Solutions to Tutorial 2 (Week 9)

Size: px
Start display at page:

Download "Solutions to Tutorial 2 (Week 9)"

Transcription

1 The University of Syney Shool of Mathematis an Statistis Solutions to Tutorial (Week 9) MATH09/99: Disrete Mathematis an Graph Theory Semester, 0. Determine whether eah of the following sequenes is the egree sequene of a graph. If so, raw a piture of suh a graph. (a) (,,) Solution: Yes, this is the egree sequene of the yle graph C (or any graph isomorphi to it): (b) (0,,,) Solution: This sequene is not graphi. If there were a graph G with egree sequene (0,,,), then G woul have verties, one of whih (the one with egree 0) is not ajaent to any other vertex, an one of whih (the one with egree ) is ajaent to every other vertex. This is a ontraition. () (,,,,,) Solution: Sine the sum = is o, this annot be the egree sequene of a graph. (The Han-shaking Lemma implies that the sum of the egrees is always even.) () (,,,,) Solution: This is not graphi, beause in a graph with verties, the egree of any vertex is at most. (e) (,,,,) Solution: This is the egree sequene of a graph with the following piture (this is the isomorphism lass of the omplete bipartite graph K, ): (f) (,,,) Solution: If this were the egree sequene of a graph G, then G woul have verties, three of whih were ajaent to all other verties; it is then impossible for the fourth vertex not to be ajaent to the other three also. (g) (,,,,,) Solution: Aoring to the reursive rule given in letures, (,,,,,) is graphi if an only if (,,,,) is graphi, whih in turn hols if an only if (0,0,,) is graphi. But (0,0,,) is the egree sequene of a graph with verties an one ege, so the original sequene is graphi also. To Copyright 0 The University of Syney

2 onstrut a graph with egree sequene (,,,,,), we an start with a graph with egree sequene (0,0,,): then a another vertex an join it to the appropriate existing verties to reate a graph with egree sequene (,,,,): then a another vertex an join it to the appropriate existing verties to reate the esire graph: (h) (,,,,,,) Solution: Aoring to the reursive rule, (,,,,,,) is graphi if an only if (0,,,,,) is graphi; but the latter sequene is not graphi, beause the vertex of egree nees other verties of nonzero egree to be ajaent to.. Suppose that G has verties, an every vertex has egree at least. (a) Is it possible that G is regular of egree? Solution: No, beause thenthe sumof theegrees woul be =, whereas we know by the Han-shaking Lemma that the sum of the egrees is always even. (b) Prove that G is onnete. Solution: If G were not onnete, then G woul have onnete omponents G,G,,G s for some s. There must be one of these onnete omponents, say G i, whih has at most verties, beause if every G i ha at least verties, then the total number of verties woul be at least s =, ontrary to assumption. But if G i has at most verties, then every vertex of G i has egree at most 0, again ontrary to assumption. This ontraition proves that G must be onnete.. For eah of the following graphs, either fin an Eulerian iruit, fin an Eulerian trail, or explain why neither exists. (a) b e f a Solution: Sine every vertex has even egree, we know that there must be an Eulerian iruit. One of many suh iruits is the following walk: a,b,,a,e,f,,e,b,f,,,a.

3 (b) () e j i f a g h Solution: Sine there are more than two verties of o egree (in fat, every vertex has o egree), there annot be either an Eulerian iruit or an Eulerian trail in the Petersen graph. a b b e Solution: Sine there are exatly two verties of o egree, namely b an, there is no Eulerian iruit but there is an Eulerian trail whih starts at b an finishes at. An example of suh a trail is the following: f b,,a,b,,e,f,,. *() a b e f g h Solution: Sine there are exatly two verties of o egree, namely f an k, there is no Eulerian iruit but there is an Eulerian trail whih starts at f an finishes at k. To fin suh a trail, we an a the ege {f,k} to make the graph Eulerian, an then fin an Eulerian iruit in the moifie graph by the metho of removing the eges of yles. In the following iagram, the yles with verties f,,a,e an f,g,i,l,k are otte to iniate that they have been remove. a b i f g h e i l It is easy to fin Eulerian iruits in the omponents of the subgraph whih remains: for example,,,e,b, an g,h,j,k,i,h,k,g. We an then inorporate these Eulerian iruits into the remove yles to obtain one big Eulerian iruit: f,,,e,b,,a,e,f,g,h,j,k,i,h,k,g,i,l,k,f. Removing the extraneous ege {f, k} (whih is the last one use in this iruit) we obtain an Eulerian trail in the original graph: f,,,e,b,,a,e,f,g,h,j,k,i,h,k,g,i,l,k. j k l j k

