Solutions to Tutorial 1 (Week 8)

Size: px
Start display at page:

Download "Solutions to Tutorial 1 (Week 8)"

Transcription

1 The University of Syney School of Mathematics an Statistics Solutions to Tutorial 1 (Week 8) MATH2069/2969: Discrete Mathematics an Graph Theory Semester 1, In each part, etermine whether the two pictures represent the same isomorphism class of graphs. If the answer is yes, label the vertices so that they become two pictures of the same graph. If the answer is no, give a reason why. (a) (b) Solution: These two pictures represent the same isomorphism class of graphs, as the following labelling of their vertices makes clear. a a e c e c (c) Solution: These two pictures represent ifferent isomorphism classes. In the first graph (or, to say it properly, a graph in the isomorphism class represente by the first picture) there are two 4-cycles, namely the inner square an the outer square, whereas in the secon graph there are three 4- cycles; isomorphic graphs must contain the same number of 4-cycles. There are many other ifferences between the pictures which coul also be use to show that they cannot epict isomorphic graphs. Solution: In the first graph (known as the Petersen graph), there are no 4- cycles, whereas in the secon graph there are, so they cannot be isomorphic. One can also show this by consiering the 5-cycles: the secon graph has only the obvious two 5-cycles, namely the outer an inner rings, whereas in Copyright c 2018 The University of Syney 1

2 () the Petersen graph any ege forms part of four 5-cycles (an there are twelve 5-cycles in total). Solution: These are both pictures of the Petersen graph(or, more properly, the Petersen isomorphism class of graphs), as is shown by the following labelling: a a b f e g b g j e j f c i h c i h 2. Draw the complements of the following two graphs. Are these complements isomorphic to each other? a e c Solution: The complements of these graphs are: a e c These complements are not isomorphic to each other, because the first has two connecte components whereas the secon is connecte (it is a 6-cycle). This is one way to show that the original two graphs are not isomorphic to each other (because if they were isomorphic to each other, their complements woul have to be isomorphic to each other also). 3. Translate each of the following problems into a problem about a graph. You on t nee to solve the problems (in fact you can t, because the specific information require is lacking); just say how to efine the graph, an what the problem is asking in terms of that graph. (a) The communications between the computers in a network go through various ethernet cables, each of which joins two computers. How many ethernet cables have to be remove before the computers are no longer all able to communicate with each other? 2

3 Solution: Define a graph whose vertex set is the set of computers, where two vertices are ajacent if there is a cable joining those computers. The problem is asking how many eges have to be remove before the graph becomes isconnecte. (b) An airline flies various routes between cities aroun the worl. Is it possible to construct a roun-trip itinerary which visits every city that the airline flies to, without ever repeating a route? Solution: Define a graph whose vertex set is the set of cities, where two vertices are ajacent if there is a route between those two cities. The problem is asking whether there is a walk in the graph which uses every vertex, returns to its starting point, an never uses an ege more than once. (c) A omino is a rectangular tile isplaying i ots near one en an j ots near the other, where i,j {0,1,,6}. Suppose we have some ominoes which on t inclue any oubles (that is, i is always ifferent from j) an which are all ifferent (so no set {i,j} appears more than once). Is it possible to lay these ominoes out in a long line so that whenever two ens touch, they have the same number of ots? Solution: Define a graph whose vertex set is {0,1,,6}, where i an j are ajacent if the omino {i,j} is in our collection. The problem is asking whether there is a walk in the graph which uses every ege exactly once. *() Of the various animals in a zoo, some pairs are compatible with each other an some pairs aren t. What is the smallest number of cages require to house all the animals, if the only constraint is that any two animals in the same cage are compatible with each other? Solution: Define a graph whose vertex set is the set of animals, where two vertices are ajacent if they are not compatible. The problem is asking for the smallest number k such that there is a function f from the vertex set to {1,2,,k} with the property that f(v) f(w) whenever v an w are ajacent. 4. Give an example of a graph which is isomorphic to its own complement. Solution: The path graph P 4 has this property: its complement has vertex set {1,2,3,4} an eges {1,3}, {2,4}, {1,4}, which also form a path of length three with en-vertices 2 an Fix an integer n 2. Let i j be two vertices of the complete graph K n. (a) How many walks of length 2 are there in K n from i to j? Solution: A walk of length 2 from i to j has the form i,k,j, where {i,k} an {k,j} are eges. Since we are ealing with the complete graph K n, this just means that i k an k j. Since there are n 2 choices of k satisfying these inequalities, the answer is n 2. (b) How many walks of length 3 are there in K n from i to j? Solution: A walk of length 2 from i to j has the form i,k 1,k 2,j, where the only properties require of k 1,k 2 {1,2,,n} are k 1 i, k 2 j, an 3

