New Mexico Tech Hyd 510

Size: px
Start display at page:

Download "New Mexico Tech Hyd 510"

Transcription

1 Numerics Motivation Modeling process (JLW) To construct a model we assemble and synthesize data and other information to formulate a conceptual model of the situation. The model is conditioned on the science or policy issue to be addressed, or the engineering problem to be solved, not just the hydrological setting. That is, the model can change with the issue or problem. The conceptual model is then translated into mathematical form, usually as a differential equation, but perhaps as an algebraic or integral equation, or in a statistical or probability framework. Analytical or numerical methods can be applied to solve the model, the choice of method depending on the complexity of the model and how it is to be used. Numerical methods provide greater flexibility and range of application, and these days they offer convenience as well. (Hybrid numerical-analytical approaches are also possible.) Assuming a numerical method is selected, the mathematics are transformed to numerical form, for example descretizing time and space. The numerical form must then be programmed, usually using a scientific/engineering language like Fortran, but more and more these days using a higher level language like Matlab. The numerical model, as programmed, must then be tested to ensure that it is performing as designed (model verification and validation). The program is then applied to the issue or problem at hand to produce a numerical solution. The numerical solution is post-processed to provide and present the desired information, and tested with the data. (At this stage the conceptual model is often revised, in order to do a better job representing reality. Here we assume that the conceptual model is accepted.) That information is then interpreted within the context of the issue or problem. For example, many engineering applications involve the design of something. The model is used to test and revise the design, in order to improve its performance. (JLW) In outline form the process (ignoring feedbacks, such as changing the conceptual model) is something like: 1. Data 2. Conceptualization 3. Mathematical Model 4. Numerical Solution Method(s) 5. Programing, including testing the program 6. Solution 7. Post-processing and interpretation Need for discretization When we adopt a numerical approach to a solution we replace the continuous function f(x) and its independent variable x, with the function f examined at only a few points, x i, where i =1, 2, 3, n is an index representing those points, and n is the number of points. In the continuous space of x, there are an infinity of points x and in the space of funciton f there could be an infinity of values f (if f and x are one-to-one). But computers can t handle an infinite number of values. Instead, they can deal only with finite numbers. So, along x we pick certain points x i that interest us, hopefully close enough to preserve a decide representation of f, and we perform numerical (not symbolic) calculations using those points. 112

2 Numerics Backgound (Most of this is material in Kreyszig, Section 19.1) Floating-Point Form of Numbers (text, section 19.1) Fixed point numbers = fixed number of decimals after the decimal point. 3D: 3= number of the digits after the decimal point e.g., , 0.014, 1.000, are all 3D Floating point numbers = number of significant digits are fixed, the decimal point is floating 4S: 4= number of significant digits e.g., x10 3, x10-13, x10-1 or 6.247x10 2, Any floating point number can be written as (1) a = ±m 10 n, 0.1 m 1, n integer Machine numbers On a computer, since m is limited to k digits (e.g., k=8) and n is limited, this gives the (machine number) representation as (2) a = ±m 10 n, m = 0.d 1 d 2 d 3 d k, d 1 >0. with a limited range of exponent n, depending on machine word length and whether the program is using machine single precision (e.g., -38 < n < 38) or software double precision. Values of n outside this range lead to underflow (number is too small) or overflow (number is too big and the computation crashes). Roundoff (text, section 19.1) Roundoff error is due to rounding a number to k decimals. Rules for rounding up and down leading to rounding error calculation: Let a = fl(a) in (2), where fl is the floating point approximation of a in (1). Then the roundoff rules give m- m ±½ 10 -k. Since m 0.1, this implies (when a 0) 113