4 . Fin the number of verties, the number of eges, an the egrees of: (a) the omplete bipartite graph K p,q ; Solution: The number of verties is p+q, an the number of eges is pq. Theverties,,,pallhaveegreeq, antheverties p+,p+,,p+q all have egree p. (b) the ube graph Q m. Solution: Remember the efinition of Q m : the verties are the m-tuples (x,x,,x m ) where every x i is either 0 or, an two suh m-tuples are ajaent if an only if they iffer in exatly one oorinate. The number of verties is learly m. Every vertex has egree m, beause there are m hoies for whih oorinate to hange. Hene by the Han-shaking Lemma the number of eges is mm = m m. *. What is the smallest number n for whih there exist two non-isomorphi graphs with n verties having the same egree sequene? Solution: The answer is. From the lassifiation of graphs with at most verties isusse in letures, it an be seen that for n the egree sequene etermines the isomorphism lass of the graph uniquely. However, there are two nonisomorphi graphs with verties whih both have egree sequene (,,,,): namely, the path graph P an the non-onnete graph whose two omponents are a path P an a yle C.. Determine whether the graphs represente by the following pitures are Hamiltonian or not. Explain your answers. (a) (b) Solution: This graph is Hamiltonian; a spanning yle is obtaine by eleting the top ege. Solution: This graph (the omplete bipartite graph K, ) is not Hamiltonian. Sine it has verties an eges, any spanning yle woul have to be obtaine by eleting a single ege; but it is lear that eleting any ege of this graph will not result in a yle. Alternatively, if you imagine the top three verties as oloure white an the bottom two as oloure blak, then every ege joins a white vertex to a blak vertex, so a spanning yle woul have to alternate between white an blak verties, whih is impossible as there are not the same number of eah.

5 () *() Solution: This graph is not Hamiltonian. If there was a spanning yle, it woul have to ontain 0 eges (i.e. all but two of the eges of the graph). Moreover, it woul have to ontain two of the eges ening at eah vertex. Consiering all the verties of egree, we see that this fores the yle to ontain all the eges in the outer an inner ring; this alreay onstitutes 0 eges, but they o not form a single yle. Solution: This graph is Hamiltonian. To fin a spanning yle, we an make an arbitrary hoie of whih two eges ening at the entral vertex are inlue, an then buil the rest of the yle by ontinuing to ensure that at eah vertex, two eges ening there are inlue. Here is one example of a spanning yle: *(e) Solution: This graph is not Hamiltonian. It is a bipartite graph; in other wors, the verties an be oloure white an blak in suh a way that every ege joins a white vertex to a blak vertex: Any spanning yle woul have to alternate between white an blak verties. But there are white verties an blak verties, so this is impossible.

6 *(f) Solution: This graph is not Hamiltonian. If there were a spanning yle, then for every one of the verties of egree in the mile ring, the spanning yle woul have to use both of the eges ening at that vertex. This means that it woul have to use every ege of the mile ring, an then oul not use any of the eges joining the mile ring to the outer ring an the inner ring. So it woul be impossible for it to ontain all the verties.. Show that a Hamiltonian graph annot ontain a brige. Solution: Suppose for a ontraition that G was a Hamiltonian graph ontaining a brige {v,w}. Let C be a spanning yle of G. Sine {v,w} is a brige, it is not ontaine in any yle, so it is not an ege of C. Thus C is a spanning yle of the graph G {v,w}. But the latter graph is not onnete, so we have our ontraition.. A lub plans a series of inners in whih the members will be sitting aroun a roun table. They want the seating plans for these inners to have the property that every member sits next to two people they have never sat next to before. For instane, if there are five members, they an hol two inners with the following seating plans: After these two inners ever member has sat next to the other four, so there annot be any further inners. (a) If there are members, fin the maximum possible number of inners the lub oul hol. Solution: At every inner, member sits next to two new members; there are other members in total, so there oul not be any more than inners. To see that the answer is, we nee to atually fin seating plans with the

7 require property. Here is one solution: **(b) Repeat the previous part where is replae by any o number n. Solution: As in the previous part, we see that there annot be more than n inners; the question is whether it is possible to hol this many. Eah inner orrespons to a spanning yle of K n, so we an rephrase the question ( in graph-theoreti terms as follows: is it possible to partition the n ) eges of Kn into n subsets, eah of whih forms a spanning yle? The answer is yes, an one suh partition is efine as follows. It is slightly easier to work with K m where m = n is even: it is enough to show that we an fin m spanning paths of K m whih have no eges in ommon, an no en-verties in ommon. (Then we an join the extra vertex n to the en-verties of eah path to get our spanning yles of K n.) We an imagine the m verties of K m evenly istribute aroun the irumferene of a irle, an numbere in anti-lokwise orer. For example, here is a piture of the ase m =, with a partiular spanning path shown: If we rotate the eges of this spanning path aroun by angles of π, π, an, we get three other spanning paths: π These four spanning paths o not share any eges or en-verties, beause the smallest rotationneee to take anege of the original pathinto another ege of that path is a half-turn, i.e. rotation by π. The same onstrution works for a general even number m. The spanning path with verties orere,,m,,m,,m,, m, m+, m+ has the property that its eges stritly inrease in length up to the mile, an then

8 the eges after the mile are the rotations by π of the eges before the mile, in reverse orer. So the smallest rotation neee to take an ege into another ege is rotation by π, whih means that the spanning paths obtaine from this one by rotation by kπ for 0 k < m have no eges or m en-verties in ommon.