4 k 1 k 2. If k 1 = j, there are n 1 ways to choose k 2. For any of the other n 2 possible values of k 1 (other than i an j), there are n 2 ways to choose k 2. So the answer is n 1+(n 2) 2 = n 2 3n+3. *(c) Let a l be the number of walks of length l in K n from i to j. Fin a close formula for a l in terms of n. (Hint: show that the sequence a 0,a 1,a 2, satisfies a recurrence relation.) Solution: Note first that a 0 = 0 an a 1 = 1. For l 2, a walk of length l from i to j has the form i,k 1,k 2,,k l 1,j, where k 1 i, k l 1 j, an k i k i+1 for i = 1,2,,l 2. As in the previous part, we consier the cases where k 1 = j an k 1 j separately. If k 1 j (an there are n 2 possible values of k 1 which satisfy this), then the number of ways to choose k 2,,k l 1 is a l 1, because k 1,k 2,,k l 1,j is a walk of length l 1 from k 1 to j. If k 1 = j, then there are n 1 ways to choose k 2, an whichever value of k 2 is chosen, the number of ways to choose k 3,,k l 1 is a l 2. (If l = 2 this oesn t quite make sense, but the argument gives the right answer of (n 1)a 0 = 0 anyway.) So we have the recurrence relation a l = (n 2)a l 1 +(n 1)a l 2, for all l 2. This is a homogenous linear recurrence relation (from the viewpoint of varying l, n is a constant). Its characteristic polynomial x 2 (n 2)x (n 1) has roots n 1 an 1, so the general solution is a l = C 1 (n 1) l +C 2 ( 1) l, for some constants C 1 an C 2. Imposing the initial conitions a 0 = 0 an a 1 = 1 gives C 1 = 1 = C n 2, so we obtain the close formula a l = (n 1)l ( 1) l. n 6. In this question, G enotes a connecte graph with at least 3 vertices. A vertex v of G is calle a cut vertex if the graph G v obtaine by removing it is not connecte. (a) If G is the cycle graph C n, how many cut vertices oes it have? Solution: If you remove any vertex from C n, you get a graph isomorphic to the path graph P n 1, which is connecte. So C n has no cut vertices. (b) If G is the path graph P n, how many cut vertices oes it have? Solution: If you remove one of the en-vertices from P n, you get a graph isomorphictothepathgraphp n 1, whichisconnecte; ifyouremoveanyone of the other vertices, i.e. 2,3,,n 1, you get a graph with two connecte components. So P n has n 2 cut vertices. (c) Prove that if G contains a brige, then it contains a cut vertex. Is the converse true? Solution: Supposethattheege{v,w}isabrigeofG. Theninthegraph G {v,w}, the vertices v an w belong to ifferent connecte components, say G 1 an G 2. Now the graph G v is a subgraph of G {v,w}, which contains all of G 2 as one connecte component, an all of G 1 v as another 4

5 collection of connecte components. Thus G v is not connecte, except in the case when G 1 v has no vertices, i.e. G 1 consists only of v. Similarly G w is not connecte, except in the case when G 2 consists only of w. Since G has at least 3 vertices, it is impossible for both these exceptions to hol, so either v or w must be a cut vertex of G. The converse is not true: the following connecte graph has a cut vertex v, but no briges. v *() Prove that v is a cut vertex of G if an only if there are two other vertices u an w of G such that v belongs to every path between u an w. Solution: If v is a cut vertex, then G v is not connecte, so there must be two vertices u an w which are not linke to each other in G v. So if we choose any path between u an w in G, then this path must not belong to G v, an the only way that can happen is if v belongs to the path. Conversely, if there are vertices u an w such that v belongs to every path in G between u an w, then there is no path in G v between u an w, so u an w are not linke in G v, which is therefore not connecte. *7. Prove that, for any graph G with at least one vertex, either G is connecte or its complement G is connecte. Solution: It suffices to prove that if G is not connecte, then G is. Suppose that G has connecte components G 1,G 2,,G s where s 2, an let V i enote the vertex set of G i. Then for i j, any vertices v i V i an v j V j are non-ajacent in G, so they are ajacent in G. If v i an v i are two vertices in the same V i, then for any j i an v j V j, the walk v i,v j,v i shows that v i is linke to v i in G. So G is connecte (an in fact any two vertices are joine by a walk of length 2). 5

