Argo: Architecture- Aware Graph Par33oning

Size: px
Start display at page:

Download "Argo: Architecture- Aware Graph Par33oning"

Transcription

1 Argo: Architecture- Aware Graph Par33oning Angen Zheng Alexandros Labrinidis, Panos K. Chrysanthis, and Jack Lange Department of Computer Science, University of PiCsburgh hcp://db.cs.pic.edu/group/ hcp:// 1

2 Big Graphs Are Everywhere [SIGMOD 16 Tutorial] 2

3 A Balanced Par33oning = Even Load Distribu3on Minimal Edge- Cut = Minimal Data Comm N2 N3 N1 Assump3on: Network is the booleneck. 3

4 The End of Slow Networks: Network is now as fast as DRAM [C. Bing, VLDB 15] Infiniband: 1.7GB/s~37.5GB/s DDR3: 6.25GB/s~16.6GB/s Dual- socket Xeon E5v2 server with DDR FDR 4x NICs per socket 4

5 The End of Slow Networks: Does edge- cut s3ll maoer? 5

6 Roadmap ü IntroducGon ü Does edge- cut s3ll maoer? ü Why edge- cut sgll macers? ü Argo ü EvaluaGon ü Conclusions 6

7 The End of Slow Networks: Does edge- cut s3ll maoer? Graph Par33oners Graph Workloads Graph Dataset METIS and LDG BFS, SSSP, and PageRank Orkut ( V =3M, E =234M) Number of Par33ons 16 (one parggon per core) 7

8 The End of Slow Networks: Does edge- cut s3ll maoer? SSSP Execution Time (s) m:s:c METIS LDG 1:2: ,632 2:2: ,565 4:2: :2: x m: # of machines used s: # of sockets used per machine c: # of cores used per socket Denser configura3ons had longer execu3on 3me. Conten3on on the memory subsystems impacted performance. Network may not always be the booleneck. 8

9 The End of Slow Networks: Does edge- cut s3ll maoer? m:s:c SSSP Execution Time (s) METIS LDG m:s:c SSSP LLC Misses (in Millions) METIS LDG 1:2: ,632 2:2: ,565 4:2: :2: x 1:2:8 10,292 44,117 2:2:4 10,626 44,689 4:2:2 2,541 1,061 8:2: x Denser configura3ons had longer execu3on 3me. Conten3on on the memory subsystems impacted performance. Network may not always be the booleneck. 9

10 The End of Slow Networks: Does edge- cut s3ll maoer? m:s:c SSSP Execution Time (s) METIS LDG m:s:c SSSP LLC Misses (in Millions) METIS LDG 1:2: ,632 2:2: ,565 4:2: :2: x 1:2:8 10,292 44,117 2:2:4 10,626 44,689 4:2:2 2,541 1,061 8:2: x Denser configura3ons had longer execu3on 3me. Conten3on on the memory subsystems impacted performance. Network may not always be the booleneck. 10

11 The End of Slow Networks: Does edge- cut s3ll maoer? m:s:c SSSP Execution Time (s) METIS LDG m:s:c SSSP LLC Misses (in Millions) METIS LDG 1:2: ,632 2:2: ,565 4:2: :2: x 1:2:8 10,292 44,117 2:2:4 10,626 44,689 4:2:2 2,541 1,061 8:2: x Denser configura3ons had longer execu3on 3me. ContenGon The distribution the memory of subsystems edge-cut matters. impacted performance. Network may not always be the bocleneck. 11

12 The End of Slow Networks: Does edge- cut s3ll maoer? m:s:c SSSP Execution Time (s) METIS LDG m:s:c SSSP LLC Misses (in Millions) METIS LDG 1:2: ,632 2:2: ,565 4:2: :2: x 1:2:8 10,292 44,117 2:2:4 10,626 44,689 4:2:2 2,541 1,061 8:2: x METIS had lower execution time and LLC misses than LDG. Edge-cut matters. Higher edge-cut-->higher comm-->higher contention 12

13 The End of Slow Networks: Does edge- cut s3ll maoer? Yes! Both edge- cut and its distribu3on maoer! Intra- Node and Inter- Node Data Communica3on Have different performance impact on the memory subsystems of modern mulgcore machines. 13

14 Roadmap ü IntroducGon ü Does edge- cut sgll macer? ü Why edge- cut s3ll maoers? ü Argo ü EvaluaGon ü Conclusions 14

15 Intra- Node Data Comm: Shared Memory Sending Core Receiving Core 1. Load 2b. Write 3. Load 2a. Load 4a. Load 4b. Write Send Buffer Shared Buffer Receive Buffer Extra Memory Copy 15

16 Intra- Node Data Comm: Shared Memory Cached Send/Shared/Receive Buffer Cache Pollu3on LLC and Memory Bandwidth Conten3on 16

