Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7

8 Conway s Magic Theorem

9 Session Description This session will look at the mathematics behind Conway's Magic Theorem. This theorem can be used to prove that there are 17 plane symmetry (wallpaper) groups as well as a host of other things. In this session you will encounter orbit manifolds (orbifolds) and learn how Conway's notation works. This session is designed to provide ideas that can be used to enrich the understanding of the most able A level mathematicians.

10 The 17 plane symmetry groups

11 How do you show that there are exactly 17 plane symmetry groups? Conway s magic theorem Each symmetry has a score. The overall score for a group is found using the minimum quantity of symmetries required to create that group starting with rotations. For a group to be a plane symmetry group, the total score for those symmetries has to equal 2 Q: Is this anything to do with V E + F = 2?

12

13 A quick example: p31m What is the minimum quantity of symmetries required to create that group (starting with rotations). Start with the rotation that is not on a mirror Now look at a rotation that is on a mirror There s no point in using any of the other centres of rotation as it would leave gaps Now look at one of the mirrors Nothing else is needed.

14 A quick example: p31m

15 We now have a combinatorics question How many ways are there of making a total of 2 if there is a) b) c) d) e) No rotation symmetry The highest order of rotation symmetry is 2 The highest order of rotation symmetry is 3 The highest order of rotation symmetry is 4 The highest order of rotation symmetry is 6 We know these are the only options due to the crystallographic restriction

16 Highest rotation symmetry order Available scores None 2 translation only 1 reflection 1 glide reflection

17 No rotation symmetry Possibilities are 1) 2) 3) 4) Only translation symmetry Two mirror lines Two glide reflection lines One mirror line and one glide reflection line 4 different ways 2 1+1=2 1+1=2 1+1=2

18 Order 2 rotation symmetry

19 Order 3 rotation symmetry

20 Order 4 rotation symmetry

21 Order 6 rotation symmetry Giving the total number of possibilities as = 17

22 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) Only translation symmetry Two mirror lines Two glide reflection lines One mirror line and one glide reflection line 4 different o2 centres not 2 different o2 not and 1 mirror 2 different o2 not and 1 glide 1 o2 not and 2 o2 on and 1 mirror 4 different o2 on and 1 mirror 3 different o3 centres not 1 o3 not, 1 o3 on and 1 mirror 3 different o3 all on and 1 mirror 2 different o4 centres not and 1 o2 not 1 o4 centres not, 1 o2 on and 1 mirror 2 o4 centres on, 1 o2 on and 1 mirror 1 o6 not, 1 o3 not and 1 o2 not 1 o6 on, 1 o3 on, 1 o2 on and 1 mirror p1 pm pg cm p2 p2mg p2gg c2mm p2mm p3 p31m p3m1 p4 p4mg p4mm p6 p6mm

23 But why a score of 2? and why does each symmetry have the score it does? A more fundamental question What do we mean by symmetry?

24 Geometrical congruence That puts an object back where it started Consider a chair Symmetry group Identity Reflection

25

26 Federov Schoenflies

27 2 Dimensional Lattices Parallelogrammatic Square Rectangular Rhombic Hexagonal

28 Murray MacBeath William Thurston

29 The four fundamental features 4 features are sufficient to describe all the symmetries of any pattern Wonders Gyrations Kaleidoscopes Miracles Blue: preserves the true orientation of a fundamental region Red: reflect a fundamental region in some way

30 Kaleidoscopes A mirror or kaleidoscopic symmetry Denoted by * * ** (pm)

31 *2 *3

32 *2222

33 Gyrations Looks like *333 but 3 fold rotation and one mirror. 3*3 One kind of 3 fold gyration point and one kind of 3 fold kaleidoscopic point

34 2*22 4*2

35 333

36 Miracles A glide reflection Denoted by Looks like ** but there s another mapping *

37

38 Wonders No reflections, gyrations or miracles! Denoted by O

39 Everything has a cost Gyrations and Wonders Symbol Cost Kaleidoscopes and Miracles Symbol O * or N N Cost

40 * *632 Total 2

41 1. Mark any kaleidoscopes in red. If there are mirror lines, consider only one of the regions that they cut the plane into. Put a red * near any one kaleidoscope. Find one corner of each type and write the numbers of mirrors through each of these corners in red. 2. Look for gyration points. Mark one gyration point of each type present in blue with its order. Gyrations never lie on mirror lines. 3. Look for miracle points can you get from a point to a copy of that point without crossing a mirror line. Mark one of the paths with a broken red line and put a cross nearby. 4. If you have found none of the above, mark it with a wonder symbol.

