Edelsbrunner, H. (1980): Dynamic Rectangle Intersection Searching, Technical University Graz, Institut fur Informationsverarbeitung, Report F 47

Size: px
Start display at page:

Download "Edelsbrunner, H. (1980): Dynamic Rectangle Intersection Searching, Technical University Graz, Institut fur Informationsverarbeitung, Report F 47"

Transcription

1 279 Edelsbrunner, H. (1980): Dynamic Rectangle Intersection Searching, Technical University Graz, Institut fur Informationsverarbeitung, Report F 47 Edelsbrunner, H. (1982): Intersection Problems in Computational Geometry, Ph. D. thesis, TU Graz Edelsbrunner, H. (1983): An Optimal Solution for Searching in General Planar Subdivisions, TU Graz, Report F 122 Edelsbrunner, H., Maurer, H.A. (1981): A space optimal solution of general region location, TCS 16, Edelsbrunner, H., Maurer, H.A. (1981): On the Intersection of Orthogonal Objects, IPL 13, Edelsbrunner, H., O'Rourke, J., Seidel, R. (1983): Constructing Arrangements of Lines and Hyperplanes with Applications, 24th FOCS, Edelsbrunner, H., Welzl, E. (1983): Halfplanar Range Search in Linear Space and 0(n o. 659 ) Query Time, Technical Report F 111, TU Graz Frederickson, G.n. (1982): Implicit Data Structures for Weighted Elements, Report CS-82-04, Computer Science Department, Penn State University Fredman, M.L. (1981): Lower Bounds on the Complexity of some optimal data structures, SICOMP 10, 1-10 Fredman, M.L. (1981): The Spanning Bound as a Measure of Range Query Complexity, Journal of Algorithms 1, Fredman, M.L. (1981): A lower bound on the complexity of orthogonal range queries, JACM 28, Graham, R.L. (1972): An efficient algorithm for determining the convex hull of a finite planar set, IPL 1, Graham, R.L., Yao, F. (1981): Finding the Convex Hull of a simple polygon, Stanford University, Technical Report CS Green, P.J. (1983): Convex Decomposition of Simple Polygons, typescript

2 280 Guibas, L.J., Yao, F.F. (1980): On Translating a Set of Rectangles, 12th STOC, Gtiting, R.H. (1982): An Optimal Contour Algorithm for Iso-Oriented Rectangles, McMaster University, Report 82-CS-06 Gtiting, R.H. (1983): Conquering Contours: Efficient Algorithms for Computational Geometry, Ph.D. Thesis, CS, Univ. Dortmund Harel, D. (1980): A Linear Time Algorithm for the Lowest Common Ancestor Problem, 21 FOCS, Hertel, St., Mehlhorn, K. (1983): Fast Triangulation of Simple Polygons, FCT, LNCS 158, Hertel, St., Mehlhorn, K., Mantyla, M., Nievergelt, I. (1983): Space Sweep Solves Intersection of Two Convex Polyhedra Elegantly, ACTA INFORMATICA, to appear Kirkpatrick, D.G. (1979): Efficient Computation of Continous Skeletons, 20th FOCS, Kirkpatrick, D.G. (1983): Optimal Search in Planar Subdivisions, SICOMP 12, Kirkpatrick, D.G., Seidel, R. (1982): The ultimate planar convex hull algorithm?, 20th Allerton Conference Ladner, R., (1975): On the structure of polynomial time reducibility, JACM 22, Ladner, R., Lynch, N., Selman, A.L. (1974): Comparison of Polynomial Time Reducibilities, 6th STOC, Lee, D.T., Preparata, F.P. (1977): Location of a Point in a Planar Subdivision and its Applications, SICOMP 6, Lee, D.T., Preparata, F.P. (1979): An optimal algorithm for finding the kernel of a polygon, JACM 25, Lee, D.T., Wong, C.K. (1977): Worst Case Analysis of Region and Partial Region Searches in Multidi mensional Binary Search Trees and Balanced Quad Trees, ACTA INFORMATICA 9, 23-29