17 Intra- Node Data Comm: Shared Memory Cached Send/Shared Buffer Cached Receive/Shared Buffer Cache Pollu3on LLC and Memory Bandwidth Conten3on 17

18 Excess intra- node data communica3on may hurt performance. 18

19 Inter- Node Data Comm: RDMA Read/Write Node#1 Node#2 Send Buffer Sending Core Receive Buffer Sending Core IB HCA IB HCA No Extra Memory Copy and Cache Pollu3on 19

20 Offloading excess intra- node data comm across nodes may achieve beoer performance. 20

21 Roadmap ü IntroducGon ü Does edge- cut sgll macer? ü Why edge- cut sgll macers? ü Argo ü EvaluaGon ü Conclusions 21

22 Argo: Graph Par33oning Model Vertex Stream... Partitioner... Streaming Graph ParGGoning Model [I. Stanton, KDD 12] 22

23 Argo: Architecture- Aware Vertex Placement Place vertex, v, to a parggon, Pi, that maximize: Weighted Edge- cut Penalize the placement based on the load of Pi Weighted by the rela3ve network comm cost, Argo will avoid edge- cut across nodes (inter- node data comm). Great for cases where the network is the bottleneck. 23

24 Argo: Architecture- Aware Vertex Placement Degree of Conten3on (λ [0, 1]) Bottleneck Network λ=0 Memory λ=1 Refined Intra- Node Network Comm Cost Original Intra- Node Network Comm Cost Maximal Inter- Node Network Comm Cost Weighted by the refined rela3ve network comm cost, Argo will avoid edge- cut across cores of the same node (intra- node data comm). 24

25 Roadmap ü IntroducGon ü Does edge- cut sgll macer? ü Why edge- cut sgll macers? ü Argo ü Evalua3on ü Conclusions 25

26 Evalua3on: Workloads & Datasets ü ü Three Classic Graph Workloads o Breadth First Search (BFS) o Single Source Shortest Path (SSSP) o PageRank Three Real- World Large Graphs Dataset V E Orkut 3M 234M Friendster 124M 3.6B Twitter 52M 3.9B 26

27 Evalua3on: Plaeorm Cluster Configura.on # of Nodes 32 Network Topology Network Bandwidth FDR Infiniband (Single Switch) 56Gbps Compute Node Configura.on # of Sockets L3 Cache 2 Intel Haswell (10 cores / socket) 25MB 27

28 Evalua3on: Par33oners ü ü ü METIS: the most well- known mul3- level parggoner. LDG: the most well- known streaming parggoner. ARGO- H: network is the bocleneck. o weight edge- cut by the original network comm costs. ü ARGO: memory is the bocleneck. o weight edge- cut by the refined network comm costs. 28

29 Evalua3on: SSSP Exec. Time on Orkut dataset Orkut: 60 Par33ons: V = 3M, E = 234M three 20- core machines 5x 4x 2x 2x 3x 1x 2x 1x 2x 1.4x 3x 1x Message Grouping Size ARGO had the lowest SSSP execu3on 3me. (Group mulgple msgs by a single SSSP process to the same desgnagon into one msg) 29

30 Evalua3on: SSSP LLC Misses on Orkut dataset Orkut: 60 Par33ons: V = 3M, E = 234M three 20- core machines 50x 38x 4x 3x 6x 12x 9x 9x 1x 1x 1.2x 1x Message Grouping Size ARGO had the lowest LLC Misses. 30

31 Evalua3on: SSSP Comm Vol. on Orkut dataset Orkut: 60 Par33ons: V = 3M, E = 234M three 20- core machines 64 Intra- Socket METIS 69% LDG 49% ARGO- H 70% ARGO had Distribu3on the lowest of intra- node the edge- cut communica3on also maoers. volume. 31

32 Evalua3on: SSSP Exec. Time vs Graph Size TwiOer: V = 52M, E = 3.9B 80 Par33ons: four 20- core machines Message Grouping Size: 512 ARGO had the lowest SSSP execu3on 3me. Up to 6x improvement against ARGO- H. Improvement became larger as the graph size increased. 32

33 Evalua3on: SSSP Exec. Time vs # of Par33ons TwiOer: V = 52M, E = 3.9B 80~200 Par33ons: four up to ten 20- core machines Message Grouping Size: 512 ARGO always outperformed LDG and ARGO- H. Up to 11x improvement against ARGO- H. 33

34 Evalua3on: SSSP Exec. Time vs # of Par33ons TwiOer: V = 52M, E = 3.9B 80~200 Par33ons: four up to ten 20- core machines Message Grouping Size: 512 * 160 = 13h * 180 = 6h zoom in Hours CPU Time Saving. 34

