DNA Interaction Network

Size: px
Start display at page:

Download "DNA Interaction Network"

Transcription

1

2 Social Network Web Network Social Network DNA Interaction Network Follow Network User-Product Network

3

4

5 Nonuniform network comm costs Contentiousness of the memory subsystems Nonuniform comp requirement Nonuniform comm requirement Time-varying skewness

6 Architecture- and Workload-Aware Graph (Re)Partitioning Aragon [BigGraphs 14] Planar+ [To submit 17] (small dynamic graphs) (large dynamic graphs) Paragon [EDBT 16] Argo [BigData 16] (median-size dynamic graphs) (static graphs) Planar [ICDE 16] Sargon [ICDE 17] (large dynamic graphs) (skew-resistant)

7 Architecture- and Workload-Aware Graph (Re)Partitioning Aragon [BigGraphs 14] Planar+ [To submit 17] (small dynamic graphs) (large dynamic graphs) Paragon [EDBT 16] Argo [BigData 16] (median-size dynamic graphs) (static graphs) Planar [ICDE 16] Sargon [ICDE 17] (large dynamic graphs) (skew-resistant)

8

9 Planar Sk+4 Sk+5 Planar Sk+2 Planar Sk+1 Planar Planar Sk Migration Planning What vertices to move? Where to move? Phase-2: Physical Vertex Migration Perform the Migration Plan Phase-3: Convergence Check Still beneficial? Phase-1: Logical Vertex Migration Phase-1a: Minimizing Comm Cost Phase-1b: Ensuring Balanced Partitions

10 Planar Sk+4 Sk+5 Planar Sk+2 Planar Sk+1 Planar Planar Sk Migration Planning What vertices to move? Where to move? Phase-2: Phase-2:Physical Vertex Location Vertex Migration Update Each vertex has up-to-date Perform the Migration Plan locations of their neighbors Phase-3: Convergence Check Still beneficial? Phase-1: Logical Vertex Migration Phase-1a: Minimizing Comm Cost Phase-1b: Ensuring Balanced Partitions

11 Physical Vertex Migration Starts Repartitioning Sk+2 Planar Planar Sk+4 Sk+5 Planar Sk+1 Planar Sk Planar Converge

12

13 Socket 0 core L1 L2 Socket 1 core core L1 L1 L2 L2 QPI/ HT L3 Inter-socket Link Controller Memory Controller Socket 0 core core L1 L1 L2 L2 L3 Inter-socket Link Controller Memory Machine 0 Socket 1 core core L1 L1 L2 L2 QPI/ HT L3 Memory Controller Memory Inter-socket Link Controller Memory Controller core L1 L2 L3 Inter-socket Link Controller Memory Machine 1 Memory Controller Memory

14

15

16

17 Socket 0 core L1 L2 Socket 1 core core L1 L1 L2 L3 Inter-socket Link Controller L2 QPI/ HT Memory Controller Socket 0 core core L1 L1 L2 L2 L3 Inter-socket Link Controller Memory Machine 0 Socket 1 core core L1 L1 L2 L3 Memory Controller Memory Inter-socket Link Controller L2 QPI/ HT Memory Controller core L1 L2 L3 Inter-socket Link Controller Memory Machine 1 Memory Controller Memory

18 λ 1x 1.18x Hours CPU Time Saving 1.5x 1.7x PARAGON 25h PLANAR 27h PLANAR+ 43h uniplanar+ 10h 2.8x

19 λ 1x 1.18x Hours CPU Time Saving 1.5x 1.7x PARAGON 25h PLANAR 27h PLANAR+ 43h uniplanar+ 10h 2.8x

20

21 Architecture- and Workload-Aware Graph (Re)Partitioning Aragon [BigGraphs 14] Planar+ [To submit 17] (small dynamic graphs) (large dynamic graphs) Paragon [EDBT 16] Argo [BigData 16] (median-size dynamic graphs) (static graphs) Planar [ICDE 16] Sargon [ICDE 17] (large dynamic graphs) (skew-resistant)

22

23

24 Vertex Stream Partitioner......

25

26

27 Bottleneck Network Memory

28

29 50x 38x 4x 9x 6x 3x 1x 12x 9x 1x 1.2x 1x

30

31

32 SSSP Execution Time (s) m:s:c METIS LDG 1:2: ,632 2:2: ,565 4:2: :2: x

33 SSSP Execution Time (s) SSSP LLC Misses (in Millions) m:s:c m:s:c METIS LDG 1:2: ,632 2:2: ,565 4:2: :2:1 222 METIS LDG 1:2:8 10,292 44,117 2:2:4 10,626 44, :2:2 2,541 1, :2: x 235x

34 SSSP Execution Time (s) SSSP LLC Misses (in Millions) m:s:c m:s:c METIS LDG 1:2: ,632 2:2: ,565 4:2: :2:1 222 METIS LDG 1:2:8 10,292 44,117 2:2:4 10,626 44, :2:2 2,541 1, :2: x 235x