3 281 Lueker, G.S. (1978): A Data Structure for Orthogonal Range Queries, 19th FOCS, McCallum, D., Avis, D. (1979): A linear algorithm for finding the convex hull of a simple polygon, IPL 9, McCreight, E.M. (1980): Efficient Algorithms for Enumerating Intersecting Intervals and Rectangles, Xerox Parc Report CSL McCreight, E.M. (1981): Priority Search Trees, Xerox Parc Report CSL-81-5 Mehlhorn, K. (1981): Lower Bounds on the Efficiency of Transforming Static Data Structures into Dynamic Data Structures, Math. Systems Theory 15, 1-11 Mehlhorn, K., Overmars, M.H. (1981): Optimal Dynamization of Decomposable Searching Problems, IPL 12, Monier, L. (1980): Combinatorial solutions of multidimensional divideand-conquer recurrences, J. of Algorithms 1, Muller, D.E., Preparata, F.P. (1978): Finding the Intersection of two convex polyhedra, TCS 7, Nievergelt, I., Preparata, F.P. (1982): Plane-Sweep Algorithms for Intersecting Geometric Figures, CACM, 25, Ottrnann, Th., Widrneyer, P. (1982): On the Placement of Line Segments into a Skeleton Structure, Inst. f. Angewandte Mathematik und Formale Beschreibungsverfahren, D-7500 Karlsruhe, Report No. 117 Ottmann, Th., Widmeyer, P., Wood, D. (1982): A Fast Algorithm for Boolean Mask Operations, Inst. f. Angewandte Mathematik und Formale Beschreibungsverfahren, D-7500 Karlsruhe, Report No. 112 Ottmann, Th., Widmeyer, P., Wood, D. (1982): A Worst-Case Efficient Algorithm for Hidden Line Elimination, Inst. f. Angewandte Mathematik und Formale Beschreibungsverfahren, D-7500 Karlsruhe, Rep. No. 119 Overmars, M.H. (1981): Dynamization of order decomposable set problems, Journal of Algorithms 2,

4 282 Overmars, M.H., van Leeuwen, J. (1981): Maintainance of Configurations in the Plane, JCSS 23, Overmars, M.H., van Leeuwen, J. (1981): Two general methods for dynamization decomposable searching problems, Computing 26, Overmars, M.H., van Leeuwen, J. (1981): worst Case Optimal Insertion and Deletion Methods for Decomposable Searching Problems, IPL 12, Overmars, M.H., van Leeuwen, J. (1982): Dynamic Multi-dimensionsal Data Structures Based on Quad- and k-d Trees, ACTA INFORMATICA 17, Preparata, F.P. (1979): An optimal real time algorithm for planar convex hulls, CACM 22, Prepar.ata, F.P., Hong, S.J. (1977): Convex hulls of finite sets of points in two and three dimensions, CACM 20, Schmidt, A. (1981): Time and Space Bounds for Hidden Line and Hidden Surface Algorithms, Proc. of Eurographics, North Holland Shamos, M.I. (1975): Geometric Complexity, 7th STOC, Sharnos, H.I., Hoey, D Shamos, 11.I., Hoey, D. FOCS, (1975): Closest-Point Problems, 16th FOCS, (1976): Geometric Intersection Problems, 17th Willard, D.E. (1978): New data structures for orthogonal range queries, Technical Report, Harward University Willard, D.E. (1982): Polygon Retrieval, SICOMP 11, Yao, A.C.-C. (1982): Space-Time Trade-off for Answering Range Queries, 14th S 'IDC,

5 283 Subject Index amortized cost 49, 195, 221 binary search 82 - polygon retrieval 66 - range queries 69 - spanning bound 60 convex hull - definition 8J - dynamic 98, 99 - lower bound 98 - order decomposable 81 - point set 98 - simple polygon 93 decomposable searching problem - dynamization 4 - monotone order- 19 dynamization - decomposable 3 lower bounds 9 - order decomposable 19 - weighting 15 duality 246 hidden line elimination 227, 265 intersection - convex polygons 89 - convex polyhedra 173 halfspaces line segments 149, 230 polygons 155, 170 rectangles 198, 210 set of lines 249 inversion 254 least cost paths 264 lower bounds - partial match retrieval 56 measure problem - rectangles 215, polygons 241 multi-dimensional searching - closest point 48 - divide-and-conquer 48 - partial match 25, 29, 43, 56 polygon queries 25, 39, 66 - range queries 25, 36, 69, 185 partial match 25, 29, 43, 56 path decomposition - plane sweep searching subdivisions zig-zag- 264 planar subdivisions - dynamic generalized induced by lines searchingdynamic 135 independent sets 116 other methods 261 path decompositions simple 114 plane sweep - basics intersecting line segments iso-oriented objects triangulation 160 polygon tree 40 polygons - convex polygons hierarchical representation 84

6 284 intersection 92 kernel 259 separation 88 - decomposition intersection 155, triangulation 160 priority search tree 199 range queries 25, 36, 69, 185 range tree 43 recursion equation 50 search - binary search multidimensional- 25 segment tree 212 space sweep 173 spanning trees priority search- J99 - range segment- 212 Voronoi diagram - applications construction 103, insertions, deletions merging 260 transforms - duality inversion 254 traveling salesman 145 trees - d-dimensional interval polygon- 40