42 The 17 Symmetry Groups

43 O = 2 (obviously) 5 types

44

45 ** = = 2 (obviously) 5 types

46 A mixture of gyrations and kaleidoscopes Since 2 = 2 2, 3 = 2 3, 4 = 2 4 and 6 = 2 6, we can replace *nn with n*

47 *632 yields no new results *333 yields 3*3 *442 yields 4*2 *2222 yields 2*22 and 22* 4 types

48 Including miracles We can replace * with where there is a single kaleidoscope. So 22* yields 22 ** yields * and 3 types Total = = 17 types

49 Topological argument

50 The orbifold The orbifold is a hemisphere

51 The topology of the orbifold determines the symmetry group The members of the group are geometrical congruences (i.e. distance preserving) Distance is not invariant in topological terms Geometrical groups are determined by their orbifolds Perelman used this in proving the Poincare Conjecture

52 The Poincaré Conjecture Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

53

54 2 *22 * 2

55

56 4 * 4 *44

57 4 * 3 *432 2

58

59 4 fold cone point 3 fold cone point 2 fold cone point 432

60 So why 2?

61 Any 2 dimensional surface can be obtained from a sphere by Punching holes introducing a boundary * Adding handles O Adding crosscaps (this replaces disks with Moebius bands)

62

63 The effect of punching a hole before after Punching a hole reduces the Euler characteristic by 1

64 The effect of an N-fold cone point Using a map where the cone point is a vertex

65

66 The effect of an N-fold corner point

67 Where are we now? We have shown how gyrations and kaleidoscopes affect the Euler characteristic. So we can perform surgery on a sphere (adding cone points and mirrors) to create all but 3 of the wallpaper patterns. What about wonders and miracles? What do we have to do to a sphere to create them?

68 Wonders (O)

69 A sphere to a torus

70 The Euler Characteristic of a Torus A wonder O reduces the characteristic by 2

71 Miracles

72 Crosscaps

73

74 The effect of a crosscap - a (slight) cop-out To make a crosscap requires a hole. A hole reduces the Euler characteristic by 1 Each crosscap reduces the Euler characteristic by 1

75 A summary of the proof of the Magic Theorem Any pattern can be folded-up into an orbifold by taking all points of the same kind (orbits) to a single point. The 17 wallpaper symmetry patterns map one-to-one with the orbifolds that have a Euler characteristic of 0 (as do the 7 frieze patterns). Every orbifold can be obtained by surgery on a sphere i.e. adding cone points, holes (mirror lines), corner reflectors, handles and cross-caps.

76 A summary of the proof of the Magic Theorem Each feature reduces the Euler characteristic of the sphere by a certain amount (the cost) The Euler characteristic of a sphere is 2 The orbifolds have to have an Euler characteristic of 0 so the combination of fundamental features has to reduce the Euler characteristic of the sphere by 2.

77 About MEI Registered charity committed to improving mathematics education Independent UK curriculum development body We offer continuing professional development courses, provide specialist tuition for students and work with industry to enhance mathematical skills in the workplace We also pioneer the development of innovative teaching and learning resources

78

79

80

Mathematics in Art and Architecture GEK1518

Mathematics in Art and Architecture GEK1518 Mathematics in Art and Architecture GEK1518 Helmer Aslaksen Department of Mathematics National University of Singapore aslaksen@math.nus.edu.sg www.math.nus.edu.sg/aslaksen/ Symmetry and Patterns Introduction

More information

Pick up some wrapping paper.

Pick up some wrapping paper. Pick up some wrapping paper. What is the area of the following Christmas Tree? There is a nice theorem that allows one to compute the area of any simply-connected (i.e. no holes) grid polygon quickly.

More information

Tilings of the Euclidean plane

Tilings of the Euclidean plane Tilings of the Euclidean plane Yan Der, Robin, Cécile January 9, 2017 Abstract This document gives a quick overview of a eld of mathematics which lies in the intersection of geometry and algebra : tilings.