Solutions to Tutorial 2 (Week 9)

Solutions to Tutorial 2 (Week 9) The University of Syney Shool of Mathematis an Statistis Solutions to Tutorial (Week 9) MATH09/99: Disrete Mathematis an Graph Theory Semester, 0. Determine whether eah of the following sequenes is the

More information

1 Surprises in high dimensions

1 Surprises in high dimensions 1 Surprises in high imensions Our intuition about space is base on two an three imensions an can often be misleaing in high imensions. It is instructive to analyze the shape an properties of some basic

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008 The University of Sydney MATH99/09 Graph Theory Tutorial (Week 9) 00. Show that the graph on the left is Hamiltonian, but that the other two are not. To show that the graph is Hamiltonian, simply find

More information

Discrete Math: Selected Homework Problems

Discrete Math: Selected Homework Problems Discrete Math: Selected Homework Problems 2006 2.1 Prove: if d is a common divisor of a and b and d is also a linear combination of a and b then d is a greatest common divisor of a and b. (5 3.1 Prove:

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 8, 2014 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

arxiv: v2 [math.co] 5 Jun 2018

arxiv: v2 [math.co] 5 Jun 2018 Some useful lemmas on the ege Szege inex arxiv:1805.06578v [math.co] 5 Jun 018 Shengjie He 1 1. Department of Mathematics, Beijing Jiaotong University, Beijing, 100044, China Abstract The ege Szege inex

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

ASSIGNMENT 4 SOLUTIONS

ASSIGNMENT 4 SOLUTIONS MATH 71 ASSIGNMENT SOLUTIONS 1. If F : X X is a function, define f (x) to be (f f)(x), and inductively define f k (x) (f f k 1 )(x) for each integer k. (So f (x) (f f )(x) f(f(f(x))) for instance.) We

More information

MC302 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/13 68 points + 6 extra credit points

MC302 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/13 68 points + 6 extra credit points MC02 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/1 68 points + 6 extra credit points 1. [CH] p. 1, #1... a. In each case, for the two graphs you say are isomorphic, justify it by labeling their vertices

More information

PROBLEM SET 1 SOLUTIONS MAS341: GRAPH THEORY 1. QUESTION 1

PROBLEM SET 1 SOLUTIONS MAS341: GRAPH THEORY 1. QUESTION 1 PROBLEM SET 1 SOLUTIONS MAS341: GRAPH THEORY 1. QUESTION 1 Find a Hamiltonian cycle in the following graph: Proof. Can be done by trial an error. Here we find the path using some helpful observations.

More information

Let v be a vertex primed by v i (s). Then the number f(v) of neighbours of v which have

Let v be a vertex primed by v i (s). Then the number f(v) of neighbours of v which have Let v be a vertex primed by v i (s). Then the number f(v) of neighbours of v which have been red in the sequence up to and including v i (s) is deg(v)? s(v), and by the induction hypothesis this sequence

More information

The Six Color Theorem

The Six Color Theorem The Six Color Theorem The Six Color Theorem Theorem. Let G be a planar graph. There exists a proper -coloring of G. Proof. Let G be a the smallest planar graph (by number of vertices) that has no proper

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 3, 2008 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

Math 221 Final Exam Review

Math 221 Final Exam Review Math 221 Final Exam Review Preliminary comment: Some of these problems a formulated using language and structures from graph theory. However they are generally self contained; no theorems from graph theory

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

Component Connectivity of Generalized Petersen Graphs

Component Connectivity of Generalized Petersen Graphs March 11, 01 International Journal of Computer Mathematics FeHa0 11 01 To appear in the International Journal of Computer Mathematics Vol. 00, No. 00, Month 01X, 1 1 Component Connectivity of Generalized