7 Springer-Verlag Berlin Heidelberg New York Tokyo QUADPACK A Subroutine Package for Automatic Integration By R.Piessens, E.de Doncker-Kapenga, C. W. Uberhuber, D.K. Kahaner figures. VIII, 301 pages. (Springer Series in Computational Mathematics, Volume 1). ISBN Contents: Introduction Theoretical Background: Automatic Integration with QUADPACK. - Integration Methods. Algorithm Descriptions: QUADPACK contents. - Prototype of Algorithm Description. - Algorithm Schemes. - Heuristics Used in the Algorithms. Guidelines for the Use of QUADPACK: General Remarks. - Decision Tree for Finite-range Integration. - Decision Tree for Infinite-range Integration. - Numerical Examples. - Sample Programs Illustrating the Use of the QUADPACK Integrators. Special Applications of QUADPACK: Two-dimensional Integration. - Hankel Transform. - Numerical Inversion of the Laplace Transform. Implementation Notes and Routine Listings: Implementation Notes. - Routine Listings. References. QUADPACK presents a program package for automatic integration covering a wide variety of problems and various degrees of difficulty. After a theoretical explanation of the quadrature methods, the algorithms used by the integrators are described, providing a detailed outline of the automatic integration strategies. The results for a set of parameter studies reveal efficiency and adequacy for wide ranges of problems. Applications are discussed for solving more complex problems, including double integration, computation of the Hankel transform, and inversion of the Laplace transform. Apart from the explanation of the theory, the book includes the routine listings, the user's manual, and many detailed numerical examples and sample programs. The documentation for use of the package is readable and clear for novice users. With the presentation of the mathematical methods and algorithms, however, some background in the area is assumed.

8 Solving Elliptic Problems Using ELLPACK By J.Rice, R.F.Boisvert Approx. 53 figures. Approx 350 pages. (Springer Series in Computational Mathematics, Volume 2) ISBN Contents: The ELLPACK System: Introduction. - The ELLPACK Language. - Examples. - Advanced Language Facilities. - Extending ELLPACK to Non Standard Problems. The ELLPACK Modules: The ELLPACK Problem Solving Modules. - ITPACK Solution Modules. - The Perfonnance of ELL PACK Software: Performance and its Evaluation. - The Model Problems. - Performance of Modules to Discretize Elliptic Problems. - Performance of Modules to Solve the Algebraic Equations. - Contributor's Guide: Software Parts for Elliptic Problems. - Interface Specifications. - Module Interface Access. - Programming Standards. - Preprocessor Data. - System Programmer's Guide: Installing the ELLPACK System. - Tailoring the ELLPACK System. - Appendices: The PDE Population. - The PG System. - The Template Processor. Springer-Verlag Berlin Heidelberg New York Tokyo This book is a complete guide to the ELLPACK software system solving elliptic partial differential equations. ELLPACK consists of a very high level user interface to over 50 problem solving moldules. These modules are state of the art software for two and three dimensional problems and include [mite difference, fmite element, SFT, multigrid and many other capabilities. The book gives the practicing scientists the tools to solve a wide range of elliptic problems with minimum effort. It shows system programmers how to install and modify ELLPACK and experts how to adapt ELLPACK to a wide range of applications.

6. Concluding Remarks

6. Concluding Remarks [8] K. J. Supowit, The relative neighborhood graph with an application to minimum spanning trees, Tech. Rept., Department of Computer Science, University of Illinois, Urbana-Champaign, August 1980, also

More information

Dynamic Euclidean Minimum Spanning Trees and Extrema of Binary Functions

Dynamic Euclidean Minimum Spanning Trees and Extrema of Binary Functions Dynamic Euclidean Minimum Spanning Trees and Extrema of Binary Functions David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Abstract We maintain the

More information

Efficient minimum spanning tree construction without Delaunay triangulation

Efficient minimum spanning tree construction without Delaunay triangulation Information Processing Letters 81 (2002) 271 276 Efficient minimum spanning tree construction without Delaunay triangulation Hai Zhou a,, Narendra Shenoy b, William Nicholls b a Electrical and Computer

More information

(Master Course) Mohammad Farshi Department of Computer Science, Yazd University. Yazd Univ. Computational Geometry.

(Master Course) Mohammad Farshi Department of Computer Science, Yazd University. Yazd Univ. Computational Geometry. 1 / 17 (Master Course) Mohammad Farshi Department of Computer Science, Yazd University 1392-1 2 / 17 : Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, Algorithms and Applications, 3rd Edition,

More information

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here)

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagram & Delaunay Triangualtion Algorithms Divide-&-Conquer Plane Sweep Lifting

More information

A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions

A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions Timothy M. Chan 1 1 Cheriton School of Computer Science, University of Waterloo tmchan@uwaterloo.ca Abstract Chazelle

More information

The Unified Segment Tree and its Application to the Rectangle Intersection Problem

The Unified Segment Tree and its Application to the Rectangle Intersection Problem CCCG 2013, Waterloo, Ontario, August 10, 2013 The Unified Segment Tree and its Application to the Rectangle Intersection Problem David P. Wagner Abstract In this paper we introduce a variation on the multidimensional

More information

Linear Programming Concept Visualization

Linear Programming Concept Visualization Linear Programming Concept Visualization () Jean Pierre Charalambos and Ebroul Izquierdo () () Image Processing and Computer Graphics Research Lab, Dept. of Computer Sciences, National University, Colombia

More information

Average Case Analysis of Dynamic Geometric Optimization

Average Case Analysis of Dynamic Geometric Optimization Average Case Analysis of Dynamic Geometric Optimization David Eppstein Abstract We maintain the maximum spanning tree of a planar point set, as points are inserted or deleted, in O(log 3 n) time per update