More information

The Orbifold Notation for Two-Dimensional Groups 1

The Orbifold Notation for Two-Dimensional Groups 1 Structural Chemistry, Vol. 13, Nos. 3/4, August 2002 ( C 2002) The Orbifold Notation for Two-Dimensional Groups 1 John H. Conway 2 and Daniel H. Huson 3,4 Received October 17, 2001; revised November 28,

More information

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2 Symmetry 2011, 3, 325-364; doi:10.3390/sym3020325 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal

More information

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2 Symmetry 2011, 3, 325-364; doi:10.3390/sym3020325 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal

More information

Mathematics and the prints of M.C. Escher. Joe Romano Les Houches Summer School 23 July 2018

Mathematics and the prints of M.C. Escher. Joe Romano Les Houches Summer School 23 July 2018 Mathematics and the prints of M.C. Escher Joe Romano Les Houches Summer School 23 July 2018 Possible topics projective geometry non-euclidean geometry topology & knots ambiguous perspective impossible

More information

Assignment 8; Due Friday, March 10

Assignment 8; Due Friday, March 10 Assignment 8; Due Friday, March 10 The previous two exercise sets covered lots of material. We ll end the course with two short assignments. This one asks you to visualize an important family of three

More information

Geometrization and the Poincaré conjecture

Geometrization and the Poincaré conjecture Geometrization and the Poincaré conjecture Jan Metzger BRIGFOS, 2008 History of the Poincaré conjecture In 1904 Poincaré formulated his conjecture. It is a statement about three dimensional geometric objects,

More information

From hyperbolic 2-space to euclidean 3-space

From hyperbolic 2-space to euclidean 3-space From hyperbolic 2-space to euclidean 3-space Tilings and patterns via topology Stephen Hyde (Stuart Ramsden, Vanessa Robins... ) Australian National University, Canberra 1 The Gauss Map of a surface patch,

More information

Topology of Surfaces

Topology of Surfaces EM225 Topology of Surfaces Geometry and Topology In Euclidean geometry, the allowed transformations are the so-called rigid motions which allow no distortion of the plane (or 3-space in 3 dimensional geometry).

More information

THE POSSIBLE SHAPES OF THE UNIVERSE AND THE VIRTUAL FIBERING THEOREM

THE POSSIBLE SHAPES OF THE UNIVERSE AND THE VIRTUAL FIBERING THEOREM THE POSSIBLE SHAPES OF THE UNIVERSE AND THE VIRTUAL FIBERING THEOREM STEFAN FRIEDL. Introduction It is natural to wonder what `shape' our universe has. From our personal perspective we know that wherever

More information

Symmetry and Properties of Crystals (MSE 638) 2D Space Group

Symmetry and Properties of Crystals (MSE 638) 2D Space Group Symmetry and Properties of Crystals (MSE 638) 2D Space Group Somnath Bhowmick Materials Science and Engineering, IIT Kanpur February 16, 2018 Symmetry and crystallography Symmetry operations in 2D Translation

More information

Tiling, tessellations by

Tiling, tessellations by Par Marcel Morales Professeur à l IUFM de Lyon Rattaché pour la recherche à Tiling, tessellations by MARCEL MORALES hand Tessellations 2010 [TA P E Z L ' A D R E S S E D E L A S O C I E T E ] Tiling, tessellations

More information

Crystal Structure. A(r) = A(r + T), (1)

Crystal Structure. A(r) = A(r + T), (1) Crystal Structure In general, by solid we mean an equilibrium state with broken translational symmetry. That is a state for which there exist observables say, densities of particles with spatially dependent

More information

Euclid forgot to require that the vertices should be the same, so his definition includes the deltahedra.