More information

Course Code : MCS-033 Course Title : Advanced Discrete Mathematics Assignment Number : MCA(III)/033/Assignment/2018-19 Maximum Marks : 100 Weightage : 25% Last Dates for Submission : 15th October, 2018

More information

Discrete Mathematics I So Practice Sheet Solutions 1

Discrete Mathematics I So Practice Sheet Solutions 1 Discrete Mathematics I So 2016 Tibor Szabó Shagnik Das Practice Sheet Solutions 1 Provided below are possible solutions to the questions from the practice sheet issued towards the end of the course. Exercise

More information

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring Math 443/543 Graph Theory Notes 5: Planar graphs and coloring David Glickenstein October 10, 2014 1 Planar graphs The Three Houses and Three Utilities Problem: Given three houses and three utilities, can

More information

Lecture 1 September 4, 2013

Lecture 1 September 4, 2013 CS 84r: Incentives an Information in Networks Fall 013 Prof. Yaron Singer Lecture 1 September 4, 013 Scribe: Bo Waggoner 1 Overview In this course we will try to evelop a mathematical unerstaning for the

More information

Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm. Good Luck!!

Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm. Good Luck!! Final Exam Math 38 Graph Theory Spring 2017 Due on Friday, June 2, at 12:50 pm NAME: Instructions: You can use the textbook (Doug West s Introduction to Graph Theory, without solutions), your notes from

More information

Star Decompositions of the Complete Split Graph

Star Decompositions of the Complete Split Graph University of Dayton ecommons Honors Theses University Honors Program 4-016 Star Decompositions of the Complete Split Graph Adam C. Volk Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 1. Draw Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 (i) a simple graph. A simple graph has a non-empty vertex set and no duplicated edges. For example sketch G with V

More information

CS 106 Winter 2016 Craig S. Kaplan. Module 01 Processing Recap. Topics

CS 106 Winter 2016 Craig S. Kaplan. Module 01 Processing Recap. Topics CS 106 Winter 2016 Craig S. Kaplan Moule 01 Processing Recap Topics The basic parts of speech in a Processing program Scope Review of syntax for classes an objects Reaings Your CS 105 notes Learning Processing,

More information

Partitioning Complete Multipartite Graphs by Monochromatic Trees

Partitioning Complete Multipartite Graphs by Monochromatic Trees Partitioning Complete Multipartite Graphs by Monochromatic Trees Atsushi Kaneko, M.Kano 1 and Kazuhiro Suzuki 1 1 Department of Computer and Information Sciences Ibaraki University, Hitachi 316-8511 Japan

More information

Exercises of PIV. incomplete draft, version 0.0. October 2009

Exercises of PIV. incomplete draft, version 0.0. October 2009 Exercises of PIV incomplete raft, version 0.0 October 2009 1 Images Images are signals efine in 2D or 3D omains. They can be vector value (e.g., color images), real (monocromatic images), complex or binary

More information

14 More Graphs: Euler Tours and Hamilton Cycles

14 More Graphs: Euler Tours and Hamilton Cycles 14 More Graphs: Euler Tours and Hamilton Cycles 14.1 Degrees The degree of a vertex is the number of edges coming out of it. The following is sometimes called the First Theorem of Graph Theory : Lemma

More information

Infinite locally random graphs

Infinite locally random graphs Infinite locally random graphs Pierre Charbit and Alex D. Scott Abstract Motivated by copying models of the web graph, Bonato and Janssen [3] introduced the following simple construction: given a graph

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 3 Solutions February 14, 2013 Introduction to Graph Theory, West Section 2.1: 37, 62 Section 2.2: 6, 7, 15 Section 2.3: 7, 10, 14 DO NOT RE-DISTRIBUTE

More information

Symmetric Product Graphs

Symmetric Product Graphs Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-20-2015 Symmetric Product Graphs Evan Witz Follow this and additional works at: http://scholarworks.rit.edu/theses

More information

1 Some Solution of Homework

1 Some Solution of Homework Math 3116 Dr. Franz Rothe May 30, 2012 08SUM\3116_2012h1.tex Name: Use the back pages for extra space 1 Some Solution of Homework Proposition 1 (Counting labeled trees). There are n n 2 different labeled