More information

Updating Widths and Maximum Spanning Trees using the Rotating Caliper Graph

Updating Widths and Maximum Spanning Trees using the Rotating Caliper Graph Updating Widths and Maximum Spanning Trees using the Rotating Caliper Graph David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Tech. Report 93-18 April

More information

Geometric Data Structures Multi-dimensional queries Nearest neighbour problem References. Notes on Computational Geometry and Data Structures

Geometric Data Structures Multi-dimensional queries Nearest neighbour problem References. Notes on Computational Geometry and Data Structures Notes on Computational Geometry and Data Structures 2008 Geometric Data Structures and CGAL Geometric Data Structures and CGAL Data Structure Interval Tree Priority Search Tree Segment Tree Range tree

More information

4. Conclusion. 5. Acknowledgment. 6. References

4. Conclusion. 5. Acknowledgment. 6. References [10] F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions, Communications of the ACM, vol. 20, pp. 87-93, 1977. [11] K. Ichida and T. Kiyono, Segmentation of

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms Geometric data structures Sudebkumar Prasant Pal Department of Computer Science and Engineering IIT Kharagpur, 721302. email: spp@cse.iitkgp.ernet.in January 10-12, 2012 - NIT Surathkal Introduction to

More information

Introduction to Geometric Algorithms

Introduction to Geometric Algorithms CS268: Geometric Algorithms Handout # 1 Design and Analysis Stanford University Monday, 28 March 2011 Lecture #1: Monday, 28 March 2011 Topics: Course Introduction [Revised Dates] Lecturer: Leonidas Guibas

More information

Computational Geometry. Free Lab Exercises. Year Q1

Computational Geometry. Free Lab Exercises. Year Q1 Computational Geometry Free Lab Exercises Year 2016-17 Q1 Vera Sacristán Departament de Matemàtiques Facultat d Informàtica de Barcelona Universitat Politècnica de Catalunya Computational Geometry - Free

More information

Bichromatic Line Segment Intersection Counting in O(n log n) Time

Bichromatic Line Segment Intersection Counting in O(n log n) Time Bichromatic Line Segment Intersection Counting in O(n log n) Time Timothy M. Chan Bryan T. Wilkinson Abstract We give an algorithm for bichromatic line segment intersection counting that runs in O(n log

More information

Computational Geometry Overview from Cormen, et al.

Computational Geometry Overview from Cormen, et al. UMass Lowell Computer Science 91.503 Graduate Algorithms Prof. Karen Daniels Spring, 2014 Computational Geometry Overview from Cormen, et al. Chapter 33 (with additional material from other sources) 1

More information

Convex Hull of the Union of Convex Objects in the Plane: an Adaptive Analysis

Convex Hull of the Union of Convex Objects in the Plane: an Adaptive Analysis CCCG 2008, Montréal, Québec, August 13 15, 2008 Convex Hull of the Union of Convex Objects in the Plane: an Adaptive Analysis Jérémy Barbay Eric Y. Chen Abstract We prove a tight asymptotic bound of Θ(δ

More information

Lecture 3 February 23, 2012

Lecture 3 February 23, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture 3 February 23, 2012 1 Overview In the last lecture we saw the concepts of persistence and retroactivity as well as several data structures

More information

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel Computational Geometry (CS 236719) http://www.cs.tufts.edu/~barequet/teaching/cg Chapter 1 Introduction 1 Copyright 2002-2009 2009 Prof. Gill Barequet Center for Graphics and Geometric Computing Dept.

More information

G 6i try. On the Number of Minimal 1-Steiner Trees* Discrete Comput Geom 12:29-34 (1994)

G 6i try. On the Number of Minimal 1-Steiner Trees* Discrete Comput Geom 12:29-34 (1994) Discrete Comput Geom 12:29-34 (1994) G 6i try 9 1994 Springer-Verlag New York Inc. On the Number of Minimal 1-Steiner Trees* B. Aronov, 1 M. Bern, 2 and D. Eppstein 3 Computer Science Department, Polytechnic

More information

Geometric Data Structures

Geometric Data Structures Geometric Data Structures 1 Data Structure 2 Definition: A data structure is a particular way of organizing and storing data in a computer for efficient search and retrieval, including associated algorithms

More information

4.1.2 Merge Sort Sorting Lower Bound Counting Sort Sorting in Practice Solving Problems by Sorting...

4.1.2 Merge Sort Sorting Lower Bound Counting Sort Sorting in Practice Solving Problems by Sorting... Contents 1 Introduction... 1 1.1 What is Competitive Programming?... 1 1.1.1 Programming Contests.... 2 1.1.2 Tips for Practicing.... 3 1.2 About This Book... 3 1.3 CSES Problem Set... 5 1.4 Other Resources...