Euclid forgot to require that the vertices should be the same, so his definition includes the deltahedra. 2 1. What is a Platonic solid? What is a deltahedron? Give at least one example of a deltahedron that is t a Platonic solid. What is the error Euclid made when he defined a Platonic solid? Solution: A

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

Cayley maps on tori. Ondrej Šuch Slovak Academy of Sciences November 20, 2008

Cayley maps on tori. Ondrej Šuch Slovak Academy of Sciences November 20, 2008 Cayley maps on tori Ondrej Šuch Slovak Academy of Sciences ondrej.such@gmail.com November 20, 2008 Tilings of the plane (a) a regular tiling (b) a semi-regular tiling Objects of interest plane R 2 torus

More information

Fractal Wallpaper Patterns

Fractal Wallpaper Patterns Fractal Wallpaper Patterns Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA ddunham@d.umn.edu http://www.d.umn.edu/ ddunham/ John Shier 6935 133rd

More information

Surfaces Beyond Classification

Surfaces Beyond Classification Chapter XII Surfaces Beyond Classification In most of the textbooks which present topological classification of compact surfaces the classification is the top result. However the topology of 2- manifolds

More information

Geometric Transformations: Translation:

Geometric Transformations: Translation: Geometric Transformations: Translation: slide Reflection: Rotation: Dialation: mirror turn enlarge or reduce Notation: Pre-Image: original figure Image: after transformation. Use prime notation C A B C

More information

The Combinatorics of Periodic Tilings

The Combinatorics of Periodic Tilings The ombinatorics of Periodic Tilings aniel H. Huson Informatics Research, elera enomics aniel.huson@celera.com, huson@informatik.uni-tuebingen.de 1 opyright (c) 2008 aniel Huson. Permission is granted

More information

JMM 2017, Atlanta, Georgia. Creating Wallpaper Patterns that are Locally Random Fractals

JMM 2017, Atlanta, Georgia. Creating Wallpaper Patterns that are Locally Random Fractals JMM 2017, Atlanta, Georgia Creating Wallpaper Patterns that are Locally Random Fractals Douglas Dunham Dept. of Computer Science Univ. of Minnesota, Duluth Duluth, MN 55812, USA John Shier 6935 133rd Court

More information

Amarillo ISD Math Curriculum

Amarillo ISD Math Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

INTRODUCTION TO 3-MANIFOLDS

INTRODUCTION TO 3-MANIFOLDS INTRODUCTION TO 3-MANIFOLDS NIK AKSAMIT As we know, a topological n-manifold X is a Hausdorff space such that every point contained in it has a neighborhood (is contained in an open set) homeomorphic to

More information

1 Introduction To construct a branched covering of a 3-manifold M, we start with a tamely embedded knot or link L ρ M (the branch set) and a represent

1 Introduction To construct a branched covering of a 3-manifold M, we start with a tamely embedded knot or link L ρ M (the branch set) and a represent Kirby diagrams from branched-covering presentations Frank J. Swenton Department of Mathematics Middlebury College Middlebury, VT 05753 Email: fswenton@alumni.princeton.edu Abstract We present an algorithm

More information

) for all p. This means however, that the map ϕ 0 descends to the quotient

) for all p. This means however, that the map ϕ 0 descends to the quotient Solutions to sheet 6 Solution to exercise 1: (a) Let M be the Möbius strip obtained by a suitable identification of two opposite sides of the unit square [0, 1] 2. We can identify the boundary M with S

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

MEI Conference Teaching numerical methods using graphing technology

MEI Conference Teaching numerical methods using graphing technology MEI Conference 2017 Teaching numerical methods using graphing technology Jo Sibley josibley@furthermaths.org.uk Casio CG20 Task Numerical Methods: Change of sign 1. Add a new Graphs screen: p5 5. Generate

More information

The Combinatorics of Periodic Tilings. Daniel H. Huson Informatics Research Celera Genomics Corp. Rockville MD, USA

The Combinatorics of Periodic Tilings. Daniel H. Huson Informatics Research Celera Genomics Corp. Rockville MD, USA The ombinatorics of Periodic Tilings aniel H. Huson Informatics Research elera enomics orp. Rockville M, US huson@member.ams.org 1 opyright (c) 2008 aniel Huson. Permission is granted to copy, distribute

More information

Study Guide and Review

Study Guide and Review State whether each sentence is or false. If false, replace the underlined term to make a sentence. 1. Euclidean geometry deals with a system of points, great circles (lines), and spheres (planes). false,

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

A Genus Bound for Digital Image Boundaries

A Genus Bound for Digital Image Boundaries A Genus Bound for Digital Image Boundaries Lowell Abrams and Donniell E. Fishkind March 9, 2005 Abstract Shattuck and Leahy [4] conjectured and Abrams, Fishkind, and Priebe [1],[2] proved that the boundary