35 Evalua3on: Par33oning Overhead TwiOer: V = 52M, E = 3.9B 80~200 Par33ons: four up to ten 20- core machines ParGGoning Time as a Percentage of the CPU Time Saved (SSSP ExecuGon) # of ParGGons # of ParGGons ARGO is indeed slower than LDG. The overhead was negligible in comparison to the CPU 3me saved. Graph analy3cs usually have much longer execu3on 3me. 35

36 Conclusions ü Findings o Network is not always the bocleneck. o ContenGon on memory subsystems may impact the performance a lot q due to excess intra- node data comm. Thanks! o Both edge- cut and its distribugon macer. Acknowledgments: ü ARGO o voids contengon by offloading excess intra- node data comm across nodes. o Achieves up to 11x improvement on real- world workloads. o Scales well in terms of both graph size and number of parggons. ü Peyman Givi ü Patrick Pisciuneri Funding: ü NSF CBET ü NSF CBET ü BigData 16 Student Travel Award 36

Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning

Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning Angen Zheng, Alexandros Labrinidis, and Panos K. Chrysanthis University of Pittsburgh 1 Graph Partitioning Applications of

More information

DNA Interaction Network

DNA Interaction Network Social Network Web Network Social Network DNA Interaction Network Follow Network User-Product Network Nonuniform network comm costs Contentiousness of the memory subsystems Nonuniform comp requirement

More information

Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing

Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing Angen Zheng, Alexandros Labrinidis, Panos K. Chrysanthis Advanced Data Management Technologies Laboratory Department of Computer

More information

Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia

Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia How well do CPU, GPU and Hybrid Graph Processing Frameworks Perform? Tanuj Kr Aasawat, Tahsin Reza, Matei Ripeanu Networked Systems Laboratory (NetSysLab) University of British Columbia Networked Systems

More information

Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning

Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning Angen Zheng, Alexandros Labrinidis, Panos K. Chrysanthis Department of Computer Science, University of Pittsburgh {anz28, labrinid,

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS. Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016

TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS. Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016 TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016 MULTI GPU PROGRAMMING Node 0 Node 1 Node N-1 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

More information

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 1 Sandia National Laboratories, 2 The Pennsylvania

More information

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects?

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? N. S. Islam, X. Lu, M. W. Rahman, and D. K. Panda Network- Based Compu2ng Laboratory Department of Computer

More information

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Sayantan Sur, Abhinav Vishnu, Hyun-Wook Jin, Wei Huang and D. K. Panda {surs, vishnu, jinhy, huanwei, panda}@cse.ohio-state.edu

More information

PuLP. Complex Objective Partitioning of Small-World Networks Using Label Propagation. George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1

PuLP. Complex Objective Partitioning of Small-World Networks Using Label Propagation. George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 PuLP Complex Objective Partitioning of Small-World Networks Using Label Propagation George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 1 Sandia National Laboratories, 2 The Pennsylvania State

More information

NetSlices: Scalable Mul/- Core Packet Processing in User- Space

NetSlices: Scalable Mul/- Core Packet Processing in User- Space NetSlices: Scalable Mul/- Core Packet Processing in - Space Tudor Marian, Ki Suh Lee, Hakim Weatherspoon Cornell University Presented by Ki Suh Lee Packet Processors Essen/al for evolving networks Sophis/cated

More information

WORKLOAD CHARACTERIZATION OF INTERACTIVE CLOUD SERVICES BIG AND SMALL SERVER PLATFORMS

WORKLOAD CHARACTERIZATION OF INTERACTIVE CLOUD SERVICES BIG AND SMALL SERVER PLATFORMS WORKLOAD CHARACTERIZATION OF INTERACTIVE CLOUD SERVICES ON BIG AND SMALL SERVER PLATFORMS Shuang Chen*, Shay Galon**, Christina Delimitrou*, Srilatha Manne**, and José Martínez* *Cornell University **Cavium

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Enterprise. Breadth-First Graph Traversal on GPUs. November 19th, 2015

Enterprise. Breadth-First Graph Traversal on GPUs. November 19th, 2015 Enterprise Breadth-First Graph Traversal on GPUs Hang Liu H. Howie Huang November 9th, 5 Graph is Ubiquitous Breadth-First Search (BFS) is Important Wide Range of Applications Single Source Shortest Path

More information

OceanStor 9000 InfiniBand Technical White Paper. Issue V1.01 Date HUAWEI TECHNOLOGIES CO., LTD.

