simulation

Level-set MCMC Curve Sampling and Geometric Conditional Simulation Level-set MCMC Curve Sampling and Geometric Conditional Simulation Ayres Fan John W. Fisher III Alan S. Willsky February 16, 2007 Outline 1. Overview 2. Curve evolution 3. Markov chain Monte Carlo 4. Curve

More information

Isophote-Based Interpolation

Isophote-Based Interpolation Brigham Young University BYU ScholarsArchive All Faculty Publications 1998-10-01 Isophote-Based Interpolation Bryan S. Morse morse@byu.edu Duane Schwartzwald Follow this and additional works at: http://scholarsarchive.byu.edu/facpub

More information

Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence

Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence Björn Scheuermann and Bodo Rosenhahn Leibniz Universität Hannover, Germany {scheuermann,rosenhahn}@tnt.uni-hannover.de

More information

Unifying Boundary and Region-based information for Geodesic Active Tracking

Unifying Boundary and Region-based information for Geodesic Active Tracking IEEE CVPR-99, pages xx-yy, Colorado, USA Unifying Boundary and Region-based information for Geodesic Active Tracking Nikos Paragios Rachid Deriche I.N.R.I.A BP 93, 2 Route des Lucioles 692 Sophia Antipolis

More information

A New Approach to Computation of Curvature Scale Space Image for Shape Similarity Retrieval

A New Approach to Computation of Curvature Scale Space Image for Shape Similarity Retrieval A New Approach to Computation of Curvature Scale Space Image for Shape Similarity Retrieval Farzin Mokhtarian, Sadegh Abbasi and Josef Kittler Centre for Vision Speech and Signal Processing Department

More information

A New Algorithm for Shape Detection

A New Algorithm for Shape Detection IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 3, Ver. I (May.-June. 2017), PP 71-76 www.iosrjournals.org A New Algorithm for Shape Detection Hewa

More information

Multi-Scale Free-Form Surface Description

Multi-Scale Free-Form Surface Description Multi-Scale Free-Form Surface Description Farzin Mokhtarian, Nasser Khalili and Peter Yuen Centre for Vision Speech and Signal Processing Dept. of Electronic and Electrical Engineering University of Surrey,

More information

Robust Lip Contour Extraction using Separability of Multi-Dimensional Distributions

Robust Lip Contour Extraction using Separability of Multi-Dimensional Distributions Robust Lip Contour Extraction using Separability of Multi-Dimensional Distributions Tomokazu Wakasugi, Masahide Nishiura and Kazuhiro Fukui Corporate Research and Development Center, Toshiba Corporation

More information

Comparison of Vessel Segmentations Using STAPLE

Comparison of Vessel Segmentations Using STAPLE Comparison of Vessel Segmentations Using STAPLE Julien Jomier, Vincent LeDigarcher, and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab, The University of North Carolina at Chapel Hill, Department

More information

Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method

Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method Multiple Motion and Occlusion Segmentation with a Multiphase Level Set Method Yonggang Shi, Janusz Konrad, W. Clem Karl Department of Electrical and Computer Engineering Boston University, Boston, MA 02215

More information

Automated length measurement based on the Snake Model applied to nanoscience and nanotechnology

Automated length measurement based on the Snake Model applied to nanoscience and nanotechnology Automated length measurement based on the Snake Model applied to nanoscience and nanotechnology Leandro S. Marturelli DIMAT - Divisão de Metrologia de Materiais, INMETRO 550-00, Xerém, Duque de Caxias,

More information

Biomedical Image Analysis. Mathematical Morphology

Biomedical Image Analysis. Mathematical Morphology Biomedical Image Analysis Mathematical Morphology Contents: Foundation of Mathematical Morphology Structuring Elements Applications BMIA 15 V. Roth & P. Cattin 265 Foundations of Mathematical Morphology

More information

Lecture 12 Level Sets & Parametric Transforms. sec & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi

Lecture 12 Level Sets & Parametric Transforms. sec & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi Lecture 12 Level Sets & Parametric Transforms sec. 8.5.2 & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2017 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these

More information

NIH Public Access Author Manuscript Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2014 October 07.