35 SSSP Execution Time (s) SSSP LLC Misses (in Millions) m:s:c m:s:c METIS LDG METIS LDG 1:2: ,632 1:2:8 10,292 44,117 2:2: ,565 2:2:4 10,626 44,689 4:2: :2:2 2,541 1,061 8:2: :2: x METIS had lower execution time and LLC misses than LDG. Edge-cut matters. Higher edge-cut-->higher comm-->higher contention 235x

36

37 Architecture- and Workload-Aware Graph (Re)Partitioning Aragon [BigGraphs 14] Planar+ [To submit 17] (small dynamic graphs) (large dynamic graphs) Paragon [EDBT 16] Argo [BigData 16] (median-size dynamic graphs) (static graphs) Planar [ICDE 16] Sargon [ICDE 17] (large dynamic graphs) (skew-resistant)

38

39

40

41

42

43 Assign a label vector to each vertex to indicate: the time periods the vertex is active in whether it is a high- or low-degree vertex the hotness of the vertex

44 Vertex Stream Partitioner......

45

46 Workloads BFS and SSSP (one randomly selected source vertex) Dataset Orkut ( V =3M, E =234M) # of Traces Collected 5 Similarity Percentage of the vertices overlapped in the peak superstep Workloads Avg. Similarity Std. Deviation BFS 60.80% 8.43% SSSP 64.73% 10.63%

47 2x 1.68x 1.57x 1x Up to 2x speedups (hours CPU time saving).

48

49 Thanks! Architecture- and Workload-Aware Graph (Re)Partitioning Aragon [BigGraphs 14] Planar+ [To submit 17] (small dynamic graphs) (large dynamic graphs) Paragon [EDBT 16] Argo [BigData 16] (median-size dynamic graphs) (static graphs) Planar [ICDE 16] Sargon [ICDE 17] (large dynamic graphs) (skew-resistant)

50

Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning

Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning Angen Zheng, Alexandros Labrinidis, and Panos K. Chrysanthis University of Pittsburgh 1 Graph Partitioning Applications of

More information

Argo: Architecture- Aware Graph Par33oning

Argo: Architecture- Aware Graph Par33oning Argo: Architecture- Aware Graph Par33oning Angen Zheng Alexandros Labrinidis, Panos K. Chrysanthis, and Jack Lange Department of Computer Science, University of PiCsburgh hcp://db.cs.pic.edu/group/ hcp://www.prognosgclab.org/

More information

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 1 Sandia National Laboratories, 2 The Pennsylvania

More information

Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing

Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing Angen Zheng, Alexandros Labrinidis, Panos K. Chrysanthis Advanced Data Management Technologies Laboratory Department of Computer

More information

PuLP. Complex Objective Partitioning of Small-World Networks Using Label Propagation. George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1

PuLP. Complex Objective Partitioning of Small-World Networks Using Label Propagation. George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 PuLP Complex Objective Partitioning of Small-World Networks Using Label Propagation George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 1 Sandia National Laboratories, 2 The Pennsylvania State

More information

Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning

Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning Angen Zheng, Alexandros Labrinidis, Panos K. Chrysanthis Department of Computer Science, University of Pittsburgh {anz28, labrinid,

More information

Enterprise. Breadth-First Graph Traversal on GPUs. November 19th, 2015

Enterprise. Breadth-First Graph Traversal on GPUs. November 19th, 2015 Enterprise Breadth-First Graph Traversal on GPUs Hang Liu H. Howie Huang November 9th, 5 Graph is Ubiquitous Breadth-First Search (BFS) is Important Wide Range of Applications Single Source Shortest Path

More information

PULP: Fast and Simple Complex Network Partitioning

PULP: Fast and Simple Complex Network Partitioning PULP: Fast and Simple Complex Network Partitioning George Slota #,* Kamesh Madduri # Siva Rajamanickam * # The Pennsylvania State University *Sandia National Laboratories Dagstuhl Seminar 14461 November

More information

LogGP: A Log-based Dynamic Graph Partitioning Method

LogGP: A Log-based Dynamic Graph Partitioning Method LogGP: A Log-based Dynamic Graph Partitioning Method Ning Xu, Lei Chen, Bin Cui Department of Computer Science, Peking University, Beijing, China Hong Kong University of Science and Technology, Hong Kong,

More information

Partitioning and Partitioning Tools. Tim Barth NASA Ames Research Center Moffett Field, California USA

Partitioning and Partitioning Tools. Tim Barth NASA Ames Research Center Moffett Field, California USA Partitioning and Partitioning Tools Tim Barth NASA Ames Research Center Moffett Field, California 94035-00 USA 1 Graph/Mesh Partitioning Why do it? The graph bisection problem What are the standard heuristic

More information

Fennel: Streaming Graph Partitioning for Massive Scale Graphs

Fennel: Streaming Graph Partitioning for Massive Scale Graphs Fennel: Streaming Graph Partitioning for Massive Scale Graphs Charalampos E. Tsourakakis 1 Christos Gkantsidis 2 Bozidar Radunovic 2 Milan Vojnovic 2 1 Aalto University, Finland 2 Microsoft Research, Cambridge

More information

High-performance Graph Analytics

High-performance Graph Analytics High-performance Graph Analytics Kamesh Madduri Computer Science and Engineering The Pennsylvania State University madduri@cse.psu.edu Papers, code, slides at graphanalysis.info Acknowledgments NSF grants