More information

Solutions to the Second Midterm Exam, Math 170, Section 002 Spring 2012

Solutions to the Second Midterm Exam, Math 170, Section 002 Spring 2012 Solutions to the Second Midterm Exam, Math 170, Section 002 Spring 2012 Multiple choice questions. Question 1. Suppose we have a rectangle with one side of length 5 and a diagonal of length 13. What is

More information

Geometry. (F) analyze mathematical relationships to connect and communicate mathematical ideas; and

Geometry. (F) analyze mathematical relationships to connect and communicate mathematical ideas; and (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is (A) apply mathematics to problems arising in everyday life,

More information

A VERTICAL LOOK AT KEY CONCEPTS AND PROCEDURES GEOMETRY

A VERTICAL LOOK AT KEY CONCEPTS AND PROCEDURES GEOMETRY A VERTICAL LOOK AT KEY CONCEPTS AND PROCEDURES GEOMETRY Revised TEKS (2012): Building to Geometry Coordinate and Transformational Geometry A Vertical Look at Key Concepts and Procedures Derive and use

More information

THE POINCARÉ CONJECTURE The Mathematics of Smooth Behavior

THE POINCARÉ CONJECTURE The Mathematics of Smooth Behavior THE POINCARÉ CONJECTURE The Mathematics of Smooth Behavior Freshman Seminar University of California, Irvine Bernard Russo University of California, Irvine Spring 2015 Bernard Russo (UCI) THE POINCARÉ

More information

Amarillo ISD Math Curriculum

Amarillo ISD Math Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

Bridges 2015 Baltimore, Maryland. Fractal Wallpaper Patterns

Bridges 2015 Baltimore, Maryland. Fractal Wallpaper Patterns Bridges 2015 Baltimore, Maryland Fractal Wallpaper Patterns Douglas Dunham Dept. of Computer Science Univ. of Minnesota, Duluth Duluth, MN 55812, USA John Shier 6935 133rd Court Apple Valley, MN 55124

More information

Lecture 5 CLASSIFICATION OF SURFACES

Lecture 5 CLASSIFICATION OF SURFACES Lecture 5 CLASSIFICATION OF SURFACES In this lecture, we present the topological classification of surfaces. This will be done by a combinatorial argument imitating Morse theory and will make use of the

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES YUJIE ZHANG Abstract. The sphere, Möbius strip, torus, real projective plane and Klein bottle are all important examples of surfaces (topological 2-manifolds). In fact, via the

More information

Focus on Congruence Mappings

Focus on Congruence Mappings CAMT Conference for the Advancement of Mathematics Teaching July Susan May Course Program Specialist, Secondary Mathematics Anne Joyoprayitno Course Program Specialist, Secondary Mathematics Session facilitators

More information

202 The National Strategies Secondary Mathematics exemplification: Y7

202 The National Strategies Secondary Mathematics exemplification: Y7 202 The National Strategies Secondary Mathematics exemplification: Y7 GEOMETRY ND MESURES Pupils should learn to: Understand and use the language and notation associated with reflections, translations

More information

8.NS.1 8.NS.2. 8.EE.7.a 8.EE.4 8.EE.5 8.EE.6

8.NS.1 8.NS.2. 8.EE.7.a 8.EE.4 8.EE.5 8.EE.6 Standard 8.NS.1 8.NS.2 8.EE.1 8.EE.2 8.EE.3 8.EE.4 8.EE.5 8.EE.6 8.EE.7 8.EE.7.a Jackson County Core Curriculum Collaborative (JC4) 8th Grade Math Learning Targets in Student Friendly Language I can identify

More information

Dominating Sets in Triangulations on Surfaces

Dominating Sets in Triangulations on Surfaces Dominating Sets in Triangulations on Surfaces Hong Liu Department of Mathematics University of Illinois This is a joint work with Michael Pelsmajer May 14, 2011 Introduction A dominating set D V of a graph

More information

Combining Isometries- The Symmetry Group of a Square

Combining Isometries- The Symmetry Group of a Square Combining Isometries- The Symmetry Group of a Square L.A. Romero August 22, 2017 1 The Symmetry Group of a Square We begin with a definition. Definition 1.1. The symmetry group of a figure is the collection