More information

A technique for adding range restrictions to. August 30, Abstract. In a generalized searching problem, a set S of n colored geometric objects

A technique for adding range restrictions to. August 30, Abstract. In a generalized searching problem, a set S of n colored geometric objects A technique for adding range restrictions to generalized searching problems Prosenjit Gupta Ravi Janardan y Michiel Smid z August 30, 1996 Abstract In a generalized searching problem, a set S of n colored

More information

CSE 5311 Notes 13: Computational Geometry

CSE 5311 Notes 13: Computational Geometry CSE 5311 Notes 13: Computational Geometry (Last updated 4/17/17 4:39 PM) SMALLEST ENCLOSING DISK See section 4.7 of de Berg ( http://dx.doi.org.ezproxy.uta.edu/10.1007/978-3-540-77974-2 ) Algorithm MINIDISC(P)

More information

CSE (Computational Geometry) SYLLABUS

CSE (Computational Geometry) SYLLABUS CSE 5392-016 (Computational Geometry) SYLLABUS Spring 2005: TR 5:30-6:50, Preston Hall 100 Instructor: Bob Weems, Associate Professor (weems@uta.edu, http://reptar.uta.edu) Office: 344 Nedderman, 817/272-2337

More information

Range Tree Applications in Computational Geometry

Range Tree Applications in Computational Geometry Range Tree Applications in Computational Geometry ANTONIO-GABRIEL STURZU, COSTIN-ANTON BOIANGIU Computer Science Department Politehnica University of Bucharest Splaiul Independentei 313, Sector 6, Bucharest,

More information

Testing Bipartiteness of Geometric Intersection Graphs David Eppstein

Testing Bipartiteness of Geometric Intersection Graphs David Eppstein Testing Bipartiteness of Geometric Intersection Graphs David Eppstein Univ. of California, Irvine School of Information and Computer Science Intersection Graphs Given arrangement of geometric objects,

More information

Hyperbolic Voronoi Diagram: A Fast Method

Hyperbolic Voronoi Diagram: A Fast Method www.ijocit.org & www.ijocit.ir ISSN= 2345-3877 Hyperbolic Voronoi Diagram: A Fast Method Zahra Nilforoushan *, Ali Mohadesm, Amin Gheibi, Sina Khakabi Department of Computer Engineering 1,3,4, Mathematics

More information

where is a constant, 0 < <. In other words, the ratio between the shortest and longest paths from a node to a leaf is at least. An BB-tree allows ecie

where is a constant, 0 < <. In other words, the ratio between the shortest and longest paths from a node to a leaf is at least. An BB-tree allows ecie Maintaining -balanced Trees by Partial Rebuilding Arne Andersson Department of Computer Science Lund University Box 8 S-22 00 Lund Sweden Abstract The balance criterion dening the class of -balanced trees

More information

The Algorithm Design Manual

The Algorithm Design Manual Steven S. Skiena The Algorithm Design Manual With 72 Figures Includes CD-ROM THE ELECTRONIC LIBRARY OF SCIENCE Contents Preface vii I TECHNIQUES 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 2 2.1 2.2 2.3

More information

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls 1/60 Geometric Algorithms Lecture 1: Introduction Convex Hulls Geometric algorithms scope 2/60 Geometry algorithms (practice): Study of geometric problems that arise in various applications and how algorithms

More information

Planar Point Location in Sublogarithmic Time

Planar Point Location in Sublogarithmic Time Planar Point Location in Sublogarithmic Time Mihai Pătraşcu (MIT) Point Location in o(log n) Time, Voronoi Diagrams in o(n log n) Time, and Other Transdichotomous Results in Computational Geometry Timothy

More information

Implementing Geometric Algorithms. Wouter van Toll June 20, 2017

Implementing Geometric Algorithms. Wouter van Toll June 20, 2017 Implementing Geometric Algorithms Wouter van Toll June 20, 2017 Introduction 6/20/2017 Lecture: Implementing Geometric Algorithms 2 Focus of this course Create algorithms to solve geometric problems Prove

More information

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE Based on [Berg] and [Mount]

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE   Based on [Berg] and [Mount] VORONOI DIAGRAM PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 9.11.2017 Talk overview Definition and examples

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Vicinities for Spatial Data Processing: a Statistical Approach to Algorithm Design

Vicinities for Spatial Data Processing: a Statistical Approach to Algorithm Design Vicinities for Spatial Data Processing: a Statistical Approach to Algorithm Design Peter Y. Wu wu@rmu.edu Department of Computer and Information Systems Sushil Acharya acharya@rmu.edu Department of Engineering

More information

Planar Point Location

Planar Point Location C.S. 252 Prof. Roberto Tamassia Computational Geometry Sem. II, 1992 1993 Lecture 04 Date: February 15, 1993 Scribe: John Bazik Planar Point Location 1 Introduction In range searching, a set of values,

More information

A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm Ali Nourollah, Mohsen Movahedinejad Abstract In this paper a new algorithm to generate random simple polygons

More information

Computational Geometry Algorithmische Geometrie

Computational Geometry Algorithmische Geometrie Algorithmische Geometrie Panos Giannopoulos Wolfgang Mulzer Lena Schlipf AG TI SS 2013 !! Register in Campus Management!! Outline What you need to know (before taking this course) What is the course about?