3 Accuracy in tables Largely, look-up-tables (LUT) of function values, like sin x, have been replaced in computers with series, polynomial or other approximations. Yet LUTs are still used. In hydrology we find that we have a choice of using LUTs of certain functions or the data itself. Examples are equations of state (EOS) relating fluid density to pressure and temperature, and relative permeability relating porous media permeability to fluid saturation. If the typical functions don t fit the data well, the data itself, as a LUT, is often used. If the table shows k significant digits, it is assumed that any value a ~ in the table deviates from the exact value a by, at most ±½ unit in the kth digit. Algorithm (Numerical) Stability (text, section 19.1) Stable: Small changes in initial conditions should only cause small changes in results. Unstable: Small changes lead to significant deviation of results. Consider first theoretical stability, i.e., of the equations themselves. A system may be naturally unstable. Such conditions occur commonly in hydrology and related sciences, e.g., thermal convection cells; turbulence; and viscous, gravity, or dissolution fingering. The mathematics for these problems is ill conditioned. Instead, let s consider only problems which are well conditioned, with stable mathematical solutions. These are more common in hydrology. Even if the mathematics is well conditioned the numerical scheme used to solve it (approximately) may itself be unstable. Numerical instability can be avoided by changing algorithms (wholesale or just increase the order of the algorithm) or, with the same algorithm, increasing discretization resolution (e.g., more points x i ; i.e., make n bigger). Some algorithms are stable only within certain ranges, which must be respected. Errors of Numeric Results (text, section 19.1) Numerical results are approximations, that is, they are not exact but involve errors. - Experimental (data) errors - Roundoff errors - Truncation errors Truncation errors result from truncating approximations (e.g., reducing their order), not truncating digits (that is, instead, related to roundoff). Examples of truncation error are found in series solutions, Taylor series approximation of a derivative, and numerical integration. Error Let a ~ be the approximate value of a quantity whose exact value is a. (4) Error of a ~ : ε = a a~ or 114

4 (4 ) a = a~ + ε True value of a = Approximation + Error Examples: a ~ =10.5 and a= 10.2, then ε = Caution: there are other errors referred to the literature. Examples are and a ~ a. a a~ (absolute error), Relative error (5)(5 ) ε a a~ Error ε ε r = = = a a Relative Error a~ Error bounds. In practice one gets an error bound, that is a number β such that ε β hence Or for the relative error, a bound β r such that ε β r r hence a a~ a a~ a β r β Basic error principle Always accompany a numerical method with an error estimate, both in testing the method in general, and in every single application. Use a theoretical error estimate and/or error estimation by comparison. Loss of significant digits A calculation often has fewer (and never more) significant digits than the numbers from which it was obtained. Choose your steps carefully to minimize this issue. 115

5 Solution of equations by iteration (text, section 19.2) Consider the equation (1) f ( x) = 0 which could be an algebraic or transcendental equation, or a differential or integral equation. If (1) is non-linear then we often solve it by iteration. That is, we guess a solution (a value of x) and test it to see if it satisfies (1). If not we guess a new solution and repeat until we are satisfied, that is the solution converges, or we give up, perhaps because the solution diverges. Formal iterative methods use different methods to construct the next guess. Some are better than others, but the better ones are more expensive to use. Suppose a method converges but does so slowly. Another, higher order method may (often will) converge faster. The higher the order the method, the more information it uses, so that higher order methods are more expensive per step. There is a tradeoff between the number of steps and the expense of each step in determining optimal iterative method for a given problem. In general, with a more non-linear the problem you should use a higher order method. We visited one of these methods, Newton s method, during our review of calculus. We ll visit it and two other often used iteration methods below. We ll start with fixed point iteration, a lower order method, before revisiting Newton s method, and its cousin the secant method, which are of higher order. In general, these are likely the only sophisticated methods you will encounter in practice. In these three methods you make an initial guess of x, call it x 0, and use that to linearize (1). You then solve the remaining linear equation for x 2, your new estimate of x. That estimate x 2 is used to relinearize (1) and solve for a third estimate x 3, so on recursively, until you converge or give up. All three methods are used in hydrologic codes, primarily to solve non-linear differential equations. The unsaturated (and non-linear) code HYDRUS ( a popular code used in our vadose zone classes, research and application, uses fixed point iteration. The popular groundwater flow code MODFLOW is nonlinear when it deals with phreatic aquifers. It too uses fixed point iteration ( The proprietary code MODFLOW- SURFAC ( was originally developed to tackle non-linear problems that MODFLOW can t handle, like mine dewatering and water table recovery. It uses Newton s method. The multiphysics code COMSOL Multiphysics code (see Hyd510 web links page) uses Newton iteration, even for linear problems. They figure that it takes just one iteration to converge for a linear problem, so why bother with all the extra baggage of special routines for those special (special to them, since they mainly attack non-linear problems) linear cases. 116