NIH Public Access Author Manuscript Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2014 October 07. NIH Public Access Author Manuscript Published in final edited form as: Proc Soc Photo Opt Instrum Eng. 2014 March 21; 9034: 903442. doi:10.1117/12.2042915. MRI Brain Tumor Segmentation and Necrosis Detection

More information

Fast Distance Transform Computation using Dual Scan Line Propagation

Fast Distance Transform Computation using Dual Scan Line Propagation Fast Distance Transform Computation using Dual Scan Line Propagation Fatih Porikli Tekin Kocak Mitsubishi Electric Research Laboratories, Cambridge, USA ABSTRACT We present two fast algorithms that approximate

More information

An automatic correction of Ma s thinning algorithm based on P-simple points

An automatic correction of Ma s thinning algorithm based on P-simple points Author manuscript, published in "Journal of Mathematical Imaging and Vision 36, 1 (2010) 54-62" DOI : 10.1007/s10851-009-0170-1 An automatic correction of Ma s thinning algorithm based on P-simple points

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 26 (1): 309-316 (2018) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Application of Active Contours Driven by Local Gaussian Distribution Fitting

More information

AN EFFICIENT APPROACH FOR IMPROVING CANNY EDGE DETECTION ALGORITHM

AN EFFICIENT APPROACH FOR IMPROVING CANNY EDGE DETECTION ALGORITHM AN EFFICIENT APPROACH FOR IMPROVING CANNY EDGE DETECTION ALGORITHM Shokhan M. H. Department of Computer Science, Al-Anbar University, Iraq ABSTRACT Edge detection is one of the most important stages in

More information

Method of Background Subtraction for Medical Image Segmentation

Method of Background Subtraction for Medical Image Segmentation Method of Background Subtraction for Medical Image Segmentation Seongjai Kim Department of Mathematics and Statistics, Mississippi State University Mississippi State, MS 39762, USA and Hyeona Lim Department

More information

Image Inpainting by Hyperbolic Selection of Pixels for Two Dimensional Bicubic Interpolations

Image Inpainting by Hyperbolic Selection of Pixels for Two Dimensional Bicubic Interpolations Image Inpainting by Hyperbolic Selection of Pixels for Two Dimensional Bicubic Interpolations Mehran Motmaen motmaen73@gmail.com Majid Mohrekesh mmohrekesh@yahoo.com Mojtaba Akbari mojtaba.akbari@ec.iut.ac.ir

More information

Global Minimization of the Active Contour Model with TV-Inpainting and Two-Phase Denoising

Global Minimization of the Active Contour Model with TV-Inpainting and Two-Phase Denoising Global Minimization of the Active Contour Model with TV-Inpainting and Two-Phase Denoising Shingyu Leung and Stanley Osher Department of Mathematics, UCLA, Los Angeles, CA 90095, USA {syleung, sjo}@math.ucla.edu

More information

A REVIEW ON THE CURRENT SEGMENTATION ALGORITHMS FOR MEDICAL IMAGES

A REVIEW ON THE CURRENT SEGMENTATION ALGORITHMS FOR MEDICAL IMAGES A REVIEW ON THE CURRENT SEGMENTATION ALGORITHMS FOR MEDICAL IMAGES Zhen Ma, João Manuel R. S. Tavares, R. M. Natal Jorge Faculty of Engineering, University of Porto, Porto, Portugal zhen.ma@fe.up.pt, tavares@fe.up.pt,

More information

Automatic Logo Detection and Removal

Automatic Logo Detection and Removal Automatic Logo Detection and Removal Miriam Cha, Pooya Khorrami and Matthew Wagner Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA 15213 {mcha,pkhorrami,mwagner}@ece.cmu.edu

More information

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking Representation REPRESENTATION & DESCRIPTION After image segmentation the resulting collection of regions is usually represented and described in a form suitable for higher level processing. Most important

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Binary image processing In binary images, we conventionally take background as black (0) and foreground objects as white (1 or 255) Morphology Figure 4.1 objects on a conveyor

More information

Image segmentation techniques

Image segmentation techniques Image segmentation techniques Vibert Dimitri Juin 2007 1/41 2/41 Plan Introduction Thresholding Edges detection Clustering method Hierarchical Non-hierarchical Active contour Snakes GVF Region growing

More information

Curvature Estimation on Smoothed 3-D Meshes

Curvature Estimation on Smoothed 3-D Meshes Curvature Estimation on Smoothed 3-D Meshes Peter Yuen, Nasser Khalili and Farzin Mokhtarian Centre for Vision, Speech and Signal Processing School of Electronic Engineering, Information Technology and