More information

arxiv: v1 [math.co] 15 Apr 2018

arxiv: v1 [math.co] 15 Apr 2018 REGULAR POLYGON SURFACES IAN M. ALEVY arxiv:1804.05452v1 [math.co] 15 Apr 2018 Abstract. A regular polygon surface M is a surface graph (Σ, Γ) together with a continuous map ψ from Σ into Euclidean 3-space

More information

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations A pattern has translation symmetry if it can be translated along a vector so that the image coincides with the preimage. A frieze pattern is a pattern that has translation symmetry along a line. Both of

More information

Curriki Geometry Glossary

Curriki Geometry Glossary Curriki Geometry Glossary The following terms are used throughout the Curriki Geometry projects and represent the core vocabulary and concepts that students should know to meet Common Core State Standards.

More information

Appendix. Correlation to the High School Geometry Standards of the Common Core State Standards for Mathematics

Appendix. Correlation to the High School Geometry Standards of the Common Core State Standards for Mathematics Appendix Correlation to the High School Geometry Standards of the Common Core State Standards for Mathematics The correlation shows how the activities in Exploring Geometry with The Geometer s Sketchpad

More information

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P.

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P. Title Author(s) The orientability of small covers and coloring simple polytopes Nishimura, Yasuzo; Nakayama, Hisashi Citation Osaka Journal of Mathematics. 42(1) P.243-P.256 Issue Date 2005-03 Text Version

More information

Math 311. Trees Name: A Candel CSUN Math

Math 311. Trees Name: A Candel CSUN Math 1. A simple path in a graph is a path with no repeated edges. A simple circuit is a circuit without repeated edges. 2. Trees are special kinds of graphs. A tree is a connected graph with no simple circuits.

More information

Decomposition of the figure-8 knot

Decomposition of the figure-8 knot CHAPTER 1 Decomposition of the figure-8 knot This book is an introduction to knots, links, and their geometry. Before we begin, we need to define carefully exactly what we mean by knots and links, and

More information

6.3 Poincare's Theorem

6.3 Poincare's Theorem Figure 6.5: The second cut. for some g 0. 6.3 Poincare's Theorem Theorem 6.3.1 (Poincare). Let D be a polygon diagram drawn in the hyperbolic plane such that the lengths of its edges and the interior angles

More information

Unit Maps: Grade 8 Math

Unit Maps: Grade 8 Math Real Number Relationships 8.3 Number and operations. The student represents and use real numbers in a variety of forms. Representation of Real Numbers 8.3A extend previous knowledge of sets and subsets

More information

Planar Graphs and Surfaces. Graphs 2 1/58

Planar Graphs and Surfaces. Graphs 2 1/58 Planar Graphs and Surfaces Graphs 2 1/58 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a border having

More information

104, 107, 108, 109, 114, 119, , 129, 139, 141, , , , , 180, , , 128 Ch Ch1-36

104, 107, 108, 109, 114, 119, , 129, 139, 141, , , , , 180, , , 128 Ch Ch1-36 111.41. Geometry, Adopted 2012 (One Credit). (c) Knowledge and skills. Student Text Practice Book Teacher Resource: Activities and Projects (1) Mathematical process standards. The student uses mathematical

More information

G.CO.2 G.CO.3 G.CO.4 G.CO.5 G.CO.6

G.CO.2 G.CO.3 G.CO.4 G.CO.5 G.CO.6 Standard G.CO.1 G.CO.2 G.CO.3 G.CO.4 G.CO.5 G.CO.6 Jackson County Core Curriculum Collaborative (JC4) Geometry Learning Targets in Student Friendly Language I can define the following terms precisely in

More information

On the Number of Tilings of a Square by Rectangles

On the Number of Tilings of a Square by Rectangles University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2012 On the Number of Tilings

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

Face-regular 3-valent two-faced spheres and tori

Face-regular 3-valent two-faced spheres and tori BBBW Research Memorandum 976 2006/01/12 Face-regular 3-valent two-faced spheres and tori Mathieu DUTOUR Rudjer Bo sković Institute, Zagreb and Institute of Statistical Mathematics, Tokyo Michel DEZA LIGA,