6 Fixed Point Iteration (text, section 19.2) Using algebra expend f as f ( x) = x g( x). Then rewrite (1) as (2) x = g(x) The exact solution, s, is where these two curves, for x and g(x), intersect. Then choose an x 0, and compute x 1 =g(x 0 ), x 2 =g(x 1 ), etc., or in general (3) x n+ 1 = g( xn ) n = 0, 1, 2. A solution x of (2) is called a fixed point of g. (1) can be converted to several different versions of (2). 117

7 Newton s Method (text, section 19.2) 118

8 Secant Method (text, section 19.2) 119

Introduction to Computational Mathematics

Introduction to Computational Mathematics Introduction to Computational Mathematics Introduction Computational Mathematics: Concerned with the design, analysis, and implementation of algorithms for the numerical solution of problems that have

More information

Computational Methods. Sources of Errors

Computational Methods. Sources of Errors Computational Methods Sources of Errors Manfred Huber 2011 1 Numerical Analysis / Scientific Computing Many problems in Science and Engineering can not be solved analytically on a computer Numeric solutions

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4.

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. Chapter 4: Roundoff and Truncation Errors Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. 1 Outline Errors Accuracy and Precision

More information

Mathematical preliminaries and error analysis

Mathematical preliminaries and error analysis Mathematical preliminaries and error analysis Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan August 28, 2011 Outline 1 Round-off errors and computer arithmetic IEEE

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2015 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2016 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

LECTURE 0: Introduction and Background

LECTURE 0: Introduction and Background 1 LECTURE 0: Introduction and Background September 10, 2012 1 Computational science The role of computational science has become increasingly significant during the last few decades. It has become the

More information

Error in Numerical Methods

Error in Numerical Methods Error in Numerical Methods By Brian D. Storey This section will describe two types of error that are common in numerical calculations: roundoff and truncation error. Roundoff error is due to the fact that

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

2.1.1 Fixed-Point (or Integer) Arithmetic

2.1.1 Fixed-Point (or Integer) Arithmetic x = approximation to true value x error = x x, relative error = x x. x 2.1.1 Fixed-Point (or Integer) Arithmetic A base 2 (base 10) fixed-point number has a fixed number of binary (decimal) places. 1.

More information

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY Computing Basics 1 Sources of Error Numerical solutions to problems differ from their analytical counterparts. Why? The reason for the difference is

More information

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester.

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester. AM205: lecture 2 Luna and Gary will hold a Python tutorial on Wednesday in 60 Oxford Street, Room 330 Assignment 1 will be posted this week Chris will hold office hours on Thursday (1:30pm 3:30pm, Pierce

More information

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point and associated issues Ramani Duraiswami, Dept. of Computer Science Class Outline Computations should be as accurate and as

More information

COS 323: Computing for the Physical and Social Sciences

COS 323: Computing for the Physical and Social Sciences COS 323: Computing for the Physical and Social Sciences COS 323 People: Szymon Rusinkiewicz Sandra Batista Victoria Yao Course webpage: http://www.cs.princeton.edu/cos323 What s This Course About? Numerical

More information

What we need to know about error: Class Outline. Computational Methods CMSC/AMSC/MAPL 460. Errors in data and computation

What we need to know about error: Class Outline. Computational Methods CMSC/AMSC/MAPL 460. Errors in data and computation Class Outline Computational Methods CMSC/AMSC/MAPL 460 Errors in data and computation Representing numbers in floating point Ramani Duraiswami, Dept. of Computer Science Computations should be as accurate

More information

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

Scientific Computing. Error Analysis

Scientific Computing. Error Analysis ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

More information

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point and associated issues Ramani Duraiswami, Dept. of Computer Science Class Outline Computations should be as accurate and as

More information

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy.