More information

Geometric Streaming Algorithms with a Sorting Primitive (TR CS )

Geometric Streaming Algorithms with a Sorting Primitive (TR CS ) Geometric Streaming Algorithms with a Sorting Primitive (TR CS-2007-17) Eric Y. Chen School of Computer Science University of Waterloo Waterloo, ON N2L 3G1, Canada, y28chen@cs.uwaterloo.ca Abstract. We

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams Course 16 Geometric Data Structures for Computer Graphics Voronoi Diagrams Dr. Elmar Langetepe Institut für Informatik I Universität Bonn Geometric Data Structures for CG July 27 th Voronoi Diagrams San

More information

Computational Geometry. Definition, Application Areas, and Course Overview

Computational Geometry. Definition, Application Areas, and Course Overview Computational Geometry Definition, Application Areas, and Course Overview Computational Geometry is a subfield of the Design and Analysis of Algorithms Computational Geometry is a subfield of the Design

More information

OUTPUT-SENSITIVE ALGORITHMS FOR TUKEY DEPTH AND RELATED PROBLEMS

OUTPUT-SENSITIVE ALGORITHMS FOR TUKEY DEPTH AND RELATED PROBLEMS OUTPUT-SENSITIVE ALGORITHMS FOR TUKEY DEPTH AND RELATED PROBLEMS David Bremner Dan Chen John Iacono Stefan Langerman Pat Morin ABSTRACT. The Tukey depth (Tukey 1975) of a point p with respect to a finite

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Optimal Routing-Conscious Dynamic Placement for Reconfigurable Devices

Optimal Routing-Conscious Dynamic Placement for Reconfigurable Devices Optimal Routing-Conscious Dynamic Placement for Reconfigurable Devices Ali Ahmadinia 1, Christophe Bobda 1,Sándor P. Fekete 2, Jürgen Teich 1, and Jan C. van der Veen 2 1 Department of Computer Science

More information

Deterministic Rectangle Enclosure and Offline Dominance Reporting on the RAM

Deterministic Rectangle Enclosure and Offline Dominance Reporting on the RAM Deterministic Rectangle Enclosure and Offline Dominance Reporting on the RAM Peyman Afshani 1, Timothy M. Chan 2, and Konstantinos Tsakalidis 3 1 MADALGO, Department of Computer Science, Aarhus University,

More information

Smallest Intersecting Circle for a Set of Polygons

Smallest Intersecting Circle for a Set of Polygons Smallest Intersecting Circle for a Set of Polygons Peter Otfried Joachim Christian Marc Esther René Michiel Antoine Alexander 31st August 2005 1 Introduction Motivated by automated label placement of groups

More information

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest. Introduction to Algorithms

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest. Introduction to Algorithms Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Introduction to Algorithms Preface xiii 1 Introduction 1 1.1 Algorithms 1 1.2 Analyzing algorithms 6 1.3 Designing algorithms 1 1 1.4 Summary 1 6

More information

Portable Parallel Algorithms for Geometric Problems

Portable Parallel Algorithms for Geometric Problems In Proc. 2nd Symp. Frontiers Massively Parallel Computation (1988), pp. 195 198. Portable Parallel Algorithms for Geometric Problems (Preliminary Version) Russ Miller Λ Department of Computer Science State

More information

Edge Guards for Polyhedra in Three-Space

Edge Guards for Polyhedra in Three-Space Edge Guards for Polyhedra in Three-Space Javier Cano Csaba D. Tóth Jorge Urrutia Abstract It is shown that every polyhedron in R with m edges can be guarded with at most 27 2m The bound improves to 5 6

More information

Introduction to Algorithms Third Edition

Introduction to Algorithms Third Edition Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Third Edition The MIT Press Cambridge, Massachusetts London, England Preface xiü I Foundations Introduction

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

Interval Stabbing Problems in Small Integer Ranges

Interval Stabbing Problems in Small Integer Ranges Interval Stabbing Problems in Small Integer Ranges Jens M. Schmidt Freie Universität Berlin, Germany Enhanced version of August 2, 2010 Abstract Given a set I of n intervals, a stabbing query consists

More information

CS-235 Computational Geometry

CS-235 Computational Geometry CS-235 Computational Geometry Computer Science Department Fall Quarter 2002. Computational Geometry Study of algorithms for geometric problems. Deals with discrete shapes: points, lines, polyhedra, polygonal

More information

An Optimal Algorithm for the Separating Common Tangents of Two Polygons

An Optimal Algorithm for the Separating Common Tangents of Two Polygons An Optimal Algorithm for the Separating Common Tangents of Two Polygons Miel Abrahamsen Department of Computer Science, University of Copenhagen Universitetsparen 5 DK-2 Copanhagen Ø Denmar miab@di.u.d