More information

Generalized Edge Coloring for Channel Assignment in Wireless Networks

Generalized Edge Coloring for Channel Assignment in Wireless Networks Generalize Ege Coloring for Channel Assignment in Wireless Networks Chun-Chen Hsu Institute of Information Science Acaemia Sinica Taipei, Taiwan Da-wei Wang Jan-Jan Wu Institute of Information Science

More information

Politehnica University of Timisoara Mobile Computing, Sensors Network and Embedded Systems Laboratory. Testing Techniques

Politehnica University of Timisoara Mobile Computing, Sensors Network and Embedded Systems Laboratory. Testing Techniques Politehnica University of Timisoara Mobile Computing, Sensors Network an Embee Systems Laboratory ing Techniques What is testing? ing is the process of emonstrating that errors are not present. The purpose

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Graph theory - solutions to problem set 1

Graph theory - solutions to problem set 1 Graph theory - solutions to problem set 1 1. (a) Is C n a subgraph of K n? Exercises (b) For what values of n and m is K n,n a subgraph of K m? (c) For what n is C n a subgraph of K n,n? (a) Yes! (you

More information

Mathematics Masters Examination

Mathematics Masters Examination Mathematics Masters Examination OPTION 4 Fall 2011 COMPUTER SCIENCE??TIME?? NOTE: Any student whose answers require clarification may be required to submit to an oral examination. Each of the twelve numbered

More information

On the automorphism group of the m-coloured random graph

On the automorphism group of the m-coloured random graph On the automorphism group of the m-coloured random graph Peter J. Cameron and Sam Tarzi School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, UK p.j.cameron@qmul.ac.uk

More information

CSE 373 Analysis of Algorithms, Fall Homework #3 Solutions Due Monday, October 18, 2003

CSE 373 Analysis of Algorithms, Fall Homework #3 Solutions Due Monday, October 18, 2003 Piyush Kumar CSE 373 Analysis of Algorithms, Fall 2003 Homework #3 Solutions Due Monday, October 18, 2003 Problem 1 Find an optimal parenthesization of a matrix chain product whose sequence of dimensions

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it.

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it. 1 Introduction There are hundreds of NP-complete problems. For a recent selection see http://www. csc.liv.ac.uk/ ped/teachadmin/comp202/annotated_np.html Also, see the book M. R. Garey and D. S. Johnson.

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions Basic Combinatorics Math 40210, Section 01 Fall 2012 Homework 4 Solutions 1.4.2 2: One possible implementation: Start with abcgfjiea From edge cd build, using previously unmarked edges: cdhlponminjkghc

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

Week 7: Introduction to Graph Theory. 24 and 26 October, 2018

Week 7: Introduction to Graph Theory. 24 and 26 October, 2018 (1/32) MA284 : Discrete Mathematics Week 7: Introduction to Graph Theory. http://www.maths.nuigalway.ie/ niall/ma284/ 24 and 26 October, 2018 1 Graph theory A network of mathematicians Water-Electricity-Broadband

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

Lecture 20 : Trees DRAFT

Lecture 20 : Trees DRAFT CS/Math 240: Introduction to Discrete Mathematics 4/12/2011 Lecture 20 : Trees Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we discussed graphs. Today we continue this discussion,

More information

Solutions to Assignment# 4

Solutions to Assignment# 4 Solutions to Assignment# 4 Liana Yepremyan 1 Nov.12: Text p. 651 problem 1 Solution: (a) One example is the following. Consider the instance K = 2 and W = {1, 2, 1, 2}. The greedy algorithm would load

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( )

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( ) Calculating exact values of without using recurrence relations This note describes an algorithm for calculating exact values of, the number of partitions of into distinct positive integers each less than

More information

The Reconstruction of Graphs. Dhananjay P. Mehendale Sir Parashurambhau College, Tilak Road, Pune , India. Abstract

The Reconstruction of Graphs. Dhananjay P. Mehendale Sir Parashurambhau College, Tilak Road, Pune , India. Abstract The Reconstruction of Graphs Dhananay P. Mehenale Sir Parashurambhau College, Tila Roa, Pune-4030, Inia. Abstract In this paper we iscuss reconstruction problems for graphs. We evelop some new ieas lie