Solutions to Tutorial 1 (Week 8)

Solutions to Tutorial 1 (Week 8) The University of Syney School of Mathematics an Statistics Solutions to Tutorial 1 (Week 8) MATH2069/2969: Discrete Mathematics an Graph Theory Semester 1, 2018 1. In each part, etermine whether the two

More information

1 Disjoint-set data structure.

1 Disjoint-set data structure. CS 124 Setion #4 Union-Fin, Greey Algorithms 2/20/17 1 Disjoint-set ata struture. 1.1 Operations Disjoint-set ata struture enale us to effiiently perform operations suh as plaing elements into sets, querying

More information

Math 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes

Math 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes Rea Learning Goals, p. 17 text. Math 01 Unit 3: ute Triangle Trigonometry h. 3 Notes 3.1 Exploring Sie-ngle Relationships in ute Triangles (0.5 lass) Rea Goal p. 130 text. Outomes: 1. Define an aute triangle.

More information

The Happy Ending Problem

The Happy Ending Problem The Happy Ending Problem Neeldhara Misra STATUTORY WARNING This doument is a draft version 1 Introdution The Happy Ending problem first manifested itself on a typial wintery evening in 1933 These evenings

More information

Colouring contact graphs of squares and rectilinear polygons de Berg, M.T.; Markovic, A.; Woeginger, G.

Colouring contact graphs of squares and rectilinear polygons de Berg, M.T.; Markovic, A.; Woeginger, G. Colouring ontat graphs of squares and retilinear polygons de Berg, M.T.; Markovi, A.; Woeginger, G. Published in: nd European Workshop on Computational Geometry (EuroCG 06), 0 Marh - April, Lugano, Switzerland

More information

Enumerating pseudo-triangulations in the plane

Enumerating pseudo-triangulations in the plane Enumerating pseuo-triangulations in the plane Sergey Bereg Astrat A pseuo-triangle is a simple polygon with exatly three onvex verties. A pseuo-triangulation of a finite point set S in the plane is a partition

More information

Directed Rectangle-Visibility Graphs have. Abstract. Visibility representations of graphs map vertices to sets in Euclidean space and

Directed Rectangle-Visibility Graphs have. Abstract. Visibility representations of graphs map vertices to sets in Euclidean space and Direted Retangle-Visibility Graphs have Unbounded Dimension Kathleen Romanik DIMACS Center for Disrete Mathematis and Theoretial Computer Siene Rutgers, The State University of New Jersey P.O. Box 1179,

More information

1 The Knuth-Morris-Pratt Algorithm

1 The Knuth-Morris-Pratt Algorithm 5-45/65: Design & Analysis of Algorithms September 26, 26 Leture #9: String Mathing last hanged: September 26, 27 There s an entire field dediated to solving problems on strings. The book Algorithms on

More information

Dynamic Algorithms Multiple Choice Test

Dynamic Algorithms Multiple Choice Test 3226 Dynami Algorithms Multiple Choie Test Sample test: only 8 questions 32 minutes (Real test has 30 questions 120 minutes) Årskort Name Eah of the following 8 questions has 4 possible answers of whih

More information

LAB 4: Operations on binary images Histograms and color tables

LAB 4: Operations on binary images Histograms and color tables LAB 4: Operations on binary images Histograms an olor tables Computer Vision Laboratory Linköping University, Sween Preparations an start of the lab system You will fin a ouple of home exerises (marke

More information

Acyclic Coloring with Few Division Vertices

Acyclic Coloring with Few Division Vertices Ayli Coloring with Few Division Verties Debajyoti Mondal, Rahnuma Islam Nishat, Md. Saidur Rahman, and Sue Whitesides Department of Computer Siene, University of Manitoba Department of Computer Siene,

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008 The University of Sydney MATH99/09 Graph Theory Tutorial (Week 9) 00. Show that the graph on the left is Hamiltonian, but that the other two are not. To show that the graph is Hamiltonian, simply find

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Grade 6. Mathematics. Student Booklet SPRING 2009 RELEASED ASSESSMENT QUESTIONS. Assessment of Reading, Writing and Mathematics, Junior Division

Grade 6. Mathematics. Student Booklet SPRING 2009 RELEASED ASSESSMENT QUESTIONS. Assessment of Reading, Writing and Mathematics, Junior Division Grade 6 Assessment of Reading, Writing and Mathematis, Junior Division Student Booklet Mathematis SPRING 2009 RELEASED ASSESSMENT QUESTIONS Please note: The format of these booklets is slightly different

More information

This fact makes it difficult to evaluate the cost function to be minimized

This fact makes it difficult to evaluate the cost function to be minimized RSOURC LLOCTION N SSINMNT In the resoure alloation step the amount of resoures required to exeute the different types of proesses is determined. We will refer to the time interval during whih a proess

More information

LAMC Junior Circle April 15, Constructing Triangles.