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy. Math 340 Fall 2014, Victor Matveev Binary system, round-off errors, loss of significance, and double precision accuracy. 1. Bits and the binary number system A bit is one digit in a binary representation

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

CHAPTER 2 SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS

CHAPTER 2 SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS CHAPTER SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS The two main concepts involved here are the condition (of a problem) and the stability (of an algorithm). Both of these concepts deal with

More information

Basics of Computation. PHY 604:Computational Methods in Physics and Astrophysics II

Basics of Computation. PHY 604:Computational Methods in Physics and Astrophysics II Basics of Computation Basics of Computation Computers store information and allow us to operate on it. That's basically it. Computers have finite memory, so it is not possible to store the infinite range

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

ME 261: Numerical Analysis. ME 261: Numerical Analysis

ME 261: Numerical Analysis. ME 261: Numerical Analysis ME 261: Numerical Analysis 3. credit hours Prereq.: ME 163/ME 171 Course content Approximations and error types Roots of polynomials and transcendental equations Determinants and matrices Solution of linear

More information

COS 323: Computing for the Physical and Social Sciences

COS 323: Computing for the Physical and Social Sciences COS 323: Computing for the Physical and Social Sciences COS 323 Professor: Szymon Rusinkiewicz TAs: Mark Browning Fisher Yu Victoria Yao Course webpage http://www.cs.princeton.edu/~cos323/ What s This

More information

NUMERICAL ANALYSIS USING SCILAB: NUMERICAL STABILITY AND CONDITIONING

NUMERICAL ANALYSIS USING SCILAB: NUMERICAL STABILITY AND CONDITIONING powered by NUMERICAL ANALYSIS USING SCILAB: NUMERICAL STABILITY AND CONDITIONING In this Scilab tutorial we provide a collection of implemented examples on numerical stability and conditioning. Level This

More information

Introduction to numerical algorithms

Introduction to numerical algorithms Introduction to numerical algorithms Given an algebraic equation or formula, we may want to approximate the value, and while in calculus, we deal with equations or formulas that are well defined at each

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. What is scientific computing?

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. What is scientific computing? Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Scientific Computing What is scientific computing? Design and analysis of algorithms for solving

More information

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING 26 CHAPTER 1. SCIENTIFIC COMPUTING amples. The IEEE floating-point standard can be found in [131]. A useful tutorial on floating-point arithmetic and the IEEE standard is [97]. Although it is no substitute

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation Floating Point Arithmetic fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation for example, fixed point number

More information

Isotropic Porous Media Tutorial

Isotropic Porous Media Tutorial STAR-CCM+ User Guide 3927 Isotropic Porous Media Tutorial This tutorial models flow through the catalyst geometry described in the introductory section. In the porous region, the theoretical pressure drop

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic Raymond J. Spiteri Lecture Notes for CMPT 898: Numerical Software University of Saskatchewan January 9, 2013 Objectives Floating-point numbers Floating-point arithmetic Analysis

More information

Outline. Numerical Analysis Basics. Some Higher-Level Languages. Programming Languages. BASIC and VBA MATLAB

Outline. Numerical Analysis Basics. Some Higher-Level Languages. Programming Languages. BASIC and VBA MATLAB umerical Analysis Basics Larry Caretto Mechanical Engineering 39 umerical Analysis of Engineering Systems February 5, 214 Outline Programming Languages Binary umbers and Data Types Limits on the size and

More information

And Now to Something Completely Different: Finding Roots of Real Valued Functions

And Now to Something Completely Different: Finding Roots of Real Valued Functions And Now to Something Completely Different: Finding Roots of Real Valued Functions Four other Oysters followed them, And yet another four; And thick and fast they came at last, And more, and more, and more{

More information

Using Arithmetic of Real Numbers to Explore Limits and Continuity

Using Arithmetic of Real Numbers to Explore Limits and Continuity Using Arithmetic of Real Numbers to Explore Limits and Continuity by Maria Terrell Cornell University Problem Let a =.898989... and b =.000000... (a) Find a + b. (b) Use your ideas about how to add a and

More information

Imaging of flow in porous media - from optimal transport to prediction

Imaging of flow in porous media - from optimal transport to prediction Imaging of flow in porous media - from optimal transport to prediction Eldad Haber Dept of EOS and Mathematics, UBC October 15, 2013 With Rowan Lars Jenn Cocket Ruthotto Fohring Outline Prediction is very

More information

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD Introduction to Computer Programming with MATLAB Calculation and Programming Errors Selis Önel, PhD Today you will learn Numbers, Significant figures Error analysis Absolute error Relative error Chopping