More information

Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations

Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations George M. Slota 1 Sivasankaran Rajamanickam 2 Kamesh Madduri 3 1 Rensselaer Polytechnic Institute, 2 Sandia National

More information

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing /34 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat 1 Karim Awara 1 Amani Alonazi 1 Hani Jamjoom 2 Dan Williams 2 Panos Kalnis 1 1 King Abdullah University of

More information

IOGP. an Incremental Online Graph Partitioning algorithm for distributed graph databases. Dong Dai*, Wei Zhang, Yong Chen

IOGP. an Incremental Online Graph Partitioning algorithm for distributed graph databases. Dong Dai*, Wei Zhang, Yong Chen IOGP an Incremental Online Graph Partitioning algorithm for distributed graph databases Dong Dai*, Wei Zhang, Yong Chen Workflow of The Presentation A Use Case IOGP Details Evaluation Setup OLTP vs. OLAP

More information

High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock

High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock Yangzihao Wang University of California, Davis yzhwang@ucdavis.edu March 24, 2014 Yangzihao Wang (yzhwang@ucdavis.edu)

More information

GPS: A Graph Processing System

GPS: A Graph Processing System GPS: A Graph Processing System Semih Salihoglu and Jennifer Widom Stanford University {semih,widom}@cs.stanford.edu Abstract GPS (for Graph Processing System) is a complete open-source system we developed

More information

On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs

On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs Sungpack Hong 2, Nicole C. Rodia 1, and Kunle Olukotun 1 1 Pervasive Parallelism Laboratory, Stanford University

More information

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing King Abdullah University of Science and Technology CS348: Cloud Computing Large-Scale Graph Processing Zuhair Khayyat 10/March/2013 The Importance of Graphs A graph is a mathematical structure that represents

More information

Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs

Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs Sungpack Hong 2, Nicole C. Rodia 1, and Kunle Olukotun 1 1 Pervasive Parallelism Laboratory, Stanford University 2 Oracle

More information

Irregular Graph Algorithms on Parallel Processing Systems

Irregular Graph Algorithms on Parallel Processing Systems Irregular Graph Algorithms on Parallel Processing Systems George M. Slota 1,2 Kamesh Madduri 1 (advisor) Sivasankaran Rajamanickam 2 (Sandia mentor) 1 Penn State University, 2 Sandia National Laboratories

More information

Communication for PIM-based Graph Processing with Efficient Data Partition. Mingxing Zhang, Youwei Zhuo (equal contribution),

Communication for PIM-based Graph Processing with Efficient Data Partition. Mingxing Zhang, Youwei Zhuo (equal contribution), GraphP: Reducing Communication for PIM-based Graph Processing with Efficient Data Partition Mingxing Zhang, Youwei Zhuo (equal contribution), Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen, Christos Kozyrakis,

More information

NUMA-aware Graph-structured Analytics

NUMA-aware Graph-structured Analytics NUMA-aware Graph-structured Analytics Kaiyuan Zhang, Rong Chen, Haibo Chen Institute of Parallel and Distributed Systems Shanghai Jiao Tong University, China Big Data Everywhere 00 Million Tweets/day 1.11

More information

XtraPuLP. Partitioning Trillion-edge Graphs in Minutes. State University

XtraPuLP. Partitioning Trillion-edge Graphs in Minutes. State University XtraPuLP Partitioning Trillion-edge Graphs in Minutes George M. Slota 1 Sivasankaran Rajamanickam 2 Kamesh Madduri 3 Karen Devine 2 1 Rensselaer Polytechnic Institute, 2 Sandia National Labs, 3 The Pennsylvania

More information

SWAP: EFFECTIVE FINE-GRAIN MANAGEMENT

SWAP: EFFECTIVE FINE-GRAIN MANAGEMENT : EFFECTIVE FINE-GRAIN MANAGEMENT OF SHARED LAST-LEVEL CACHES WITH MINIMUM HARDWARE SUPPORT Xiaodong Wang, Shuang Chen, Jeff Setter, and José F. Martínez Computer Systems Lab Cornell University Page 1

More information

Graph Partitioning for Scalable Distributed Graph Computations

Graph Partitioning for Scalable Distributed Graph Computations Graph Partitioning for Scalable Distributed Graph Computations Aydın Buluç ABuluc@lbl.gov Kamesh Madduri madduri@cse.psu.edu 10 th DIMACS Implementation Challenge, Graph Partitioning and Graph Clustering

More information

GPU/CPU Heterogeneous Work Partitioning Riya Savla (rds), Ridhi Surana (rsurana), Jordan Tick (jrtick) Computer Architecture, Spring 18

GPU/CPU Heterogeneous Work Partitioning Riya Savla (rds), Ridhi Surana (rsurana), Jordan Tick (jrtick) Computer Architecture, Spring 18 ABSTRACT GPU/CPU Heterogeneous Work Partitioning Riya Savla (rds), Ridhi Surana (rsurana), Jordan Tick (jrtick) 15-740 Computer Architecture, Spring 18 With the death of Moore's Law, programmers can no