LAMC Junior Circle April 15, Constructing Triangles. LAMC Junior Cirle April 15, 2012 Olga Radko radko@math.ula.edu Oleg Gleizer oleg1140@gmail.om Construting Triangles. Copyright: for home use only. This handout is a part of the book in preparation. Using

More information

1. Inversions. A geometric construction relating points O, A and B looks as follows.

1. Inversions. A geometric construction relating points O, A and B looks as follows. 1. Inversions. 1.1. Definitions of inversion. Inversion is a kind of symmetry about a irle. It is defined as follows. he inversion of degree R 2 entered at a point maps a point to the point on the ray

More information

Algorithms for External Memory Lecture 6 Graph Algorithms - Weighted List Ranking

Algorithms for External Memory Lecture 6 Graph Algorithms - Weighted List Ranking Algorithms for External Memory Leture 6 Graph Algorithms - Weighted List Ranking Leturer: Nodari Sithinava Sribe: Andi Hellmund, Simon Ohsenreither 1 Introdution & Motivation After talking about I/O-effiient

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inconclusive Results

Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inconclusive Results CCCG 2018, Winnipeg, Canada, August 8 10, 2018 Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inonlusive Results Luis A. Garia Andres Gutierrrez Isaa Ruiz Andrew Winslow Abstrat We

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Extracting Partition Statistics from Semistructured Data

Extracting Partition Statistics from Semistructured Data Extrating Partition Statistis from Semistrutured Data John N. Wilson Rihard Gourlay Robert Japp Mathias Neumüller Department of Computer and Information Sienes University of Strathlyde, Glasgow, UK {jnw,rsg,rpj,mathias}@is.strath.a.uk

More information

10.2 Graph Terminology and Special Types of Graphs

10.2 Graph Terminology and Special Types of Graphs 10.2 Grph Terminology n Speil Types of Grphs Definition 1. Two verties u n v in n unirete grph G re lle jent (or neighors) in G iff u n v re enpoints of n ege e of G. Suh n ege e is lle inient with the

More information

CleanUp: Improving Quadrilateral Finite Element Meshes

CleanUp: Improving Quadrilateral Finite Element Meshes CleanUp: Improving Quadrilateral Finite Element Meshes Paul Kinney MD-10 ECC P.O. Box 203 Ford Motor Company Dearborn, MI. 8121 (313) 28-1228 pkinney@ford.om Abstrat: Unless an all quadrilateral (quad)

More information

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 1. Draw Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 (i) a simple graph. A simple graph has a non-empty vertex set and no duplicated edges. For example sketch G with V

More information

CS2100 Computer Organisation Tutorial #8: MSI Components Answers to Selected Questions

CS2100 Computer Organisation Tutorial #8: MSI Components Answers to Selected Questions C Computer Organisation Tutorial #8: MI Components Answers to elete Questions. Realize the following funtion with (a) an 8: multiplexer, an (b) a 4: multiplexer using the first input variables as the seletor

More information

Lecture 8: Graph-theoretic problems (again)

Lecture 8: Graph-theoretic problems (again) COMP36111: Advned Algorithms I Leture 8: Grph-theoreti prolems (gin) In Prtt-Hrtmnn Room KB2.38: emil: iprtt@s.mn..uk 2017 18 Reding for this leture: Sipser: Chpter 7. A grph is pir G = (V, E), where V

More information

Drawing lines. Naïve line drawing algorithm. drawpixel(x, round(y)); double dy = y1 - y0; double dx = x1 - x0; double m = dy / dx; double y = y0;

Drawing lines. Naïve line drawing algorithm. drawpixel(x, round(y)); double dy = y1 - y0; double dx = x1 - x0; double m = dy / dx; double y = y0; Naïve line drawing algorithm // Connet to grid points(x0,y0) and // (x1,y1) by a line. void drawline(int x0, int y0, int x1, int y1) { int x; double dy = y1 - y0; double dx = x1 - x0; double m = dy / dx;

More information

2-connected graphs with small 2-connected dominating sets

2-connected graphs with small 2-connected dominating sets 2-connecte graphs with small 2-connecte ominating sets Yair Caro, Raphael Yuster 1 Department of Mathematics, University of Haifa at Oranim, Tivon 36006, Israel Abstract Let G be a 2-connecte graph. A

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Department of Eletrial and Computer Engineering University of Wisonsin Madison ECE 553: Testing and Testable Design of Digital Systems Fall 2014-2015 Assignment #2 Date Tuesday, September 25, 2014 Due

More information

1. The collection of the vowels in the word probability. 2. The collection of real numbers that satisfy the equation x 9 = 0.