More information

NSCT BASED LOCAL ENHANCEMENT FOR ACTIVE CONTOUR BASED IMAGE SEGMENTATION APPLICATION

NSCT BASED LOCAL ENHANCEMENT FOR ACTIVE CONTOUR BASED IMAGE SEGMENTATION APPLICATION DOI: 10.1917/ijivp.010.0004 NSCT BASED LOCAL ENHANCEMENT FOR ACTIVE CONTOUR BASED IMAGE SEGMENTATION APPLICATION Hiren Mewada 1 and Suprava Patnaik Department of Electronics Engineering, Sardar Vallbhbhai

More information

Survey on Moving Body Detection in Video Surveillance System

Survey on Moving Body Detection in Video Surveillance System RESEARCH ARTICLE OPEN ACCESS Survey on Moving Body Detection in Video Surveillance System Prof. D.S.Patil 1, Miss. R.B.Khanderay 2, Prof.Teena Padvi 3 1 Associate Professor, SSVPS, Dhule (North maharashtra

More information

The most cited papers in Computer Vision

The most cited papers in Computer Vision COMPUTER VISION, PUBLICATION The most cited papers in Computer Vision In Computer Vision, Paper Talk on February 10, 2012 at 11:10 pm by gooly (Li Yang Ku) Although it s not always the case that a paper

More information

Level Set Methods and Fast Marching Methods

Level Set Methods and Fast Marching Methods Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

EECS490: Digital Image Processing. Lecture #17

EECS490: Digital Image Processing. Lecture #17 Lecture #17 Morphology & set operations on images Structuring elements Erosion and dilation Opening and closing Morphological image processing, boundary extraction, region filling Connectivity: convex

More information

A MORPHOLOGY-BASED FILTER STRUCTURE FOR EDGE-ENHANCING SMOOTHING

A MORPHOLOGY-BASED FILTER STRUCTURE FOR EDGE-ENHANCING SMOOTHING Proceedings of the 1994 IEEE International Conference on Image Processing (ICIP-94), pp. 530-534. (Austin, Texas, 13-16 November 1994.) A MORPHOLOGY-BASED FILTER STRUCTURE FOR EDGE-ENHANCING SMOOTHING

More information

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1 David H. Myszka e-mail: dmyszka@udayton.edu Andrew P. Murray e-mail: murray@notes.udayton.edu University of Dayton, Dayton, OH 45469 James P. Schmiedeler The Ohio State University, Columbus, OH 43210 e-mail:

More information

Chapter 3. Automated Segmentation of the First Mitotic Spindle in Differential Interference Contrast Microcopy Images of C.

Chapter 3. Automated Segmentation of the First Mitotic Spindle in Differential Interference Contrast Microcopy Images of C. Chapter 3 Automated Segmentation of the First Mitotic Spindle in Differential Interference Contrast Microcopy Images of C. elegans Embryos Abstract Differential interference contrast (DIC) microscopy is

More information

Sar Image Segmentation Using Modified Bacterial Forging Optimization Algorithm

Sar Image Segmentation Using Modified Bacterial Forging Optimization Algorithm Sar Segmentation Using Modified Bacterial Forging Optimization Algorithm Abhijit Kaur 1, Amandeep Singh Bhandari 2 Computer Science and Engineering Sri Guru Granth sahib World University 1 Assistant professor,

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Morphology Identification, analysis, and description of the structure of the smallest unit of words Theory and technique for the analysis and processing of geometric structures

More information

THE SUBJECT of this study is motion-based tracking, the

THE SUBJECT of this study is motion-based tracking, the IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 11, NOVEMBER 2004 1473 Spatiotemporal Motion Boundary Detection and Motion Boundary Velocity Estimation for Tracking Moving Objects With a Moving Camera:

More information

An Adaptive Eigenshape Model

An Adaptive Eigenshape Model An Adaptive Eigenshape Model Adam Baumberg and David Hogg School of Computer Studies University of Leeds, Leeds LS2 9JT, U.K. amb@scs.leeds.ac.uk Abstract There has been a great deal of recent interest

More information

Optimal Grouping of Line Segments into Convex Sets 1

Optimal Grouping of Line Segments into Convex Sets 1 Optimal Grouping of Line Segments into Convex Sets 1 B. Parvin and S. Viswanathan Imaging and Distributed Computing Group Information and Computing Sciences Division Lawrence Berkeley National Laboratory,