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 2 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 15 5633-Numerical Methods Organisational Assignment

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Numerical Computing: An Introduction

Numerical Computing: An Introduction Numerical Computing: An Introduction Gyula Horváth Horvath@inf.u-szeged.hu Tom Verhoeff T.Verhoeff@TUE.NL University of Szeged Hungary Eindhoven University of Technology The Netherlands Numerical Computing

More information

lecture 8 Groundwater Modelling -1

lecture 8 Groundwater Modelling -1 The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Water Resources Msc. Groundwater Hydrology- ENGC 6301 lecture 8 Groundwater Modelling -1 Instructor: Dr. Yunes Mogheir

More information

Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method

Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method P.B. Choksi 1 and A.K. Pathak 2 1 Research Scholar, Rai University,Ahemdabad. Email:pinalchoksey@gmail.com 2 H.O.D.

More information

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic September 28, 2018 Lecture 1 September 28, 2018 1 / 25 Floating point arithmetic Computers use finite strings of binary digits to represent

More information

Accuracy versus precision

Accuracy versus precision Accuracy versus precision Accuracy is a consistent error from the true value, but not necessarily a good or precise error Precision is a consistent result within a small error, but not necessarily anywhere

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

Errors in Computation

Errors in Computation Theory of Errors Content Errors in computation Absolute Error Relative Error Roundoff Errors Truncation Errors Floating Point Numbers Normalized Floating Point Numbers Roundoff Error in Floating Point

More information

Computational Mathematics: Models, Methods and Analysis. Zhilin Li

Computational Mathematics: Models, Methods and Analysis. Zhilin Li Computational Mathematics: Models, Methods and Analysis Zhilin Li Chapter 1 Introduction Why is this course important (motivations)? What is the role of this class in the problem solving process using

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

(Refer Slide Time: 02:59)

(Refer Slide Time: 02:59) Numerical Methods and Programming P. B. Sunil Kumar Department of Physics Indian Institute of Technology, Madras Lecture - 7 Error propagation and stability Last class we discussed about the representation

More information

Chapter 3. Errors and numerical stability

Chapter 3. Errors and numerical stability Chapter 3 Errors and numerical stability 1 Representation of numbers Binary system : micro-transistor in state off 0 on 1 Smallest amount of stored data bit Object in memory chain of 1 and 0 10011000110101001111010010100010

More information

Introduction to Numerical Computing

Introduction to Numerical Computing Statistics 580 Introduction to Numerical Computing Number Systems In the decimal system we use the 10 numeric symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to represent numbers. The relative position of each symbol

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1

Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1 Floating-Point Arithmetic Numerical Analysis uses floating-point arithmetic, but it is just one tool in numerical computation. There is an impression that floating point arithmetic is unpredictable and

More information

6.1 Evaluate Roots and Rational Exponents

6.1 Evaluate Roots and Rational Exponents VOCABULARY:. Evaluate Roots and Rational Exponents Radical: We know radicals as square roots. But really, radicals can be used to express any root: 0 8, 8, Index: The index tells us exactly what type of

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) =

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) = 7.1 What is x cos x? 1. Fill in the right hand side of the following equation by taking the derivative: (x sin x = 2. Integrate both sides of the equation. Instructor: When instructing students to integrate

More information

Chapter One. Numerical Algorithms

Chapter One. Numerical Algorithms Chapter One Numerical Algorithms The word algorithm derives from the name of the Persian mathematician (Abu Ja far Muhammad ibn Musa) Al- Khwarizmi who lived from about 790 CE to about 840 CE. He wrote

More information

Lesson 4: Numerical Computations; Newton's method

Lesson 4: Numerical Computations; Newton's method Lesson 4: Numerical Computations; Newton's method restart; Catastrophic cancellation in the quadratic formula One case where roundoff error can be severe is if you subtract two numbers that are very close

More information

Binary floating point encodings

Binary floating point encodings Week 1: Wednesday, Jan 25 Binary floating point encodings Binary floating point arithmetic is essentially scientific notation. Where in decimal scientific notation we write in floating point, we write

More information

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s.