OceanStor 9000 InfiniBand Technical White Paper. Issue V1.01 Date HUAWEI TECHNOLOGIES CO., LTD. OceanStor 9000 Issue V1.01 Date 2014-03-29 HUAWEI TECHNOLOGIES CO., LTD. Copyright Huawei Technologies Co., Ltd. 2014. All rights reserved. No part of this document may be reproduced or transmitted in

More information

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures Haiyang Shi, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda {shi.876, lu.932, panda.2}@osu.edu The Ohio State University

More information

Efficient Memory and Bandwidth Management for Industrial Strength Kirchhoff Migra<on

Efficient Memory and Bandwidth Management for Industrial Strength Kirchhoff Migra<on Efficient Memory and Bandwidth Management for Industrial Strength Kirchhoff Migra

More information

Wedge A New Frontier for Pull-based Graph Processing. Samuel Grossman and Christos Kozyrakis Platform Lab Retreat June 8, 2018

Wedge A New Frontier for Pull-based Graph Processing. Samuel Grossman and Christos Kozyrakis Platform Lab Retreat June 8, 2018 Wedge A New Frontier for Pull-based Graph Processing Samuel Grossman and Christos Kozyrakis Platform Lab Retreat June 8, 2018 Graph Processing Problems modelled as objects (vertices) and connections between

More information

BlueGene/L. Computer Science, University of Warwick. Source: IBM

BlueGene/L. Computer Science, University of Warwick. Source: IBM BlueGene/L Source: IBM 1 BlueGene/L networking BlueGene system employs various network types. Central is the torus interconnection network: 3D torus with wrap-around. Each node connects to six neighbours

More information

NUMA-aware Graph-structured Analytics

NUMA-aware Graph-structured Analytics NUMA-aware Graph-structured Analytics Kaiyuan Zhang, Rong Chen, Haibo Chen Institute of Parallel and Distributed Systems Shanghai Jiao Tong University, China Big Data Everywhere 00 Million Tweets/day 1.11

More information

Почему IBM POWER8 оптимальная платформа для PostgreSQL

Почему IBM POWER8 оптимальная платформа для PostgreSQL Почему IBM POWER8 оптимальная платформа для PostgreSQL Иван Гончаров Технический специалист igoncharov@ru.ibm.com What server should I choose for PG? 2 Old-fashioned approach Slides borrowed from Bruce

More information

Maximizing Memory Performance for ANSYS Simulations

Maximizing Memory Performance for ANSYS Simulations Maximizing Memory Performance for ANSYS Simulations By Alex Pickard, 2018-11-19 Memory or RAM is an important aspect of configuring computers for high performance computing (HPC) simulation work. The performance

More information

Flexible Architecture Research Machine (FARM)

Flexible Architecture Research Machine (FARM) Flexible Architecture Research Machine (FARM) RAMP Retreat June 25, 2009 Jared Casper, Tayo Oguntebi, Sungpack Hong, Nathan Bronson Christos Kozyrakis, Kunle Olukotun Motivation Why CPUs + FPGAs make sense

More information

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Pak Lui, Gilad Shainer, Brian Klaff Mellanox Technologies Abstract From concept to

More information

A Comprehensive Study on the Performance of Implicit LS-DYNA

A Comprehensive Study on the Performance of Implicit LS-DYNA 12 th International LS-DYNA Users Conference Computing Technologies(4) A Comprehensive Study on the Performance of Implicit LS-DYNA Yih-Yih Lin Hewlett-Packard Company Abstract This work addresses four

More information

PULP: Fast and Simple Complex Network Partitioning

PULP: Fast and Simple Complex Network Partitioning PULP: Fast and Simple Complex Network Partitioning George Slota #,* Kamesh Madduri # Siva Rajamanickam * # The Pennsylvania State University *Sandia National Laboratories Dagstuhl Seminar 14461 November

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay Mellanox Technologies

Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay Mellanox Technologies Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay 1 Apache Spark - Intro Spark within the Big Data ecosystem Data Sources Data Acquisition / ETL Data Storage Data Analysis / ML Serving 3 Apache

More information

Topology and affinity aware hierarchical and distributed load-balancing in Charm++

Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Emmanuel Jeannot, Guillaume Mercier, François Tessier Inria - IPB - LaBRI - University of Bordeaux - Argonne National

More information

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan, and D. K. Panda Presented by Lei Chai Network Based

More information

FAWN. A Fast Array of Wimpy Nodes. David Andersen, Jason Franklin, Michael Kaminsky*, Amar Phanishayee, Lawrence Tan, Vijay Vasudevan

FAWN. A Fast Array of Wimpy Nodes. David Andersen, Jason Franklin, Michael Kaminsky*, Amar Phanishayee, Lawrence Tan, Vijay Vasudevan FAWN A Fast Array of Wimpy Nodes David Andersen, Jason Franklin, Michael Kaminsky*, Amar Phanishayee, Lawrence Tan, Vijay Vasudevan Carnegie Mellon University *Intel Labs Pittsburgh Energy in computing