More information

Visibility: Finding the Staircase Kernel in Orthogonal Polygons

Visibility: Finding the Staircase Kernel in Orthogonal Polygons Visibility: Finding the Staircase Kernel in Orthogonal Polygons 8 Visibility: Finding the Staircase Kernel in Orthogonal Polygons Tzvetalin S. Vassilev, Nipissing University, Canada Stefan Pape, Nipissing

More information

OUTPUT-SENSITIVE ALGORITHMS FOR TUKEY DEPTH AND RELATED PROBLEMS

OUTPUT-SENSITIVE ALGORITHMS FOR TUKEY DEPTH AND RELATED PROBLEMS OUTPUT-SENSITIVE ALGORITHMS FOR TUKEY DEPTH AND RELATED PROBLEMS David Bremner University of New Brunswick Stefan Langerman Université Libre de Bruxelles Dan Chen University of New Brunswick Pat Morin

More information

Lecture 1 (Part 1) Introduction/Overview

Lecture 1 (Part 1) Introduction/Overview UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Fall, 2013 Lecture 1 (Part 1) Introduction/Overview Monday, 9/9/13 Web Page Web Page http://www.cs.uml.edu/~kdaniels/courses/alg_503_f13.html

More information

Computational Geometry for Imprecise Data

Computational Geometry for Imprecise Data Computational Geometry for Imprecise Data November 30, 2008 PDF Version 1 Introduction Computational geometry deals with algorithms on geometric inputs. Historically, geometric algorithms have focused

More information

A Dynamic Data Structure for 3-d Convex Hulls and 2-d Nearest Neighbor Queries

A Dynamic Data Structure for 3-d Convex Hulls and 2-d Nearest Neighbor Queries A Dynamic Data Structure for 3-d Convex Hulls and 2-d Nearest Neighbor Queries Timothy M. Chan September 15, 2009 Abstract We present a fully dynamic randomized data structure that can answer queries about

More information

Asymmetric Convex Intersection Testing

Asymmetric Convex Intersection Testing Asymmetric Convex Intersection Testing Luis Barba Wolfgang Mulzer Abstract We consider asymmetric convex intersection testing (ACIT). Let P R d be a set of n points and H a set of n halfspaces in d dimensions.

More information

Geometric Combinatorics

Geometric Combinatorics Geometric Combinatorics sponsored by MAA PREP and MSRI Geometric combinatorics refers to a growing body of mathematics concerned with counting properties of geometric objects described by a finite set

More information

Approximating TSP Solution by MST based Graph Pyramid

Approximating TSP Solution by MST based Graph Pyramid Approximating TSP Solution by MST based Graph Pyramid Y. Haxhimusa 1,2, W. G. Kropatsch 2, Z. Pizlo 1, A. Ion 2 and A. Lehrbaum 2 1 Department of Psychological Sciences, Purdue University 2 PRIP, Vienna

More information

I/O-Algorithms Lars Arge Aarhus University

I/O-Algorithms Lars Arge Aarhus University I/O-Algorithms Aarhus University April 10, 2008 I/O-Model Block I/O D Parameters N = # elements in problem instance B = # elements that fits in disk block M = # elements that fits in main memory M T =

More information

Geometric Retrieval Problems*

Geometric Retrieval Problems* INFORMATION AND CONTROL 63, 39-57 (1984) Geometric Retrieval Problems* RICHARD COLE AND CHEEK. YAP Courant Institute of Mathematical Sciences, New York University, New York A large class of geometric retrievalproblems

More information

Detecting intersections between convex polyhedra

Detecting intersections between convex polyhedra Detecting intersections between convex polyhedra Luis Barba Stefan Langerman Abstract For a polyhedron P in R d, denote by P its combinatorial complexity, i.e., the number of faces, edges and vertices

More information

A New Approach to the Dynamic Maintenance of Maximal Points in a Plane*

A New Approach to the Dynamic Maintenance of Maximal Points in a Plane* Discrete Comput Geom 5:365-374 (1990) 1990 Springer-Verlag New York~Inc.~ A New Approach to the Dynamic Maintenance of Maximal Points in a Plane* Greg N. Frederickson and Susan Rodger Department of Computer

More information

Optimal detection of intersections between convex polyhedra

Optimal detection of intersections between convex polyhedra 1 2 Optimal detection of intersections between convex polyhedra Luis Barba Stefan Langerman 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Abstract For a polyhedron P in R d, denote by P its combinatorial complexity,

More information

CAD & Computational Geometry Course plan

CAD & Computational Geometry Course plan Course plan Introduction Segment-Segment intersections Polygon Triangulation Intro to Voronoï Diagrams & Geometric Search Sweeping algorithm for Voronoï Diagrams 1 Voronoi Diagrams Voronoi Diagrams or

More information

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Insertions and Deletions in Delaunay Triangulations using Guided Point Location. Kevin Buchin TU Eindhoven

Insertions and Deletions in Delaunay Triangulations using Guided Point Location. Kevin Buchin TU Eindhoven Insertions and Deletions in Delaunay Triangulations using Guided Point Location Kevin Buchin TU Eindhoven Heraklion, 21.1.2013 Guide - Example Construct Delaunay triangulation of convex polygon in linear