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Using Monte Carlo to Estimate π using Buffon s Needle Problem An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Here s the problem (in a simplified form). Suppose

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

New Rules of ME Ph.D. Qualifying Exams 1/8

New Rules of ME Ph.D. Qualifying Exams 1/8 New Rules of ME Ph.D. Qualifying Exams 1/8 Qualifying Examination The student must pass a Qualifying Examination before the Dissertation Director, the Interdisciplinary Committee, and the courses for the

More information

1.3 Floating Point Form

1.3 Floating Point Form Section 1.3 Floating Point Form 29 1.3 Floating Point Form Floating point numbers are used by computers to approximate real numbers. On the surface, the question is a simple one. There are an infinite

More information

Lecture 1 Contracts. 1 A Mysterious Program : Principles of Imperative Computation (Spring 2018) Frank Pfenning

Lecture 1 Contracts. 1 A Mysterious Program : Principles of Imperative Computation (Spring 2018) Frank Pfenning Lecture 1 Contracts 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning In these notes we review contracts, which we use to collectively denote function contracts, loop invariants,

More information

Groundwater in Hydrologic Cycle

Groundwater in Hydrologic Cycle Groundwater in Hydrologic Cycle Types of Terrestrial Water Surface Water Soil Moisture Ground water Pores Full of Combination of Air and Water Unsaturated Zone / Zone of Aeration / Vadose (Soil Water)

More information

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Key terms Floating point arithmetic IEE Standard Mantissa Exponent Roundoff error Pitfalls of floating point arithmetic Structuring computations

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-07 1. We are still at 50. If you are still waiting and are not interested in knowing if a slot frees up, let me know. 2. There is a correction to HW 1, problem 4; the condition

More information

Introduction to Design Optimization

Introduction to Design Optimization Introduction to Design Optimization James T. Allison University of Michigan, Optimal Design Laboratory June 23, 2005 1 Introduction Technology classes generally do a good job of helping students learn

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

: What is Finite Element Analysis (FEA)?

: What is Finite Element Analysis (FEA)? Q: What is Finite Element Analysis (FEA)? A1: It is a numerical technique for finding approximate solutions of partial differential equations (PDE) as well as of integral equations. The solution approach

More information

Improved Attack on Full-round Grain-128

Improved Attack on Full-round Grain-128 Improved Attack on Full-round Grain-128 Ximing Fu 1, and Xiaoyun Wang 1,2,3,4, and Jiazhe Chen 5, and Marc Stevens 6, and Xiaoyang Dong 2 1 Department of Computer Science and Technology, Tsinghua University,

More information

Outline. 1 Scientific Computing. 2 Approximations. 3 Computer Arithmetic. Scientific Computing Approximations Computer Arithmetic

Outline. 1 Scientific Computing. 2 Approximations. 3 Computer Arithmetic. Scientific Computing Approximations Computer Arithmetic Outline 1 2 3 Michael T. Heath 2 / 46 Introduction Computational Problems General Strategy What is scientific computing? Design and analysis of algorithms for numerically solving mathematical problems

More information

A-SSE.1.1, A-SSE.1.2-

A-SSE.1.1, A-SSE.1.2- Putnam County Schools Curriculum Map Algebra 1 2016-2017 Module: 4 Quadratic and Exponential Functions Instructional Window: January 9-February 17 Assessment Window: February 20 March 3 MAFS Standards

More information

Objectives. look at floating point representation in its basic form expose errors of a different form: rounding error highlight IEEE-754 standard

Objectives. look at floating point representation in its basic form expose errors of a different form: rounding error highlight IEEE-754 standard Floating Point Objectives look at floating point representation in its basic form expose errors of a different form: rounding error highlight IEEE-754 standard 1 Why this is important: Errors come in two

More information

computational Fluid Dynamics - Prof. V. Esfahanian

computational Fluid Dynamics - Prof. V. Esfahanian Three boards categories: Experimental Theoretical Computational Crucial to know all three: Each has their advantages and disadvantages. Require validation and verification. School of Mechanical Engineering

More information

CITS2401 Computer Analysis & Visualisation

CITS2401 Computer Analysis & Visualisation FACULTY OF ENGINEERING, COMPUTING AND MATHEMATICS CITS2401 Computer Analysis & Visualisation SCHOOL OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING Topic 13 Revision Notes CAV review Topics Covered Sample

More information

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity.