More information

H.Geometry Chapter 7 Definition Sheet

H.Geometry Chapter 7 Definition Sheet Section 7.1 (Part 1) Definition of: - A mapping of points in a figure to points in a resulting figure - Manipulating an original figure to get a new figure - The original figure - The resulting figure

More information

also can be decomposed into generalized triangles,

also can be decomposed into generalized triangles, 13. ORBIFOLDS The orbifold D 2 (;m 1,...,m l ) also can be decomposed into generalized triangles, for instance in the pattern above. One immediately sees that the orbifold has hyperbolic structures (provided

More information

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS NEIL R. HOFFMAN AND JESSICA S. PURCELL Abstract. If a hyperbolic 3 manifold admits an exceptional Dehn filling, then the length of the slope of that

More information

Prentice Hall CME Project Geometry 2009

Prentice Hall CME Project Geometry 2009 Prentice Hall CME Project Geometry 2009 Geometry C O R R E L A T E D T O from March 2009 Geometry G.1 Points, Lines, Angles and Planes G.1.1 Find the length of line segments in one- or two-dimensional

More information

Hyperbolic Structures from Ideal Triangulations

Hyperbolic Structures from Ideal Triangulations Hyperbolic Structures from Ideal Triangulations Craig Hodgson University of Melbourne Geometric structures on 3-manifolds Thurston s idea: We would like to find geometric structures (or metrics) on 3-manifolds

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Abstract This paper presents a physical data structure to represent both orientable and non-orientable

More information

Table of Contents. Introduction to the Math Practice Series...1

Table of Contents. Introduction to the Math Practice Series...1 Table of Contents Table of Contents Introduction to the Math Practice Series...1 Common Mathematics/Geometry Symbols and Terms...2 Chapter 1: Introduction To Geometry...13 Shapes, Congruence, Similarity,

More information

Networks as Manifolds

Networks as Manifolds Networks as Manifolds Isabella Thiesen Freie Universitaet Berlin Abstract The aim of this project is to identify the manifolds corresponding to networks that are generated by simple substitution rules

More information

6th Grade Advanced Math Algebra

6th Grade Advanced Math Algebra 6th Grade Advanced Math Algebra If your student is considering a jump from 6th Advanced Math to Algebra, please be advised of the following gaps in instruction. 19 of the 7th grade mathematics TEKS and

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information

5. Compare the volume of a three dimensional figure to surface area.

5. Compare the volume of a three dimensional figure to surface area. 5. Compare the volume of a three dimensional figure to surface area. 1. What are the inferences that can be drawn from sets of data points having a positive association and a negative association. 2. Why

More information

Mathematics Curriculum

Mathematics Curriculum 8 GRADE Mathematics Curriculum GRADE 8 MODULE 2 Table of Contents 1... 2 Topic A: Definitions and Properties of the Basic Rigid Motions (8.G.A.1)... 8 Lesson 1: Why Move Things Around?... 10 Lesson 2:

More information

HPISD Eighth Grade Math

HPISD Eighth Grade Math HPISD Eighth Grade Math The student uses mathematical processes to: acquire and demonstrate mathematical understanding Apply mathematics to problems arising in everyday life, society, and the workplace.

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,

More information

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings.

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings. 1: Draw K 7 on a torus with no edge crossings. A quick calculation reveals that an embedding of K 7 on the torus is a -cell embedding. At that point, it is hard to go wrong if you start drawing C 3 faces,

More information

Prentice Hall Mathematics Geometry, Foundations Series 2011

Prentice Hall Mathematics Geometry, Foundations Series 2011 Prentice Hall Mathematics Geometry, Foundations Series 2011 Geometry C O R R E L A T E D T O from March 2009 Geometry G.1 Points, Lines, Angles and Planes G.1.1 Find the length of line segments in one-

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Recent 3D Printed Sculptures

Recent 3D Printed Sculptures Recent 3D Printed Sculptures Henry Segerman November 13, 2011 1 Introduction I am a mathematician and a mathematical artist, currently a research fellow in the Department of Mathematics and Statistics

More information

Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions

Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions Math 170, Section 002 Spring 2012 Practice Exam 2 with Solutions Contents 1 Problems 2 2 Solution key 10 3 Solutions 11 1 1 Problems Question 1: A right triangle has hypothenuse of length 25 in and an