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

Fennel: Streaming Graph Partitioning for Massive Scale Graphs

Fennel: Streaming Graph Partitioning for Massive Scale Graphs Fennel: Streaming Graph Partitioning for Massive Scale Graphs Charalampos E. Tsourakakis 1 Christos Gkantsidis 2 Bozidar Radunovic 2 Milan Vojnovic 2 1 Aalto University, Finland 2 Microsoft Research, Cambridge

More information

Apache Spark Graph Performance with Memory1. February Page 1 of 13

Apache Spark Graph Performance with Memory1. February Page 1 of 13 Apache Spark Graph Performance with Memory1 February 2017 Page 1 of 13 Abstract Apache Spark is a powerful open source distributed computing platform focused on high speed, large scale data processing

More information

STREAMER: a Distributed Framework for Incremental Closeness Centrality

STREAMER: a Distributed Framework for Incremental Closeness Centrality STREAMER: a Distributed Framework for Incremental Closeness Centrality Computa@on A. Erdem Sarıyüce 1,2, Erik Saule 4, Kamer Kaya 1, Ümit V. Çatalyürek 1,3 1 Department of Biomedical InformaBcs 2 Department

More information

Memory-Based Cloud Architectures

Memory-Based Cloud Architectures Memory-Based Cloud Architectures ( Or: Technical Challenges for OnDemand Business Software) Jan Schaffner Enterprise Platform and Integration Concepts Group Example: Enterprise Benchmarking -) *%'+,#$)

More information

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Presentation at Mellanox Theater () Dhabaleswar K. (DK) Panda - The Ohio State University panda@cse.ohio-state.edu Outline Communication

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. Cluster Networks Introduction Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. As usual, the driver is performance

More information

Operational Robustness of Accelerator Aware MPI

Operational Robustness of Accelerator Aware MPI Operational Robustness of Accelerator Aware MPI Sadaf Alam Swiss National Supercomputing Centre (CSSC) Switzerland 2nd Annual MVAPICH User Group (MUG) Meeting, 2014 Computing Systems @ CSCS http://www.cscs.ch/computers

More information

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS Adithya Bhat, Nusrat Islam, Xiaoyi Lu, Md. Wasi- ur- Rahman, Dip: Shankar, and Dhabaleswar K. (DK) Panda Network- Based Compu2ng

More information

High-Performance Training for Deep Learning and Computer Vision HPC

High-Performance Training for Deep Learning and Computer Vision HPC High-Performance Training for Deep Learning and Computer Vision HPC Panel at CVPR-ECV 18 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

OPEN MPI WITH RDMA SUPPORT AND CUDA. Rolf vandevaart, NVIDIA

OPEN MPI WITH RDMA SUPPORT AND CUDA. Rolf vandevaart, NVIDIA OPEN MPI WITH RDMA SUPPORT AND CUDA Rolf vandevaart, NVIDIA OVERVIEW What is CUDA-aware History of CUDA-aware support in Open MPI GPU Direct RDMA support Tuning parameters Application example Future work

More information

IBM Spectrum Scale IO performance

IBM Spectrum Scale IO performance IBM Spectrum Scale 5.0.0 IO performance Silverton Consulting, Inc. StorInt Briefing 2 Introduction High-performance computing (HPC) and scientific computing are in a constant state of transition. Artificial

More information

Intel Knights Landing Hardware

Intel Knights Landing Hardware Intel Knights Landing Hardware TACC KNL Tutorial IXPUG Annual Meeting 2016 PRESENTED BY: John Cazes Lars Koesterke 1 Intel s Xeon Phi Architecture Leverages x86 architecture Simpler x86 cores, higher compute

More information

Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages

Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages MACIEJ BESTA, TORSTEN HOEFLER spcl.inf.ethz.ch Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages LARGE-SCALE IRREGULAR GRAPH PROCESSING Becoming more important

More information

Towards Energy-Proportional Datacenter Memory with Mobile DRAM

Towards Energy-Proportional Datacenter Memory with Mobile DRAM Towards Energy-Proportional Datacenter Memory with Mobile DRAM Krishna Malladi 1 Frank Nothaft 1 Karthika Periyathambi Benjamin Lee 2 Christos Kozyrakis 1 Mark Horowitz 1 Stanford University 1 Duke University

More information

Locality and The Fast File System. Dongkun Shin, SKKU

Locality and The Fast File System. Dongkun Shin, SKKU Locality and The Fast File System 1 First File System old UNIX file system by Ken Thompson simple supported files and the directory hierarchy Kirk McKusick The problem: performance was terrible. Performance