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. Definition A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. 120202: ESM4A - Numerical Methods 32 f(x) = e x at point c = 0. Taylor

More information

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers.

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers. 1 Purpose This lab illustrates the use of looping structures by introducing a class of programming problems called numerical algorithms. 1. Practice the use of the C ++ repetition constructs of for, while,

More information

Classes of Real Numbers 1/2. The Real Line

Classes of Real Numbers 1/2. The Real Line Classes of Real Numbers All real numbers can be represented by a line: 1/2 π 1 0 1 2 3 4 real numbers The Real Line { integers rational numbers non-integral fractions irrational numbers Rational numbers

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

DOWNLOAD PDF BIG IDEAS MATH VERTICAL SHRINK OF A PARABOLA

DOWNLOAD PDF BIG IDEAS MATH VERTICAL SHRINK OF A PARABOLA Chapter 1 : BioMath: Transformation of Graphs Use the results in part (a) to identify the vertex of the parabola. c. Find a vertical line on your graph paper so that when you fold the paper, the left portion

More information

Lecture 1 Contracts : Principles of Imperative Computation (Fall 2018) Frank Pfenning

Lecture 1 Contracts : Principles of Imperative Computation (Fall 2018) Frank Pfenning Lecture 1 Contracts 15-122: Principles of Imperative Computation (Fall 2018) Frank Pfenning In these notes we review contracts, which we use to collectively denote function contracts, loop invariants,

More information

MS213: Numerical Methods Computing Assignments with Matlab

MS213: Numerical Methods Computing Assignments with Matlab MS213: Numerical Methods Computing Assignments with Matlab SUBMISSION GUIDELINES & ASSIGNMENT ADVICE 1 Assignment Questions & Supplied Codes 1.1 The MS213 Numerical Methods assignments require students

More information

The following information is for reviewing the material since Exam 3:

The following information is for reviewing the material since Exam 3: Outcomes List for Math 121 Calculus I Fall 2010-2011 General Information: The purpose of this Outcomes List is to give you a concrete summary of the material you should know, and the skills you should

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

Computer Simulations

Computer Simulations Computer Simulations A practical approach to simulation Semra Gündüç gunduc@ankara.edu.tr Ankara University Faculty of Engineering, Department of Computer Engineering 2014-2015 Spring Term Ankara University

More information

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations COURSE: NUMERICAL ANALYSIS LESSON: Methods for Solving Non-Linear Equations Lesson Developer: RAJNI ARORA COLLEGE/DEPARTMENT: Department of Mathematics, University of Delhi Page No. 1 Contents 1. LEARNING

More information

Computer Arithmetic Floating Point

Computer Arithmetic Floating Point Computer Arithmetic Floating Point Chapter 3.6 EEC7 FQ 25 About Floating Point Arithmetic Arithmetic basic operations on floating point numbers are: Add, Subtract, Multiply, Divide Transcendental operations

More information

1.00 Lecture 19. Numerical Methods: Root Finding

1.00 Lecture 19. Numerical Methods: Root Finding 1.00 Lecture 19 Numerical Methods: Root Finding short int Remember Java Data Types Type byte long float double char boolean Size (bits) 8 16 32 64 32 64 16 1-128 to 127-32,768 to 32,767-2,147,483,648 to

More information

Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers. Phys 420/580 Lecture 6 Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

More information

Numerical computing. How computers store real numbers and the problems that result

Numerical computing. How computers store real numbers and the problems that result Numerical computing How computers store real numbers and the problems that result The scientific method Theory: Mathematical equations provide a description or model Experiment Inference from data Test

More information

Lecture 03 Approximations, Errors and Their Analysis

Lecture 03 Approximations, Errors and Their Analysis AM702 Applied Computational Methods c ecture 03 Approximations, rrors and heir Analysis Approximations and rrors c Approximation is unavoidable in mathematical modeling the real world phenomena Approximation

More information

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015 CPSC 340: Machine Learning and Data Mining Robust Regression Fall 2015 Admin Can you see Assignment 1 grades on UBC connect? Auditors, don t worry about it. You should already be working on Assignment

More information