1. The collection of the vowels in the word probability. 2. The collection of real numbers that satisfy the equation x 9 = 0. C HPTER 1 SETS I. DEFINITION OF SET We begin our study of probability with the disussion of the basi onept of set. We assume that there is a ommon understanding of what is meant by the notion of a olletion

More information

The influence of defeated arguments in defeasible argumentation

The influence of defeated arguments in defeasible argumentation The influene of efeate arguments in efeasible argumentation Bart Verheij University of Limburg, Department of Metajuriia P.O. Box 616, 6200 MD Maastriht, The Netherlans fax: +31 43 256538 email: bart.verheij@metajur.rulimburg.nl

More information

MAT 145: PROBLEM SET 4

MAT 145: PROBLEM SET 4 MAT 145: PROBLEM SET 4 DUE TO FRIDAY FEB 22 Abstract. This problem set corresponds to the sixth week of the Combinatorics Course in the Winter Quarter 2019. It was posted online on Friday Feb 15 and is

More information

Exploiting Structure in Parsing to 1-Endpoint-Crossing Graphs

Exploiting Structure in Parsing to 1-Endpoint-Crossing Graphs Exploiting Struture in Parsing to 1-Enpoint-Crossing Graphs Roin Kurtz an Maro Kuhlmann Department of Computer an Information Siene Linköping University, Sween roin.kurtz@liu.se an maro.kuhlmann@liu.se

More information

Predicting Project Outcome Leveraging Socio-Technical Network Patterns

Predicting Project Outcome Leveraging Socio-Technical Network Patterns 203 7th European Conferene on Software Maintenane an Reengineering Preiting Projet Outome Leveraging Soio-Tehnial Network Patterns Dii Surian, Yuan Tian, Davi Lo, Hong Cheng an Ee-Peng Lim Shool of Information

More information

Conflicts Analysis for Inter-Enterprise Business Process Model

Conflicts Analysis for Inter-Enterprise Business Process Model Conflits Analysis for nter-enterprise Business Proess Moel Wei DNG, Zhong TAN, Jian WANG, Jun ZHU, Haiqi LANG,Lei ZHANG {ingw, tianz, wangwj, zhujun, lianghq, lzhang}@n.ibm.om BM China Researh Lab, BM

More information

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles 2D Kinematics Consier a robotic arm. We can sen it commans like, move that joint so it bens at an angle θ. Once we ve set each joint, that s all well an goo. More interesting, though, is the question of

More information

Medial Graphs and the Penrose Polynomial. Joanna A. Ellis-Monaghan Department of Mathematics and Statistics University of Vermont Burlington, VT 05405

Medial Graphs and the Penrose Polynomial. Joanna A. Ellis-Monaghan Department of Mathematics and Statistics University of Vermont Burlington, VT 05405 Medial Graphs and the Penrose Polynoial Joanna. Ellis-Monaghan Departent of Matheatis and Statistis University of Veront Burlington, VT 05405 Irasea Sariento Departaento de Mateátias CINVESTV v. IPN 2508

More information

Sparse Certificates for 2-Connectivity in Directed Graphs

Sparse Certificates for 2-Connectivity in Directed Graphs Sparse Certifiates for 2-Connetivity in Direted Graphs Loukas Georgiadis Giuseppe F. Italiano Aikaterini Karanasiou Charis Papadopoulos Nikos Parotsidis Abstrat Motivated by the emergene of large-sale

More information

Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination

Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination Keeping Things Simple: Fining Frequent Item Sets y Reursive Elimination Christian Borgelt Department of Knowlege Proessing an Language Engineering Shool of Computer Siene, Otto-von-Guerike-University of

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 The University of Sydney MTH 009 GRPH THEORY Tutorial solutions 00. Show that the graph on the left is Hamiltonian, but that the other two are not. To show that the graph is Hamiltonian, simply find a

More information

Red-Black Trees 10/19/2009. Red-Black Trees. Example. Red-Black Properties. Black Height. Example

Red-Black Trees 10/19/2009. Red-Black Trees. Example. Red-Black Properties. Black Height. Example lgorithms Red-lak Trees 13-2 Red-lak Trees Red-lak Trees ll binar searh tree operations take O(h) time, here h is the height of the tree Therefore, it is important to `balane the tree so that its height

More information

Dynamic Programming. Lecture #8 of Algorithms, Data structures and Complexity. Joost-Pieter Katoen Formal Methods and Tools Group

Dynamic Programming. Lecture #8 of Algorithms, Data structures and Complexity. Joost-Pieter Katoen Formal Methods and Tools Group Dynami Programming Leture #8 of Algorithms, Data strutures and Complexity Joost-Pieter Katoen Formal Methods and Tools Group E-mail: katoen@s.utwente.nl Otober 29, 2002 JPK #8: Dynami Programming ADC (214020)

More information

The four lines of symmetry have been drawn on the shape.

The four lines of symmetry have been drawn on the shape. 4Geometry an measures 4.1 Symmetry I an ientify refletion symmetry in 2D shapes ientify rotation symmetry in 2D shapes Example a i How many lines of symmetry oes this shape have? ii Colour two squares

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 The University of Sydney MTH 009 GRPH THORY Tutorial 10 Solutions 004 1. In a tournament, the score of a vertex is its out-degree, and the score sequence is a list of all the scores in non-decreasing order.