More information

Near Memory Key/Value Lookup Acceleration MemSys 2017

Near Memory Key/Value Lookup Acceleration MemSys 2017 Near Key/Value Lookup Acceleration MemSys 2017 October 3, 2017 Scott Lloyd, Maya Gokhale Center for Applied Scientific Computing This work was performed under the auspices of the U.S. Department of Energy

More information

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question:

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question: Database Workload + Low throughput (0.8 IPC on an 8-wide superscalar. 1/4 of SPEC) + Naturally threaded (and widely used) application - Already high cache miss rates on a single-threaded machine (destructive

More information

Jinho Hwang and Timothy Wood George Washington University

Jinho Hwang and Timothy Wood George Washington University Jinho Hwang and Timothy Wood George Washington University Background: Memory Caching Two orders of magnitude more reads than writes Solution: Deploy memcached hosts to handle the read capacity 6. HTTP

More information

Some aspects of parallel program design. R. Bader (LRZ) G. Hager (RRZE)

Some aspects of parallel program design. R. Bader (LRZ) G. Hager (RRZE) Some aspects of parallel program design R. Bader (LRZ) G. Hager (RRZE) Finding exploitable concurrency Problem analysis 1. Decompose into subproblems perhaps even hierarchy of subproblems that can simultaneously

More information

Multi-GPU Graph Analytics

Multi-GPU Graph Analytics Multi-GPU Graph Analytics Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D. Owens University of California, Davis Email: {ychpan, yzhwang, yudwu, ctcyang, jowens@ucdavis.edu 1) Our mgpu graph

More information

Multi-GPU Graph Analytics

Multi-GPU Graph Analytics 2017 IEEE International Parallel and Distributed Processing Symposium Multi-GPU Graph Analytics Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D. Owens University of California, Davis Email:

More information

GraphP: Reducing Communication for PIM-based Graph Processing with Efficient Data Partition

GraphP: Reducing Communication for PIM-based Graph Processing with Efficient Data Partition GraphP: Reducing Communication for PIM-based Graph Processing with Efficient Data Partition Mingxing Zhang Youwei Zhuo Chao Wang Mingyu Gao Yongwei Wu Kang Chen Christos Kozyrakis Xuehai Qian Tsinghua

More information

Locality-Aware Dynamic VM Reconfiguration on MapReduce Clouds. Jongse Park, Daewoo Lee, Bokyeong Kim, Jaehyuk Huh, Seungryoul Maeng

Locality-Aware Dynamic VM Reconfiguration on MapReduce Clouds. Jongse Park, Daewoo Lee, Bokyeong Kim, Jaehyuk Huh, Seungryoul Maeng Locality-Aware Dynamic VM Reconfiguration on MapReduce Clouds Jongse Park, Daewoo Lee, Bokyeong Kim, Jaehyuk Huh, Seungryoul Maeng Virtual Clusters on Cloud } Private cluster on public cloud } Distributed

More information

AdaptDB: Adaptive Partitioning for Distributed Joins

AdaptDB: Adaptive Partitioning for Distributed Joins AdaptDB: Adaptive Partitioning for Distributed Joins Yi Lu Anil Shanbhag Alekh Jindal Samuel Madden MIT CSAIL MIT CSAIL Microsoft MIT CSAIL yilu@csail.mit.edu anils@mit.edu aljindal@microsoft.com madden@csail.mit.edu

More information

Track Join. Distributed Joins with Minimal Network Traffic. Orestis Polychroniou! Rajkumar Sen! Kenneth A. Ross

Track Join. Distributed Joins with Minimal Network Traffic. Orestis Polychroniou! Rajkumar Sen! Kenneth A. Ross Track Join Distributed Joins with Minimal Network Traffic Orestis Polychroniou Rajkumar Sen Kenneth A. Ross Local Joins Algorithms Hash Join Sort Merge Join Index Join Nested Loop Join Spilling to disk

More information

SCHISM: A WORKLOAD-DRIVEN APPROACH TO DATABASE REPLICATION AND PARTITIONING

SCHISM: A WORKLOAD-DRIVEN APPROACH TO DATABASE REPLICATION AND PARTITIONING SCHISM: A WORKLOAD-DRIVEN APPROACH TO DATABASE REPLICATION AND PARTITIONING ZEYNEP KORKMAZ CS742 - PARALLEL AND DISTRIBUTED DATABASE SYSTEMS UNIVERSITY OF WATERLOO OUTLINE. Background 2. What is Schism?