More information

BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES

BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES OLIVIER BERNARDI AND ÉRIC FUSY Abstract. We present bijections for planar maps with bounaries. In particular, we obtain bijections for triangulations an quarangulations

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Lecture 4: Walks, Trails, Paths and Connectivity

Lecture 4: Walks, Trails, Paths and Connectivity Lecture 4: Walks, Trails, Paths and Connectivity Rosa Orellana Math 38 April 6, 2015 Graph Decompositions Def: A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapters 9 By Dr. Dalia M. Gil, Ph.D. Graphs Graphs are discrete structures consisting of vertices and edges that connect these vertices. Graphs A graph is a pair (V,

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path.

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path. 3 Matchings Hall s Theorem Matching: A matching in G is a subset M E(G) so that no edge in M is a loop, and no two edges in M are incident with a common vertex. A matching M is maximal if there is no matching

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

Kinematic Analysis of a Family of 3R Manipulators

Kinematic Analysis of a Family of 3R Manipulators Kinematic Analysis of a Family of R Manipulators Maher Baili, Philippe Wenger an Damien Chablat Institut e Recherche en Communications et Cybernétique e Nantes, UMR C.N.R.S. 6597 1, rue e la Noë, BP 92101,

More information

Generalized Edge Coloring for Channel Assignment in Wireless Networks

Generalized Edge Coloring for Channel Assignment in Wireless Networks TR-IIS-05-021 Generalize Ege Coloring for Channel Assignment in Wireless Networks Chun-Chen Hsu, Pangfeng Liu, Da-Wei Wang, Jan-Jan Wu December 2005 Technical Report No. TR-IIS-05-021 http://www.iis.sinica.eu.tw/lib/techreport/tr2005/tr05.html

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings.

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings. 1: Draw K 7 on a torus with no edge crossings. A quick calculation reveals that an embedding of K 7 on the torus is a -cell embedding. At that point, it is hard to go wrong if you start drawing C 3 faces,

More information

MATH20902: Discrete Maths, Solutions to Problem Set 1. These solutions, as well as the corresponding problems, are available at

MATH20902: Discrete Maths, Solutions to Problem Set 1. These solutions, as well as the corresponding problems, are available at MATH20902: Discrete Maths, Solutions to Problem Set 1 These solutions, as well as the corresponding problems, are available at https://bit.ly/mancmathsdiscrete.. (1). The upper panel in the figure below

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

Assignment # 4 Selected Solutions

Assignment # 4 Selected Solutions Assignment # 4 Selected Solutions Problem 2.3.3 Let G be a connected graph which is not a tree (did you notice this is redundant?) and let C be a cycle in G. Prove that the complement of any spanning tree

More information

Definition 1.1. A matching M in a graph G is called maximal if there is no matching M in G so that M M.

Definition 1.1. A matching M in a graph G is called maximal if there is no matching M in G so that M M. 1 Matchings Before, we defined a matching as a set of edges no two of which share an end in common. Suppose that we have a set of jobs and people and we want to match as many jobs to people as we can.

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

Solutions to In Class Problems Week 5, Wed.

Solutions to In Class Problems Week 5, Wed. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science October 5 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised October 5, 2005, 1119 minutes Solutions

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 (1/25) MA284 : Discrete Mathematics Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 1 Definitions 1. A graph 2. Paths and connected graphs 3. Complete graphs 4. Vertex degree

More information

2 hours THE UNIVERSITY OF MANCHESTER. 22 May :00 16:00

2 hours THE UNIVERSITY OF MANCHESTER. 22 May :00 16:00 2 hours THE UNIVERSITY OF MANCHESTER DISCRETE MATHEMATICS 22 May 2015 14:00 16:00 Answer ALL THREE questions in Section A (30 marks in total) and TWO of the THREE questions in Section B (50 marks in total).