More information

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS NEIL R. HOFFMAN AND JESSICA S. PURCELL Abstract. If a hyperbolic 3 manifold admits an exceptional Dehn filling, then the length of the slope of that

More information

Unit Maps: Grade 8 Math

Unit Maps: Grade 8 Math Real Number Relationships 8.3 Number and operations. The student represents and use real numbers in a variety of forms. Representation of Real Numbers 8.3A extend previous knowledge of sets and subsets

More information

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD of π 1 (M 2 )onπ 1 (M 4 ) by conjugation. π 1 (M 4 ) has a trivial center, so in other words the action of π 1 (M 4 ) on itself is effective.

More information

Accelerated Geometry: Course Level: 10th or 11th grade (students who have not had Geomtery I) Course Code: MA?? Course Length: ( Pre-requisite

Accelerated Geometry: Course Level: 10th or 11th grade (students who have not had Geomtery I) Course Code: MA?? Course Length: ( Pre-requisite Accelerated Geometry: Course Level: 10 th or 11 th grade (students who have not had Geomtery I) Course Code: MA?? Course Length: (1 semester) Pre-requisite: Algebra I (MA113/123) Description: This accelerated

More information

Geometry Curriculum Map

Geometry Curriculum Map Quadrilaterals 7.1 Interior Angle Sum Theorem 7.2 Exterior Angle Sum Theorem 7.3 Using Interior and Exterior Angles to Solve Problems Define the Angle Sum Theorem. Illustrate interior angles with the Angle

More information

All rights reserved. Reproduction of these materials for instructional purposes in public school classrooms in Virginia is permitted.

All rights reserved. Reproduction of these materials for instructional purposes in public school classrooms in Virginia is permitted. Geometry Copyright 2009 by the Virginia Department of Education P.O. Box 2120 Richmond, Virginia 23218-2120 http://www.doe.virginia.gov All rights reserved. Reproduction of these materials for instructional

More information

Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P

Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P and parallel to l, can be drawn. A triangle can be

More information

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse Tutorial Outline Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse exams. Math Tutorials offer targeted instruction,

More information

SMMG September 16 th, 2006 featuring Dr. Jessica Purcell Geometry out of the Paper: An Introduction to Manifolds

SMMG September 16 th, 2006 featuring Dr. Jessica Purcell Geometry out of the Paper: An Introduction to Manifolds 1. Explore a Cylinder SMMG September 16 th, 2006 featuring Dr. Jessica Purcell Geometry out of the Paper: An Introduction to Manifolds Take a strip of paper. Bring the two ends of the strip together to

More information

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

1 Euler characteristics

1 Euler characteristics Tutorials: MA342: Tutorial Problems 2014-15 Tuesday, 1-2pm, Venue = AC214 Wednesday, 2-3pm, Venue = AC201 Tutor: Adib Makroon 1 Euler characteristics 1. Draw a graph on a sphere S 2 PROBLEMS in such a

More information

Getting to know a beetle s world classification of closed 3 dimensional manifolds

Getting to know a beetle s world classification of closed 3 dimensional manifolds Getting to know a beetle s world classification of closed 3 dimensional manifolds Sophia Jahns Tübingen University December 31, 2017 Sophia Jahns A beetle s world December 31, 2017 1 / 34 A beetle s world

More information

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science 2018 AMS short course Discrete Differential Geometry 1 Discrete Mappings Yaron Lipman Weizmann Institute of Science 2 Surfaces as triangulations Triangles stitched to build a surface. 3 Surfaces as triangulations

More information

2012 Curriculum Catalog

2012 Curriculum Catalog 2012 Curriculum Catalog Geometry 2012 Glynlyon, Inc. Released 7.14.12 Welcome to Alpha Omega Publications! We are excited that you are including Ignitia as part of your program of instruction, and we look

More information

Grade 8 Unit 1 Congruence and Similarity (4 Weeks)

Grade 8 Unit 1 Congruence and Similarity (4 Weeks) Grade 8 Unit Congruence and Similarity (4 Weeks) Stage Desired Results Established Goals Unit Description In this unit, students will explore and describe the effects of translations, rotations, reflections

More information

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators 1 of 7 Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators This document provides objectives to support planning for shape, space and measures in Key Stage 4.

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information