More information

Penalized Graph Partitioning for Static and Dynamic Load Balancing

Penalized Graph Partitioning for Static and Dynamic Load Balancing Penalized Graph Partitioning for Static and Dynamic Load Balancing Tim Kiefer, Dirk Habich, Wolfgang Lehner Euro-Par 06, Grenoble, France, 06-08-5 Task Allocation Challenge Application (Workload) = Set

More information

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Goal: fast and cost-efficient key-value store Store, retrieve, manage key-value objects Get(key)/Put(key,value)/Delete(key) Target: cluster-level

More information

STREAMER: a Distributed Framework for Incremental Closeness Centrality

STREAMER: a Distributed Framework for Incremental Closeness Centrality STREAMER: a Distributed Framework for Incremental Closeness Centrality Computa@on A. Erdem Sarıyüce 1,2, Erik Saule 4, Kamer Kaya 1, Ümit V. Çatalyürek 1,3 1 Department of Biomedical InformaBcs 2 Department

More information

GraphChi: Large-Scale Graph Computation on Just a PC

GraphChi: Large-Scale Graph Computation on Just a PC OSDI 12 GraphChi: Large-Scale Graph Computation on Just a PC Aapo Kyrölä (CMU) Guy Blelloch (CMU) Carlos Guestrin (UW) In co- opera+on with the GraphLab team. BigData with Structure: BigGraph social graph

More information

A Study of Partitioning Policies for Graph Analytics on Large-scale Distributed Platforms

A Study of Partitioning Policies for Graph Analytics on Large-scale Distributed Platforms A Study of Partitioning Policies for Graph Analytics on Large-scale Distributed Platforms Gurbinder Gill, Roshan Dathathri, Loc Hoang, Keshav Pingali Department of Computer Science, University of Texas

More information

Statistics Driven Workload Modeling for the Cloud

Statistics Driven Workload Modeling for the Cloud UC Berkeley Statistics Driven Workload Modeling for the Cloud Archana Ganapathi, Yanpei Chen Armando Fox, Randy Katz, David Patterson SMDB 2010 Data analytics are moving to the cloud Cloud computing economy

More information

What We Have Already Learned. DBMS Deployment: Local. Where We Are Headed Next. DBMS Deployment: 3 Tiers. DBMS Deployment: Client/Server

What We Have Already Learned. DBMS Deployment: Local. Where We Are Headed Next. DBMS Deployment: 3 Tiers. DBMS Deployment: Client/Server What We Have Already Learned CSE 444: Database Internals Lectures 19-20 Parallel DBMSs Overall architecture of a DBMS Internals of query execution: Data storage and indexing Buffer management Query evaluation

More information

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning Parallel sparse matrix-vector product Lay out matrix and vectors by rows y(i) = sum(a(i,j)*x(j)) Only compute terms with A(i,j) 0 P0 P1

More information

HIPS : a parallel hybrid direct/iterative solver based on a Schur complement approach

HIPS : a parallel hybrid direct/iterative solver based on a Schur complement approach HIPS : a parallel hybrid direct/iterative solver based on a Schur complement approach Mini-workshop PHyLeaS associated team J. Gaidamour, P. Hénon July 9, 28 HIPS : an hybrid direct/iterative solver /

More information

An overview of recent graph partitioning algorithms

An overview of recent graph partitioning algorithms 408 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. PDPTA'18 An overview of recent graph partitioning algorithms Chayma Sakouhi, Abir Khaldi, and Henda Ben Ghezala ENSI, National School of Computer Sciences

More information

Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia

Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia How well do CPU, GPU and Hybrid Graph Processing Frameworks Perform? Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia Networked Systems

More information

NVGRAPH,FIREHOSE,PAGERANK GPU ACCELERATED ANALYTICS NOV Joe Eaton Ph.D.

NVGRAPH,FIREHOSE,PAGERANK GPU ACCELERATED ANALYTICS NOV Joe Eaton Ph.D. NVGRAPH,FIREHOSE,PAGERANK GPU ACCELERATED ANALYTICS NOV 2016 Joe Eaton Ph.D. Agenda Accelerated Computing nvgraph New Features Coming Soon Dynamic Graphs GraphBLAS 2 ACCELERATED COMPUTING 10x Performance

More information

Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age. Presented by Dennis Grishin

Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age. Presented by Dennis Grishin Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age Presented by Dennis Grishin What is the problem? Efficient computation requires distribution of processing between

More information

CuSP: A Customizable Streaming Edge Partitioner for Distributed Graph Analytics

CuSP: A Customizable Streaming Edge Partitioner for Distributed Graph Analytics CuSP: A Customizable Streaming Edge Partitioner for Distributed Graph Analytics Loc Hoang, Roshan Dathathri, Gurbinder Gill, Keshav Pingali Department of Computer Science The University of Texas at Austin

More information

Hybrid Implementation of 3D Kirchhoff Migration

Hybrid Implementation of 3D Kirchhoff Migration Hybrid Implementation of 3D Kirchhoff Migration Max Grossman, Mauricio Araya-Polo, Gladys Gonzalez GTC, San Jose March 19, 2013 Agenda 1. Motivation 2. The Problem at Hand 3. Solution Strategy 4. GPU Implementation

More information

OLTP on Hardware Islands

OLTP on Hardware Islands OLTP on Hardware Islands Danica Porobic Ippokratis Pandis Miguel Branco Pınar Tözün Anastasia Ailamaki École Polytechnique Fédérale de Lausanne Lausanne, VD, Switzerland {danica.porobic, miguel.branco,

More information

SOCIAL network analysis is used to extract features,

SOCIAL network analysis is used to extract features, IEEE TRANSACTIONS ON CLOUD COMPUTING 1 SAE: Toward Efficient Cloud Data Analysis Service for Large-Scale Social Networks Yu Zhang, Xiaofei Liao, Member, IEEE, Hai Jin, Senior Member, IEEE and Guang Tan