More information

CUT VERTICES IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS

CUT VERTICES IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS CUT VERTICES IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS M. AXTELL, N. BAETH, AND J. STICKLES Abstract. A cut vertex of a connected graph is a vertex whose removal would result in a graph having

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

arxiv: v1 [math.co] 15 Dec 2017

arxiv: v1 [math.co] 15 Dec 2017 Rectilinear Crossings in Complete Balance -Partite -Uniform Hypergraphs Rahul Gangopahyay Saswata Shannigrahi arxiv:171.05539v1 [math.co] 15 Dec 017 December 18, 017 Abstract In this paper, we stuy the

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

GEOMETRY & INEQUALITIES. (1) State the Triangle Inequality. In addition, give an argument explaining why it should be true.

GEOMETRY & INEQUALITIES. (1) State the Triangle Inequality. In addition, give an argument explaining why it should be true. GEOMETRY & INEQUALITIES LAMC INTERMEDIATE GROUP - 2/23/14 The Triangle Inequality! (1) State the Triangle Inequality. In addition, give an argument explaining why it should be true. (2) Now we will prove

More information

Math 575 Exam 3. (t). What is the chromatic number of G?

Math 575 Exam 3. (t). What is the chromatic number of G? Math 575 Exam 3 Name 1 (a) Draw the Grötsch graph See your notes (b) Suppose that G is a graph having 6 vertices and 9 edges and that the chromatic polynomial of G is given below Fill in the missing coefficients

More information

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles 2D Kinematics Consier a robotic arm. We can sen it commans like, move that joint so it bens at an angle θ. Once we ve set each joint, that s all well an goo. More interesting, though, is the question of

More information

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula Homework 1 MTH 4590 Spring 2018 1. Chapter 1, # 1: Prove that for all sets,, C, the formula ( C) = ( ) ( C) is true. Proof : It suffices to show that ( C) ( ) ( C) and ( ) ( C) ( C). ssume that x ( C),

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

PETAL GRAPHS. Vellore, INDIA

PETAL GRAPHS. Vellore, INDIA International Journal of Pure and Applied Mathematics Volume 75 No. 3 2012, 269-278 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu PETAL GRAPHS V. Kolappan 1, R. Selva Kumar 2 1,2

More information

Graphs and networks Mixed exercise

Graphs and networks Mixed exercise Graphs and networks Mixed exercise E.g. 2 a, e and h are isomorphic. b and i are isomorphic. c and g are isomorphic. d and f are isomorphic. 3 a b i ii iii Pearson Education Ltd 208. Copying permitted

More information

On Voltage Graphs and Cages

On Voltage Graphs and Cages On Voltage Graphs and Cages Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809 g-exoo@indstate.edu April 4, 2003 Abstract Using voltage graphs,

More information

An Investigation of the Planarity Condition of Grötzsch s Theorem

An Investigation of the Planarity Condition of Grötzsch s Theorem Le Chen An Investigation of the Planarity Condition of Grötzsch s Theorem The University of Chicago: VIGRE REU 2007 July 16, 2007 Abstract The idea for this paper originated from Professor László Babai

More information

Lab work #8. Congestion control

Lab work #8. Congestion control TEORÍA DE REDES DE TELECOMUNICACIONES Grao en Ingeniería Telemática Grao en Ingeniería en Sistemas e Telecomunicación Curso 2015-2016 Lab work #8. Congestion control (1 session) Author: Pablo Pavón Mariño

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

Packing Edge-Disjoint Triangles in Given Graphs

Packing Edge-Disjoint Triangles in Given Graphs Electronic Colloquium on Computational Complexity, Report No. 13 (01) Packing Edge-Disjoint Triangles in Given Graphs Tomás Feder Carlos Subi Abstract Given a graph G, we consider the problem of finding

More information

4.2 Implicit Differentiation

4.2 Implicit Differentiation 6 Chapter 4 More Derivatives 4. Implicit Differentiation What ou will learn about... Implicitl Define Functions Lenses, Tangents, an Normal Lines Derivatives of Higher Orer Rational Powers of Differentiable

More information

Lecture 4: Petersen Graph 2/2; also, Friendship is Magic!

Lecture 4: Petersen Graph 2/2; also, Friendship is Magic! Spectral Graph Theory Instructor: Padraic Bartlett Lecture 4: Petersen Graph /; also, Friendship is Magic! Week 4 Mathcamp 0 We did a ton of things yesterday! Here s a quick recap:. If G is a n, k, λ,

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information