More information

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem CS61: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem Tim Roughgarden February 5, 016 1 The Traveling Salesman Problem (TSP) In this lecture we study a famous computational problem,

More information

1. For the graph shown below and the given vertex sequences (i-iv),

1. For the graph shown below and the given vertex sequences (i-iv), MATH 3330: Applied Graph Theory ASSIGNMENT #2 SOLUTIONS 1. For the graph shown below and the given vertex sequences (i-iv), i) ii) iii) iv) a) Which

More information

Graphs and networks Mixed exercise

Graphs and networks Mixed exercise Graphs and networks Mixed exercise E.g. 2 a, e and h are isomorphic. b and i are isomorphic. c and g are isomorphic. d and f are isomorphic. 3 a b i ii iii Pearson Education Ltd 208. Copying permitted

More information

Learning Convention Propagation in BeerAdvocate Reviews from a etwork Perspective. Abstract

Learning Convention Propagation in BeerAdvocate Reviews from a etwork Perspective. Abstract CS 9 Projet Final Report: Learning Convention Propagation in BeerAdvoate Reviews from a etwork Perspetive Abstrat We look at the way onventions propagate between reviews on the BeerAdvoate dataset, and

More information

Register Allocation III. Interference Graph Allocators. Computing the Interference Graph (in MiniJava compiler)

Register Allocation III. Interference Graph Allocators. Computing the Interference Graph (in MiniJava compiler) Register Alloation III Announements Reommen have interferene graph onstrution working by Monay Last leture Register alloation aross funtion alls Toay Register alloation options Interferene Graph Alloators

More information

Advanced Algorithms for Fast and Scalable Deep Packet Inspection

Advanced Algorithms for Fast and Scalable Deep Packet Inspection Avane Algorithms for Fast an Salale Deep Paket Inspetion Sailesh Kumar Washington University sailesh@arl.wustl.eu Jonathan Turner Washington University jon.turner@wustl.eu John Williams Ciso Systems jwill@iso.om

More information

The Reconstruction of Graphs. Dhananjay P. Mehendale Sir Parashurambhau College, Tilak Road, Pune , India. Abstract

The Reconstruction of Graphs. Dhananjay P. Mehendale Sir Parashurambhau College, Tilak Road, Pune , India. Abstract The Reconstruction of Graphs Dhananay P. Mehenale Sir Parashurambhau College, Tila Roa, Pune-4030, Inia. Abstract In this paper we iscuss reconstruction problems for graphs. We evelop some new ieas lie

More information

Assignments are handed in on Tuesdays in even weeks. Deadlines are:

Assignments are handed in on Tuesdays in even weeks. Deadlines are: Tutorials at 2 3, 3 4 and 4 5 in M413b, on Tuesdays, in odd weeks. i.e. on the following dates. Tuesday the 28th January, 11th February, 25th February, 11th March, 25th March, 6th May. Assignments are

More information

HEXA: Compact Data Structures for Faster Packet Processing

HEXA: Compact Data Structures for Faster Packet Processing Washington University in St. Louis Washington University Open Sholarship All Computer Siene and Engineering Researh Computer Siene and Engineering Report Number: 27-26 27 HEXA: Compat Data Strutures for

More information

Generalized Edge Coloring for Channel Assignment in Wireless Networks

Generalized Edge Coloring for Channel Assignment in Wireless Networks Generalize Ege Coloring for Channel Assignment in Wireless Networks Chun-Chen Hsu Institute of Information Science Acaemia Sinica Taipei, Taiwan Da-wei Wang Jan-Jan Wu Institute of Information Science

More information

A region is each individual area or separate piece of the plane that is divided up by the network.

A region is each individual area or separate piece of the plane that is divided up by the network. Math 135 Networks and graphs Key terms Vertex (Vertices) ach point of a graph dge n edge is a segment that connects two vertices. Region region is each individual area or separate piece of the plane that

More information

Graphs in L A TEX. Robert A. Beeler. January 8, 2017

Graphs in L A TEX. Robert A. Beeler. January 8, 2017 Graphs in L A TEX Robert A. Beeler January 8, 2017 1 Introdution This doument is to provide a quik and dirty guide for building graphs in L A TEX. Muh of the doument is devoted to examples of things that

More information

The Alpha Torque and Quantum Physics

The Alpha Torque and Quantum Physics The Alpha Torque and Quantum Physis Zhiliang Cao, Henry Cao williamao15000@yahoo.om, henry.gu.ao@gmail.om July 18, 010 Abstrat In the enter of the unierse, there isn t a super massie blak hole or any speifi

More information

Pipelined Multipliers for Reconfigurable Hardware

Pipelined Multipliers for Reconfigurable Hardware Pipelined Multipliers for Reonfigurable Hardware Mithell J. Myjak and José G. Delgado-Frias Shool of Eletrial Engineering and Computer Siene, Washington State University Pullman, WA 99164-2752 USA {mmyjak,

More information

Incremental Mining of Partial Periodic Patterns in Time-series Databases

Incremental Mining of Partial Periodic Patterns in Time-series Databases CERIAS Teh Report 2000-03 Inremental Mining of Partial Periodi Patterns in Time-series Dataases Mohamed G. Elfeky Center for Eduation and Researh in Information Assurane and Seurity Purdue University,

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

Data Structures in Java

Data Structures in Java Data Strutures in Java Leture 8: Trees and Tree Traversals. 10/5/2015 Daniel Bauer 1 Trees in Computer Siene A lot of data omes in a hierarhial/nested struture. Mathematial expressions. Program struture.