More information

Medical images, segmentation and analysis

Medical images, segmentation and analysis Medical images, segmentation and analysis ImageLab group http://imagelab.ing.unimo.it Università degli Studi di Modena e Reggio Emilia Medical Images Macroscopic Dermoscopic ELM enhance the features of

More information

Binary Morphological Model in Refining Local Fitting Active Contour in Segmenting Weak/Missing Edges

Binary Morphological Model in Refining Local Fitting Active Contour in Segmenting Weak/Missing Edges 0 International Conerence on Advanced Computer Science Applications and Technologies Binary Morphological Model in Reining Local Fitting Active Contour in Segmenting Weak/Missing Edges Norshaliza Kamaruddin,

More information

Improved watershed segmentation using water diffusion and local shape priors

Improved watershed segmentation using water diffusion and local shape priors Improved watershed segmentation using water diffusion and local shape priors Hieu T. Nguyen, Qiang Ji Department of Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute, USA {nguyeh2,

More information

A Survey of Image Segmentation Based On Multi Region Level Set Method

A Survey of Image Segmentation Based On Multi Region Level Set Method A Survey of Image Segmentation Based On Multi Region Level Set Method Suraj.R 1, Sudhakar.K 2 1 P.G Student, Computer Science and Engineering, Hindusthan College Of Engineering and Technology, Tamilnadu,

More information

Color Image Segmentation Editor Based on the Integration of Edge-Linking, Region Labeling and Deformable Model

Color Image Segmentation Editor Based on the Integration of Edge-Linking, Region Labeling and Deformable Model This paper appears in: IEEE International Conference on Systems, Man and Cybernetics, 1999 Color Image Segmentation Editor Based on the Integration of Edge-Linking, Region Labeling and Deformable Model

More information

Fast Constrained Surface Extraction by Minimal Paths

Fast Constrained Surface Extraction by Minimal Paths Fast Constrained Surface Extraction by Minimal Paths Roberto Ardon 1,2 Laurent D. Cohen 2 1 MEDISYS-Philips France 2 CEREMADE, Université Paris Dauphine 51, rue Carnot, Suresnes 92156 75775 Paris, France

More information

LEVEL SET ALGORITHMS COMPARISON FOR MULTI-SLICE CT LEFT VENTRICLE SEGMENTATION

LEVEL SET ALGORITHMS COMPARISON FOR MULTI-SLICE CT LEFT VENTRICLE SEGMENTATION LEVEL SET ALGORITHMS COMPARISON FOR MULTI-SLICE CT LEFT VENTRICLE SEGMENTATION 1 Investigador Prometeo, Universidad de Cuenca, Departamento de Electrónica y Telecomunicaciones, Cuenca, Ecuador 2 Departamento

More information

Geometrical Modeling of the Heart

Geometrical Modeling of the Heart Geometrical Modeling of the Heart Olivier Rousseau University of Ottawa The Project Goal: Creation of a precise geometrical model of the heart Applications: Numerical calculations Dynamic of the blood

More information

ACTIVE CONTOURS BASED OBJECT DETECTION & EXTRACTION USING WSPF PARAMETER: A NEW LEVEL SET METHOD

ACTIVE CONTOURS BASED OBJECT DETECTION & EXTRACTION USING WSPF PARAMETER: A NEW LEVEL SET METHOD ACTIVE CONTOURS BASED OBJECT DETECTION & EXTRACTION USING WSPF PARAMETER: A NEW LEVEL SET METHOD Savan Oad 1, Ambika Oad 2, Abhinav Bhargava 1, Samrat Ghosh 1 1 Department of EC Engineering, GGITM, Bhopal,

More information

6. Object Identification L AK S H M O U. E D U

6. Object Identification L AK S H M O U. E D U 6. Object Identification L AK S H M AN @ O U. E D U Objects Information extracted from spatial grids often need to be associated with objects not just an individual pixel Group of pixels that form a real-world

More information

Occlusion-Based Accurate Silhouettes from Video Streams

Occlusion-Based Accurate Silhouettes from Video Streams Occlusion-Based Accurate Silhouettes from Video Streams Pedro M.Q. Aguiar, António R. Miranda, and Nuno de Castro Institute for Systems and Robotics / Instituto Superior Técnico Lisboa, Portugal aguiar@isr.ist.utl.pt

More information

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy Chenyang Xu 1, Siemens Corporate Research, Inc., Princeton, NJ, USA Xiaolei Huang,

More information