More information

New Challenges In Dynamic Load Balancing

New Challenges In Dynamic Load Balancing New Challenges In Dynamic Load Balancing Karen D. Devine, et al. Presentation by Nam Ma & J. Anthony Toghia What is load balancing? Assignment of work to processors Goal: maximize parallel performance

More information

COLA: Optimizing Stream Processing Applications Via Graph Partitioning

COLA: Optimizing Stream Processing Applications Via Graph Partitioning COLA: Optimizing Stream Processing Applications Via Graph Partitioning Rohit Khandekar, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Joel Wolf, Kun-Lung Wu, Henrique Andrade, and Bugra Gedik Streaming

More information

GraphCEP Real-Time Data Analytics Using Parallel Complex Event and Graph Processing

GraphCEP Real-Time Data Analytics Using Parallel Complex Event and Graph Processing Institute of Parallel and Distributed Systems () Universitätsstraße 38 D-70569 Stuttgart GraphCEP Real-Time Data Analytics Using Parallel Complex Event and Graph Processing Ruben Mayer, Christian Mayer,

More information

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage Arijit Khan Nanyang Technological University (NTU), Singapore Gustavo Segovia ETH Zurich, Switzerland Donald Kossmann Microsoft

More information

Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems

Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems Min Kyu Jeong, Doe Hyun Yoon^, Dam Sunwoo*, Michael Sullivan, Ikhwan Lee, and Mattan Erez The University of Texas at Austin Hewlett-Packard

More information

Traffic Classification Using Visual Motifs: An Empirical Evaluation

Traffic Classification Using Visual Motifs: An Empirical Evaluation Traffic Classification Using Visual Motifs: An Empirical Evaluation Wilson Lian 1 Fabian Monrose 1 John McHugh 1,2 1 University of North Carolina at Chapel Hill 2 RedJack, LLC VizSec 2010 Overview Background

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 60 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Pregel: A System for Large-Scale Graph Processing

More information

The Potential of Diffusive Load Balancing at Large Scale

The Potential of Diffusive Load Balancing at Large Scale Center for Information Services and High Performance Computing The Potential of Diffusive Load Balancing at Large Scale EuroMPI 2016, Edinburgh, 27 September 2016 Matthias Lieber, Kerstin Gößner, Wolfgang

More information

050 0 N 03 BECABCDDDBDBCDBDBCDADDBACACBCCBAACEDEDBACBECCDDCEA

050 0 N 03 BECABCDDDBDBCDBDBCDADDBACACBCCBAACEDEDBACBECCDDCEA 050 0 N 03 BECABCDDDBDBCDBDBCDADDBACACBCCBAACEDEDBACBECCDDCEA 55555555555555555555555555555555555555555555555555 NYYNNYNNNYNYYYYYNNYNNNNNYNYYYYYNYNNNNYNNYNNNYNNNNN 01 CAEADDBEDEDBABBBBCBDDDBAAAECEEDCDCDBACCACEECACCCEA

More information

Abstract. Keywords: Graph processing; cloud computing; quality of service; resource provisioning. 1. Introduction

Abstract. Keywords: Graph processing; cloud computing; quality of service; resource provisioning. 1. Introduction Quality of Service (QoS)-driven Resource Provisioning for Large-scale Graph Processing in Cloud Computing Environments: Graph Processing-as-a-Service (GPaaS) Safiollah Heidari and Rajkumar Buyya Cloud

More information

EXPERIMENTS WITH REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES

EXPERIMENTS WITH REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES EXPERIMENTS WITH REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES RUPAK BISWAS AND LEONID OLIKER y Abstract. Mesh adaption is a powerful tool for ecient unstructured-grid computations but causes load

More information

PAGE: A Partition Aware Graph Computation Engine

PAGE: A Partition Aware Graph Computation Engine PAGE: A Graph Computation Engine Yingxia Shao, Junjie Yao, Bin Cui, Lin Ma Department of Computer Science Key Lab of High Confidence Software Technologies (Ministry of Education) Peking University {simon227,

More information

Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs

Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs B. Barla Cambazoglu and Cevdet Aykanat Bilkent University, Department of Computer Engineering, 06800, Ankara, Turkey {berkant,aykanat}@cs.bilkent.edu.tr

More information

Introduction to parallel Computing

Introduction to parallel Computing Introduction to parallel Computing VI-SEEM Training Paschalis Paschalis Korosoglou Korosoglou (pkoro@.gr) (pkoro@.gr) Outline Serial vs Parallel programming Hardware trends Why HPC matters HPC Concepts

More information

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments Nikos Zacheilas, Vana Kalogeraki Department of Informatics Athens University of Economics and Business 1 Big Data era has arrived!

More information

Musings on Analysis of Measurements of a Real-Time Workload

Musings on Analysis of Measurements of a Real-Time Workload Musings on Analysis of Measurements of a Real-Time Workload Analysis of real-time performance is often focused on the worst case "bad" value, such as maximum latency or maximum interrupt disabled time.