More information

Partitioning Complete Multipartite Graphs by Monochromatic Trees

Partitioning Complete Multipartite Graphs by Monochromatic Trees Partitioning Complete Multipartite Graphs by Monochromatic Trees Atsushi Kaneko, M.Kano 1 and Kazuhiro Suzuki 1 1 Department of Computer and Information Sciences Ibaraki University, Hitachi 316-8511 Japan

More information

A Unified Subdivision Scheme for Polygonal Modeling

A Unified Subdivision Scheme for Polygonal Modeling EUROGRAPHICS 2 / A. Chalmers and T.-M. Rhyne (Guest Editors) Volume 2 (2), Number 3 A Unified Subdivision Sheme for Polygonal Modeling Jérôme Maillot Jos Stam Alias Wavefront Alias Wavefront 2 King St.

More information

What is a minimal spanning tree (MST) and how to find one

What is a minimal spanning tree (MST) and how to find one What is a minimal spanning tree (MST) and how to find one A tree contains a root, the top node. Each node has: One parent Any number of children A spanning tree of a graph is a subgraph that contains all

More information

To Do. Assignment Overview. Outline. Mesh Viewer (3.1) Mesh Connectivity (3.2) Advanced Computer Graphics (Spring 2013)

To Do. Assignment Overview. Outline. Mesh Viewer (3.1) Mesh Connectivity (3.2) Advanced Computer Graphics (Spring 2013) daned Computer Graphis (Spring 23) CS 283, Leture 5: Mesh Simplifiation Rai Ramamoorthi http://inst.ees.berkeley.edu/~s283/sp3 To Do ssignment, Due Feb 22 Start reading and working on it now. This leture

More information

Preamble. Singly linked lists. Collaboration policy and academic integrity. Getting help

Preamble. Singly linked lists. Collaboration policy and academic integrity. Getting help CS2110 Spring 2016 Assignment A. Linke Lists Due on the CMS by: See the CMS 1 Preamble Linke Lists This assignment begins our iscussions of structures. In this assignment, you will implement a structure

More information

Generalized Edge Coloring for Channel Assignment in Wireless Networks

Generalized Edge Coloring for Channel Assignment in Wireless Networks TR-IIS-05-021 Generalize Ege Coloring for Channel Assignment in Wireless Networks Chun-Chen Hsu, Pangfeng Liu, Da-Wei Wang, Jan-Jan Wu December 2005 Technical Report No. TR-IIS-05-021 http://www.iis.sinica.eu.tw/lib/techreport/tr2005/tr05.html

More information

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 THE KIT: This kit contains materials for two Instant Insanity games, a student activity sheet with answer key and this instructor

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

9.4 Exponential Growth and Decay Functions

9.4 Exponential Growth and Decay Functions Setion 9. Eponential Growth and Dea Funtions 56 9. Eponential Growth and Dea Funtions S Model Eponential Growth. Model Eponential Dea. Now that we an graph eponential funtions, let s learn about eponential

More information

On - Line Path Delay Fault Testing of Omega MINs M. Bellos 1, E. Kalligeros 1, D. Nikolos 1,2 & H. T. Vergos 1,2

On - Line Path Delay Fault Testing of Omega MINs M. Bellos 1, E. Kalligeros 1, D. Nikolos 1,2 & H. T. Vergos 1,2 On - Line Path Delay Fault Testing of Omega MINs M. Bellos, E. Kalligeros, D. Nikolos,2 & H. T. Vergos,2 Dept. of Computer Engineering and Informatis 2 Computer Tehnology Institute University of Patras,

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chpter 9 Greey Tehnique Copyright 2007 Person Aison-Wesley. All rights reserve. Greey Tehnique Construts solution to n optimiztion prolem piee y piee through sequene of hoies tht re: fesile lolly optiml

More information

Register Allocation III. Interference Graph Allocators. Coalescing. Granularity of Allocation (Renumber step in Briggs) Chaitin

Register Allocation III. Interference Graph Allocators. Coalescing. Granularity of Allocation (Renumber step in Briggs) Chaitin Register Alloation III Last time Register alloation aross funtion alls Toay Register alloation options Interferene Graph Alloators Chaitin Briggs CS553 Leture Register Alloation III 1 CS553 Leture Register