More information

Advanced RDMA-based Admission Control for Modern Data-Centers

Advanced RDMA-based Admission Control for Modern Data-Centers Advanced RDMA-based Admission Control for Modern Data-Centers Ping Lai Sundeep Narravula Karthikeyan Vaidyanathan Dhabaleswar. K. Panda Computer Science & Engineering Department Ohio State University Outline

More information

Extending RDMA for Persistent Memory over Fabrics. Live Webcast October 25, 2018

Extending RDMA for Persistent Memory over Fabrics. Live Webcast October 25, 2018 Extending RDMA for Persistent Memory over Fabrics Live Webcast October 25, 2018 Today s Presenters John Kim SNIA NSF Chair Mellanox Tony Hurson Intel Rob Davis Mellanox SNIA-At-A-Glance 3 SNIA Legal Notice

More information

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G 10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G Mohammad J. Rashti and Ahmad Afsahi Queen s University Kingston, ON, Canada 2007 Workshop on Communication Architectures

More information

Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications

Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda Network Based Computing Laboratory

More information

Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations

Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations George M. Slota 1 Sivasankaran Rajamanickam 2 Kamesh Madduri 3 1 Rensselaer Polytechnic Institute, 2 Sandia National

More information

Adaptive Routing Strategies for Modern High Performance Networks

Adaptive Routing Strategies for Modern High Performance Networks Adaptive Routing Strategies for Modern High Performance Networks Patrick Geoffray Myricom patrick@myri.com Torsten Hoefler Indiana University htor@cs.indiana.edu 28 August 2008 Hot Interconnect Stanford,

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda Department of Computer Science and Engineering

More information

Birds of a Feather Presentation

Birds of a Feather Presentation Mellanox InfiniBand QDR 4Gb/s The Fabric of Choice for High Performance Computing Gilad Shainer, shainer@mellanox.com June 28 Birds of a Feather Presentation InfiniBand Technology Leadership Industry Standard

More information

R-Storm: A Resource-Aware Scheduler for STORM. Mohammad Hosseini Boyang Peng Zhihao Hong Reza Farivar Roy Campbell

R-Storm: A Resource-Aware Scheduler for STORM. Mohammad Hosseini Boyang Peng Zhihao Hong Reza Farivar Roy Campbell R-Storm: A Resource-Aware Scheduler for STORM Mohammad Hosseini Boyang Peng Zhihao Hong Reza Farivar Roy Campbell Introduction STORM is an open source distributed real-time data stream processing system

More information

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science ECSS Symposium, 12/16/14 M. L. Norman, R. L. Moore, D. Baxter, G. Fox (Indiana U), A Majumdar, P Papadopoulos, W Pfeiffer, R. S.

More information

GAIL The Graph Algorithm Iron Law

GAIL The Graph Algorithm Iron Law GAIL The Graph Algorithm Iron Law Scott Beamer, Krste Asanović, David Patterson GAP Berkeley Electrical Engineering & Computer Sciences gap.cs.berkeley.edu Graph Applications Social Network Analysis Recommendations

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Maximizing Productivity With InfiniBand-Based Clusters Gilad Shainer Director of Technical Marketing Mellanox Technologies 2008 ANSYS, Inc. All rights reserved. 1 ANSYS,

More information

Performance Analysis of LS-DYNA in Huawei HPC Environment

Performance Analysis of LS-DYNA in Huawei HPC Environment Performance Analysis of LS-DYNA in Huawei HPC Environment Pak Lui, Zhanxian Chen, Xiangxu Fu, Yaoguo Hu, Jingsong Huang Huawei Technologies Abstract LS-DYNA is a general-purpose finite element analysis

More information

Fast packet processing in the cloud. Dániel Géhberger Ericsson Research

Fast packet processing in the cloud. Dániel Géhberger Ericsson Research Fast packet processing in the cloud Dániel Géhberger Ericsson Research Outline Motivation Service chains Hardware related topics, acceleration Virtualization basics Software performance and acceleration

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

LS-DYNA Performance Benchmark and Profiling. October 2017

LS-DYNA Performance Benchmark and Profiling. October 2017 LS-DYNA Performance Benchmark and Profiling October 2017 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: LSTC, Huawei, Mellanox Compute resource

More information

Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray Platforms

Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray Platforms Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray Platforms Kristyn J. Maschhoff and Michael F. Ringenburg Cray Inc. CUG 2015 Copyright 2015 Cray Inc Legal Disclaimer Information

More information

Using Dynamic Voltage Frequency Scaling and CPU Pinning for Energy Efficiency in Cloud Compu1ng. Jakub Krzywda Umeå University

Using Dynamic Voltage Frequency Scaling and CPU Pinning for Energy Efficiency in Cloud Compu1ng. Jakub Krzywda Umeå University Using Dynamic Voltage Frequency Scaling and CPU Pinning for Energy Efficiency in Cloud Compu1ng Jakub Krzywda Umeå University How to use DVFS and CPU Pinning to lower the power consump1on during periods