More information

Heterogeneous platforms

Heterogeneous platforms Heterogeneous platforms Systems combining main processors and accelerators e.g., CPU + GPU, CPU + Intel MIC, AMD APU, ARM SoC Any platform using a GPU is a heterogeneous platform! Further in this talk

More information

CuSha: Vertex-Centric Graph Processing on GPUs

CuSha: Vertex-Centric Graph Processing on GPUs CuSha: Vertex-Centric Graph Processing on GPUs Farzad Khorasani, Keval Vora, Rajiv Gupta, Laxmi N. Bhuyan HPDC Vancouver, Canada June, Motivation Graph processing Real world graphs are large & sparse Power

More information

Philippe Thierry Sr Staff Engineer Intel Corp.

Philippe Thierry Sr Staff Engineer Intel Corp. HPC@Intel Philippe Thierry Sr Staff Engineer Intel Corp. IBM, April 8, 2009 1 Agenda CPU update: roadmap, micro-μ and performance Solid State Disk Impact What s next Q & A Tick Tock Model Perenity market

More information

Graph Data Management

Graph Data Management Graph Data Management Analysis and Optimization of Graph Data Frameworks presented by Fynn Leitow Overview 1) Introduction a) Motivation b) Application for big data 2) Choice of algorithms 3) Choice of

More information

Performance Impact of Resource Contention in Multicore Systems

Performance Impact of Resource Contention in Multicore Systems Performance Impact of Resource Contention in Multicore Systems R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen, K. Taylor, R. Biswas Commodity Multicore Chips in NASA HEC 2004:

More information

A Cost-efficient Auto-scaling Algorithm for Large-scale Graph Processing in Cloud Environments with Heterogeneous Resources

A Cost-efficient Auto-scaling Algorithm for Large-scale Graph Processing in Cloud Environments with Heterogeneous Resources IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1 A Cost-efficient Auto-scaling Algorithm for Large-scale Graph Processing in Cloud Environments with Heterogeneous Resources Safiollah Heidari,

More information

CGraph: A Correlations-aware Approach for Efficient Concurrent Iterative Graph Processing

CGraph: A Correlations-aware Approach for Efficient Concurrent Iterative Graph Processing : A Correlations-aware Approach for Efficient Concurrent Iterative Graph Processing Yu Zhang, Xiaofei Liao, Hai Jin, and Lin Gu, Huazhong University of Science and Technology; Ligang He, University of

More information

Fast Dynamic Load Balancing for Extreme Scale Systems

Fast Dynamic Load Balancing for Extreme Scale Systems Fast Dynamic Load Balancing for Extreme Scale Systems Cameron W. Smith, Gerrett Diamond, M.S. Shephard Computation Research Center (SCOREC) Rensselaer Polytechnic Institute Outline: n Some comments on

More information

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007.

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007. Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS Marcin Zukowski Sandor Heman, Niels Nes, Peter Boncz CWI, Amsterdam VLDB 2007 Outline Scans in a DBMS Cooperative Scans Benchmarks DSM version VLDB,

More information

Partitioning Problem and Usage

Partitioning Problem and Usage Partitioning Problem and Usage Lecture 8 CSCI 4974/6971 26 Sep 2016 1 / 14 Today s Biz 1. Reminders 2. Review 3. Graph Partitioning overview 4. Graph Partitioning Small-world Graphs 5. Partitioning Usage

More information

CSE4502/5717: Big Data Analytics Prof. Sanguthevar Rajasekaran Lecture 7 02/14/2018; Notes by Aravind Sugumar Rajan Recap from last class:

CSE4502/5717: Big Data Analytics Prof. Sanguthevar Rajasekaran Lecture 7 02/14/2018; Notes by Aravind Sugumar Rajan Recap from last class: CSE4502/5717: Big Data Analytics Prof. Sanguthevar Rajasekaran Lecture 7 02/14/2018; Notes by Aravind Sugumar Rajan Recap from last class: Prim s Algorithm: Grow a subtree by adding one edge to the subtree

More information

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research Counting Triangles & The Curse of the Last Reducer Siddharth Suri Yahoo! Research Why Count Triangles? 2 Why Count Triangles? Clustering Coefficient: Given an undirected graph G =(V,E) cc(v) = fraction

More information

Cascade-aware partitioning of large graph databases

Cascade-aware partitioning of large graph databases The VLDB Journal https://doi.org/10.1007/s00778-018-0531-8 REGULAR PAPER Cascade-aware partitioning of large graph databases Gunduz Vehbi Demirci 1 Hakan Ferhatosmanoglu 2 Cevdet Aykanat 1 Received: 26

More information

Rocksteady: Fast Migration for Low-Latency In-memory Storage. Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman

Rocksteady: Fast Migration for Low-Latency In-memory Storage. Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman Rocksteady: Fast Migration for Low-Latency In-memory Storage Chinmay Kulkarni, niraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman 1 Introduction Distributed low-latency in-memory key-value stores are

More information

Workload Characterization Techniques

Workload Characterization Techniques Workload Characterization Techniques Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/