More information

Calculation of typical running time of a branch-and-bound algorithm for the vertex-cover problem

Calculation of typical running time of a branch-and-bound algorithm for the vertex-cover problem Calulation of typial running time of a branh-and-bound algorithm for the vertex-over problem Joni Pajarinen, Joni.Pajarinen@iki.fi Otober 21, 2007 1 Introdution The vertex-over problem is one of a olletion

More information

Multiple Assignments

Multiple Assignments Two Outputs Conneted Together Multiple Assignments Two Outputs Conneted Together if (En1) Q

More information

Recursion examples: Problem 2. (More) Recursion and Lists. Tail recursion. Recursion examples: Problem 2. Recursion examples: Problem 3

Recursion examples: Problem 2. (More) Recursion and Lists. Tail recursion. Recursion examples: Problem 2. Recursion examples: Problem 3 Reursion eamples: Problem 2 (More) Reursion and s Reursive funtion to reverse a string publi String revstring(string str) { if(str.equals( )) return str; return revstring(str.substring(1, str.length()))

More information

Abstract. We describe a parametric hybrid Bezier patch that, in addition. schemes are local in that changes to part of the data only aect portions of

Abstract. We describe a parametric hybrid Bezier patch that, in addition. schemes are local in that changes to part of the data only aect portions of A Parametri Hyrid Triangular Bezier Path Stephen Mann and Matthew Davidhuk Astrat. We desrie a parametri hyrid Bezier path that, in addition to lending interior ontrol points, lends oundary ontrol points.

More information

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v.

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v. Graph Adjacent Endpoint of an edge Incident Neighbors of a vertex Degree of a vertex Theorem Graph relation Order of a graph Size of a graph Maximum and minimum degree Let G = (V, E) be a graph. If u,

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

ON CHARACTERIZING TERRAIN VISIBILITY GRAPHS

ON CHARACTERIZING TERRAIN VISIBILITY GRAPHS ON CHARACTERIZING TERRAIN VISIBILITY GRAPHS William Evans, and Noushin Saeedi Astrat. A terrain is an x-monotone polygonal line in the xy-plane. Two verties of a terrain are mutually visile if and only

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 7 Graph properties By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Eulerian

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

Outline: Software Design

Outline: Software Design Outline: Software Design. Goals History of software design ideas Design priniples Design methods Life belt or leg iron? (Budgen) Copyright Nany Leveson, Sept. 1999 A Little History... At first, struggling

More information

Diffusion Kernels on Graphs and Other Discrete Structures

Diffusion Kernels on Graphs and Other Discrete Structures Diffusion Kernels on Graphs and Other Disrete Strutures Risi Imre Kondor ohn Lafferty Shool of Computer Siene Carnegie Mellon University Pittsburgh P 523 US KONDOR@CMUEDU LFFERTY@CSCMUEDU bstrat The appliation

More information

Triangles. Learning Objectives. Pre-Activity

Triangles. Learning Objectives. Pre-Activity Setion 3.2 Pre-tivity Preparation Triangles Geena needs to make sure that the dek she is building is perfetly square to the brae holding the dek in plae. How an she use geometry to ensure that the boards

More information

Math 443/543 Graph Theory Notes 2: Transportation problems

Math 443/543 Graph Theory Notes 2: Transportation problems Math 443/543 Graph Theory Notes 2: Transportation problems David Glickenstein September 15, 2014 1 Readings This is based on Chartrand Chapter 3 and Bondy-Murty 18.1, 18.3 (part on Closure of a Graph).

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

Sequential Incremental-Value Auctions

Sequential Incremental-Value Auctions Sequential Inremental-Value Autions Xiaoming Zheng and Sven Koenig Department of Computer Siene University of Southern California Los Angeles, CA 90089-0781 {xiaominz,skoenig}@us.edu Abstrat We study the

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV Sr.No. Question Option A Option B Option C Option D 1 2 3 4 5 6 Class : S.E.Comp Which one of the following is the example of non linear data structure Let A be an adjacency matrix of a graph G. The ij

More information

Skyline Community Search in Multi-valued Networks

Skyline Community Search in Multi-valued Networks Syline Community Search in Multi-value Networs Rong-Hua Li Beijing Institute of Technology Beijing, China lironghuascut@gmail.com Jeffrey Xu Yu Chinese University of Hong Kong Hong Kong, China yu@se.cuh.eu.h

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Orientation of the coordinate system

Orientation of the coordinate system Orientation of the oordinate system Right-handed oordinate system: -axis by a positive, around the -axis. The -axis is mapped to the i.e., antilokwise, rotation of The -axis is mapped to the -axis by a

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my Calculus I course that I teach here at Lamar University. Despite the fact that these are my class notes, they shoul be accessible to anyone wanting to learn Calculus

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions Basic Combinatorics Math 40210, Section 01 Fall 2012 Homework 4 Solutions 1.4.2 2: One possible implementation: Start with abcgfjiea From edge cd build, using previously unmarked edges: cdhlponminjkghc

More information