More information

1 The range query problem

1 The range query problem CS268: Geometric Algorithms Handout #12 Design and Analysis Original Handout #12 Stanford University Thursday, 19 May 1994 Original Lecture #12: Thursday, May 19, 1994 Topics: Range Searching with Partition

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

BIASED RANGE TREES. Vida Dujmović John Howat Pat Morin

BIASED RANGE TREES. Vida Dujmović John Howat Pat Morin BIASED RANGE TREES Vida Dujmović John Howat Pat Morin ABSTRACT. A data structure, called a biased range tree, is presented that preprocesses a set S of n points in R 2 and a query distribution D for 2-sided

More information

A Sweep-Line Algorithm for the Inclusion Hierarchy among Circles

A Sweep-Line Algorithm for the Inclusion Hierarchy among Circles Japan J. Indust. Appl. Math., 23 (2006), 127 138 Area 3 A Sweep-Line Algorithm for the Inclusion Hierarchy among Circles Deok-Soo Kim 1,, Byunghoon Lee 2 and Kokichi Sugihara 3 1 Department of Industrial

More information

Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations

Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations VOL 3, NO0 Oct, 202 ISSN 2079-8407 2009-202 CIS Journal All rights reserved http://wwwcisjournalorg Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations Sabina, 2 Vinod

More information

Linear and Integer Programming (ADM II) Script. Rolf Möhring WS 2010/11

Linear and Integer Programming (ADM II) Script. Rolf Möhring WS 2010/11 Linear and Integer Programming (ADM II) Script Rolf Möhring WS 200/ Contents -. Algorithmic Discrete Mathematics (ADM)... 3... 4.3 Winter term 200/... 5 2. Optimization problems 2. Examples... 7 2.2 Neighborhoods

More information

Logarithmic-Time Point Location in General Two-Dimensional Subdivisions

Logarithmic-Time Point Location in General Two-Dimensional Subdivisions Logarithmic-Time Point Location in General Two-Dimensional Subdivisions Michal Kleinbort Tel viv University, Dec 2015 Joint work with Michael Hemmer and Dan Halperin Michal Kleinbort (TU) Point-Location

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Range Reporting of Planar Convex Hull and Skyline Points

Range Reporting of Planar Convex Hull and Skyline Points Range Reporting of Planar Convex Hull and Skyline Points Thesis submitted in partial fulfillment of the requirements for the degree of MS by Research in Computer Science Engineering by NADEEM MOIDU 200802025

More information

ADAPTIVE GRIDS FOR GEOMETRIC OPERATIONS

ADAPTIVE GRIDS FOR GEOMETRIC OPERATIONS ADAPTIVE GRIDS FOR GEOMETRIC OPERATIONS fm. RANDOLPH FRANKLIN, Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA S INTRODUCTION PATIAL AND TOPOLOGICAL

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Planar union of rectangles with sides parallel to the coordinate axis

Planar union of rectangles with sides parallel to the coordinate axis 6 th International Conference on Applied Informatics Eger, Hungary, January 27 31, 2004. Planar union of rectangles with sides parallel to the coordinate axis Daniel Schmid, Hanspeter Bopp Department of

More information

Outline. CGAL par l exemplel. Current Partners. The CGAL Project.

Outline. CGAL par l exemplel. Current Partners. The CGAL Project. CGAL par l exemplel Computational Geometry Algorithms Library Raphaëlle Chaine Journées Informatique et GéomG ométrie 1 er Juin 2006 - LIRIS Lyon Outline Overview Strengths Design Structure Kernel Convex

More information

Tree-Weighted Neighbors and Geometric k Smallest Spanning Trees

Tree-Weighted Neighbors and Geometric k Smallest Spanning Trees Tree-Weighted Neighbors and Geometric k Smallest Spanning Trees David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Tech. Report 92-77 July 7, 1992

More information

Trapezoid and Chain Methods

Trapezoid and Chain Methods C.S. 252 Prof. Roberto Tamassia Computational Geometry Sem. II, 1992 1993 Lecture 05 Date: Febuary 17, 1993 Scribe: Peter C. McCluskey Trapezoid and Chain Methods 1 Trapezoid Method (continued) Continuing

More information

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Michiel Smid October 14, 2003 1 Introduction In these notes, we introduce a powerful technique for solving geometric problems.

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

Technical Section. Tribox bounds for three-dimensional objects

Technical Section. Tribox bounds for three-dimensional objects PERGAMON Computers & Graphics 23 (1999) 429-437 Technical Section Tribox bounds for three-dimensional objects A. Crosnier a, *, J.R. Rossignac b a LIMM, 161 rue Ada, 34392 Montpellier Cedex 5, France b

More information

Extensible Point Location Algorithm

Extensible Point Location Algorithm Extensible Point Location Algorithm Rashmi Sundareswara and Paul Schrater Department of Computer Science and Engineering University of Minnesota, Twin Cities, USA sundares@cs.umn.edu, schrater@umn.edu

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information