More information

ZSIM: FAST AND ACCURATE MICROARCHITECTURAL SIMULATION OF THOUSAND-CORE SYSTEMS

ZSIM: FAST AND ACCURATE MICROARCHITECTURAL SIMULATION OF THOUSAND-CORE SYSTEMS ZSIM: FAST AND ACCURATE MICROARCHITECTURAL SIMULATION OF THOUSAND-CORE SYSTEMS DANIEL SANCHEZ MIT CHRISTOS KOZYRAKIS STANFORD ISCA-40 JUNE 27, 2013 Introduction 2 Current detailed simulators are slow (~200

More information

Data Reduction and Partitioning in an Extreme Scale GPU-Based Clustering Algorithm

Data Reduction and Partitioning in an Extreme Scale GPU-Based Clustering Algorithm Data Reduction and Partitioning in an Extreme Scale GPU-Based Clustering Algorithm Benjamin Welton and Barton Miller Paradyn Project University of Wisconsin - Madison DRBSD-2 Workshop November 17 th 2017

More information

ZSIM: FAST AND ACCURATE MICROARCHITECTURAL SIMULATION OF THOUSAND-CORE SYSTEMS

ZSIM: FAST AND ACCURATE MICROARCHITECTURAL SIMULATION OF THOUSAND-CORE SYSTEMS ZSIM: FAST AND ACCURATE MICROARCHITECTURAL SIMULATION OF THOUSAND-CORE SYSTEMS DANIEL SANCHEZ MIT CHRISTOS KOZYRAKIS STANFORD ISCA-40 JUNE 27, 2013 Introduction 2 Current detailed simulators are slow (~200

More information

Simple Parallel Biconnectivity Algorithms for Multicore Platforms

Simple Parallel Biconnectivity Algorithms for Multicore Platforms Simple Parallel Biconnectivity Algorithms for Multicore Platforms George M. Slota Kamesh Madduri The Pennsylvania State University HiPC 2014 December 17-20, 2014 Code, presentation available at graphanalysis.info

More information

Efficient Large-Scale Graph Processing on Hybrid CPU and GPU Systems

Efficient Large-Scale Graph Processing on Hybrid CPU and GPU Systems Efficient Large-Scale Graph Processing on Hybrid CPU and GPU Systems ABDULLAH GHARAIBEH, The University of British Columbia ELIZEU SANTOS-NETO, The University of British Columbia LAURO BELTRÃO COSTA, The

More information

Co-optimizing Application Partitioning and Network Topology for a Reconfigurable Interconnect

Co-optimizing Application Partitioning and Network Topology for a Reconfigurable Interconnect Co-optimizing Application Partitioning and Network Topology for a Reconfigurable Interconnect Deepak Ajwani a,, Adam Hackett b, Shoukat Ali c, John P. Morrison d, Stephen Kirkland b a Bell Labs, Alcatel-Lucent,

More information

Streaming Graph Partitioning for Large Distributed Graphs

Streaming Graph Partitioning for Large Distributed Graphs Streaming Graph Partitioning for Large Distributed Graphs Isabelle Stanton University of California, Berkeley Berkeley, CA isabelle@eecs.berkeley.edu Gabriel Kliot Microsoft Research Redmond, WA gkliot@microsoft.com

More information

CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING

CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING 6.1 Introduction From the review, it is studied that the min cut k partitioning problem is a fundamental partitioning

More information

A New Parallel Algorithm for Connected Components in Dynamic Graphs. Robert McColl Oded Green David Bader

A New Parallel Algorithm for Connected Components in Dynamic Graphs. Robert McColl Oded Green David Bader A New Parallel Algorithm for Connected Components in Dynamic Graphs Robert McColl Oded Green David Bader Overview The Problem Target Datasets Prior Work Parent-Neighbor Subgraph Results Conclusions Problem

More information

Computational Geometry

Computational Geometry Planar point location Point location Introduction Planar point location Strip-based structure Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision

More information

Howdah. a flexible pipeline framework and applications to analyzing genomic data. Steven Lewis PhD

Howdah. a flexible pipeline framework and applications to analyzing genomic data. Steven Lewis PhD Howdah a flexible pipeline framework and applications to analyzing genomic data Steven Lewis PhD slewis@systemsbiology.org What is a Howdah? A howdah is a carrier for an elephant The idea is that multiple

More information

modern database systems lecture 10 : large-scale graph processing

modern database systems lecture 10 : large-scale graph processing modern database systems lecture 1 : large-scale graph processing Aristides Gionis spring 18 timeline today : homework is due march 6 : homework out april 5, 9-1 : final exam april : homework due graphs

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance Weaving Relations for Cache Performance Anastassia Ailamaki Carnegie Mellon Computer Platforms in 198 Execution PROCESSOR 1 cycles/instruction Data and Instructions cycles

More information

8 2 Properties of a normal distribution.notebook Properties of the Normal Distribution Pages

8 2 Properties of a normal distribution.notebook Properties of the Normal Distribution Pages 8 2 Properties of the Normal Distribution Pages 422 431 normal distribution a common continuous probability distribution in which the data are distributed symmetrically and unimodally about the mean. Can

More information