More information

Irregular Graph Algorithms on Parallel Processing Systems

Irregular Graph Algorithms on Parallel Processing Systems Irregular Graph Algorithms on Parallel Processing Systems George M. Slota 1,2 Kamesh Madduri 1 (advisor) Sivasankaran Rajamanickam 2 (Sandia mentor) 1 Penn State University, 2 Sandia National Laboratories

More information

Practical Near-Data Processing for In-Memory Analytics Frameworks

Practical Near-Data Processing for In-Memory Analytics Frameworks Practical Near-Data Processing for In-Memory Analytics Frameworks Mingyu Gao, Grant Ayers, Christos Kozyrakis Stanford University http://mast.stanford.edu PACT Oct 19, 2015 Motivating Trends End of Dennard

More information

Evaluation of the Chelsio T580-CR iscsi Offload adapter

Evaluation of the Chelsio T580-CR iscsi Offload adapter October 2016 Evaluation of the Chelsio T580-CR iscsi iscsi Offload makes a difference Executive Summary As application processing demands increase and the amount of data continues to grow, getting this

More information

GraFBoost: Using accelerated flash storage for external graph analytics

GraFBoost: Using accelerated flash storage for external graph analytics GraFBoost: Using accelerated flash storage for external graph analytics Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu and Arvind MIT CSAIL Funded by: 1 Large Graphs are Found Everywhere in Nature

More information

Multi-Rail LNet for Lustre

Multi-Rail LNet for Lustre Multi-Rail LNet for Lustre Rob Mollard September 2016 The SGI logos and SGI product names used or referenced herein are either registered trademarks or trademarks of Silicon Graphics International Corp.

More information

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU Parallel Applications on Distributed Memory Systems Le Yan HPC User Services @ LSU Outline Distributed memory systems Message Passing Interface (MPI) Parallel applications 6/3/2015 LONI Parallel Programming

More information

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage Arijit Khan Nanyang Technological University (NTU), Singapore Gustavo Segovia ETH Zurich, Switzerland Donald Kossmann Microsoft

More information

Simple Parallel Biconnectivity Algorithms for Multicore Platforms

Simple Parallel Biconnectivity Algorithms for Multicore Platforms Simple Parallel Biconnectivity Algorithms for Multicore Platforms George M. Slota Kamesh Madduri The Pennsylvania State University HiPC 2014 December 17-20, 2014 Code, presentation available at graphanalysis.info

More information

Future Routing Schemes in Petascale clusters

Future Routing Schemes in Petascale clusters Future Routing Schemes in Petascale clusters Gilad Shainer, Mellanox, USA Ola Torudbakken, Sun Microsystems, Norway Richard Graham, Oak Ridge National Laboratory, USA Birds of a Feather Presentation Abstract

More information

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc Scaling to Petaflop Ola Torudbakken Distinguished Engineer Sun Microsystems, Inc HPC Market growth is strong CAGR increased from 9.2% (2006) to 15.5% (2007) Market in 2007 doubled from 2003 (Source: IDC

More information

The Future of Interconnect Technology

The Future of Interconnect Technology The Future of Interconnect Technology Michael Kagan, CTO HPC Advisory Council Stanford, 2014 Exponential Data Growth Best Interconnect Required 44X 0.8 Zetabyte 2009 35 Zetabyte 2020 2014 Mellanox Technologies

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

NAMD Performance Benchmark and Profiling. January 2015

NAMD Performance Benchmark and Profiling. January 2015 NAMD Performance Benchmark and Profiling January 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

CP2K Performance Benchmark and Profiling. April 2011

CP2K Performance Benchmark and Profiling. April 2011 CP2K Performance Benchmark and Profiling April 2011 Note The following research was performed under the HPC Advisory Council HPC works working group activities Participating vendors: HP, Intel, Mellanox

More information

Agenda. System Performance Scaling of IBM POWER6 TM Based Servers

Agenda. System Performance Scaling of IBM POWER6 TM Based Servers System Performance Scaling of IBM POWER6 TM Based Servers Jeff Stuecheli Hot Chips 19 August 2007 Agenda Historical background POWER6 TM chip components Interconnect topology Cache Coherence strategies

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

Data Processing at the Speed of 100 Gbps using Apache Crail. Patrick Stuedi IBM Research

Data Processing at the Speed of 100 Gbps using Apache Crail. Patrick Stuedi IBM Research Data Processing at the Speed of 100 Gbps using Apache Crail Patrick Stuedi IBM Research The CRAIL Project: Overview Data Processing Framework (e.g., Spark, TensorFlow, λ Compute) Spark-IO Albis Pocket

More information

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15 Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2014/15 Lecture X: Parallel Databases Topics Motivation and Goals Architectures Data placement Query processing Load balancing

More information

Overcoming the Barriers of Graphs on GPUs: Delivering Graph Analy;cs 100X Faster and 40X Cheaper

Overcoming the Barriers of Graphs on GPUs: Delivering Graph Analy;cs 100X Faster and 40X Cheaper Overcoming the Barriers of Graphs on GPUs: Delivering Graph Analy;cs 100X Faster and 40X Cheaper November 18, 2015 Super Compu3ng 2015 The Amount of Graph Data is Exploding! Billion+ Edges! 2 Graph Applications

More information

EECS750: Advanced Operating Systems. 2/24/2014 Heechul Yun

EECS750: Advanced Operating Systems. 2/24/2014 Heechul Yun EECS750: Advanced Operating Systems 2/24/2014 Heechul Yun 1 Administrative Project Feedback of your proposal will be sent by Wednesday Midterm report due on Apr. 2 3 pages: include intro, related work,

More information

Understanding and Improving the Cost of Scaling Distributed Event Processing

Understanding and Improving the Cost of Scaling Distributed Event Processing Understanding and Improving the Cost of Scaling Distributed Event Processing Shoaib Akram, Manolis Marazakis, and Angelos Bilas shbakram@ics.forth.gr Foundation for Research and Technology Hellas (FORTH)

More information

The Oracle Database Appliance I/O and Performance Architecture

The Oracle Database Appliance I/O and Performance Architecture Simple Reliable Affordable The Oracle Database Appliance I/O and Performance Architecture Tammy Bednar, Sr. Principal Product Manager, ODA 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved.

More information

Communication for PIM-based Graph Processing with Efficient Data Partition. Mingxing Zhang, Youwei Zhuo (equal contribution),

Communication for PIM-based Graph Processing with Efficient Data Partition. Mingxing Zhang, Youwei Zhuo (equal contribution), GraphP: Reducing Communication for PIM-based Graph Processing with Efficient Data Partition Mingxing Zhang, Youwei Zhuo (equal contribution), Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen, Christos Kozyrakis,

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

Comet Virtualization Code & Design Sprint

Comet Virtualization Code & Design Sprint Comet Virtualization Code & Design Sprint SDSC September 23-24 Rick Wagner San Diego Supercomputer Center Meeting Goals Build personal connections between the IU and SDSC members of the Comet team working

More information

Why you should care about hardware locality and how.

Why you should care about hardware locality and how. Why you should care about hardware locality and how. Brice Goglin TADaaM team Inria Bordeaux Sud-Ouest Agenda Quick example as an introduction Bind your processes What's the actual problem? Convenient

More information

Application Acceleration Beyond Flash Storage

Application Acceleration Beyond Flash Storage Application Acceleration Beyond Flash Storage Session 303C Mellanox Technologies Flash Memory Summit July 2014 Accelerating Applications, Step-by-Step First Steps Make compute fast Moore s Law Make storage

More information

Performance of Applications on Comet GPU Nodes Utilizing MVAPICH2-GDR. Mahidhar Tatineni MVAPICH User Group Meeting August 16, 2017

Performance of Applications on Comet GPU Nodes Utilizing MVAPICH2-GDR. Mahidhar Tatineni MVAPICH User Group Meeting August 16, 2017 Performance of Applications on Comet GPU Nodes Utilizing MVAPICH2-GDR Mahidhar Tatineni MVAPICH User Group Meeting August 16, 2017 This work supported by the National Science Foundation, award ACI-1341698.

More information

Performance Impact of Resource Contention in Multicore Systems

Performance Impact of Resource Contention in Multicore Systems Performance Impact of Resource Contention in Multicore Systems R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen, K. Taylor, R. Biswas Commodity Multicore Chips in NASA HEC 2004:

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

SNAP Performance Benchmark and Profiling. April 2014

SNAP Performance Benchmark and Profiling. April 2014 SNAP Performance Benchmark and Profiling April 2014 Note The following research was performed under the HPC Advisory Council activities Participating vendors: HP, Mellanox For more information on the supporting

More information

Feedback on BeeGFS. A Parallel File System for High Performance Computing

Feedback on BeeGFS. A Parallel File System for High Performance Computing Feedback on BeeGFS A Parallel File System for High Performance Computing Philippe Dos Santos et Georges Raseev FR 2764 Fédération de Recherche LUmière MATière December 13 2016 LOGO CNRS LOGO IO December

More information

Graph Data Management

Graph Data Management Graph Data Management Analysis and Optimization of Graph Data Frameworks presented by Fynn Leitow Overview 1) Introduction a) Motivation b) Application for big data 2) Choice of algorithms 3) Choice of

More information