Computer Aided Design of Helical Cutting Tools

Size: px
Start display at page:

Download "Computer Aided Design of Helical Cutting Tools"

Transcription

1 Computer Aided Design of Helical Cutting Tools Ngoc Thiem Vu, Shinn Liang Chang, Jackson Hu, and Tacker Wang Abstract The helical cutting tools have complex geometries. A rack cutter is the most economical tool that has been used for manufacturing helical cutting tool. In this paper, the computer program has been designed to evaluate the manufacture abilities following design concept and analyze the technical parameters of helical cutting tool. The program can simulate the sections of helical cutting tool and the rack cutter, analyze the clearance angle, relief angle, width top of the helical cutting tool, and modify the rack cutter profile to show the helical cutting tool profile suitably. This program can predict the differences during manufacture process and offer the best solution for economical consideration. Index Terms Computer aided design, helical cutting tool, rack cutter, theory of gearing. I. INTRODUCTION The development of information technology supports the process of mechanical manufacture to very high level and makes good profit on mechanical industry. Computer programs have been developed rapidly in the mechanical process, especially for the manufacture of cutters and design of cutters [1], [2]. Helical cutting tools have the important role in the manufacture of machine parts. Rack cutter has been designed for manufacturing helical cutting tool. The personal computer is applied to design the cutter and show the profile of cutters [3]-[5]. Before the manufacture of helical cutting tool, we can simulate the section of helical cutting tool that is cut by rack cutter. Therefore, we can avoid unpredicted errors after manufacturing. In this study, the computer program has been designed for general purpose, the helical cutter applied for the resharpening of pencils is investigated. Some important functions are included in this program. The user inputs parameters, then the program will calculate automatically to show results and analysis. It s convenient and reliable for the customer. II. DESIGN OF RACK CUTTER The phenomenon of undercutting has been applied by a straight-sided hob cutter to generate the profile of the helical cutting tool [4]. Fig.1 shows an example of normal tooth section of hob cutter. The cutting face can be divided into six regions: (I) the Manuscript received February 09, 2012; revised March 30, Ngoc Thiem Vu, Shinn Liang Chang are with Department of Mechanical and Electro-Mechanical Engineering, National Formosa University, 64 WunHua Road, Huwei, 632 Yunlin, Taiwan(a ngocthiem3g@gmail.com (graduate student), b changsl@nfu.edu.tw (professor, corresponding author). Jackson Hu, and Tacker Wang are with AMAX MFG. CO., LTD.68, Kuang-Cheng Road, TaliCity, Taichung Hsien 41278, Taiwan ( jhu@apexon.com.tw, twang@apexon.com.tw). left cutting face, (II) the right cutting face, (III and IV) the fillet cutting faces, (V) the top land cutting face, and (VI) the chamfering cutting face. The equations of designed rack profiles of the hob cutter, and the theory of gearing are applied, so the mathematical model of the helical cutting tool can be derived. In Fig.1, is the origin of the coordinate system,,, it located at the middle of the rack cutter body. The equations of the six regions of the rack cutter in the coordinate system,, can be obtained but only the equation of left cutting face is shown here as example. The geometrical properties and theory of gearing can be applied to find the equations of other regions. Fig.1. Normal section tooth profile of hob cutter. The equation of left cutting face I is presented in the coordinate system as:.sin.cos.tan =. cos (1).sin 0 1 : Parameter indicates the position on the left cutting face. III. EQUATION OF THE HELICAL RACK CUTTER The normal section of rack cutter is transferred along the direction of the lead that is shown in Fig.2. We transform the equations of the cutting face from the rack cutter coordinate system to the helical rack cutter coordinate system, we can obtain the equation of the helical rack cutter. The transformation matrix M indicates the transformation of the rack cutter coordinate system to the helical coordinate system that is shown in Fig.2. 93

2 sin cos u. cos M = (2) 0 cos sin u.sin The upper sign of M indicates the right-hand helix of the helical rack cutter and the lower sign of M indicates the left-hand helix. The equation of left cutting face of the helical rack cutter showed in the coordinate system (region I). Fig. 2. The coordinate system of the right-hand helix of the rack cutter. VI), the equation of helical rack cutter of 5 regions can be IV. EQUATION OF THE HELICAL CUTTING TOOL Fig. 3. Coordinate system relationship of the rack cutter and generated gear. A. Locus Equations Transforming the equation of the cutting face from the coordinate system of the helical rack cutter to the coordinate system of the helical cutting tool is shown in Fig.3. The transformation matrix M is shown below. The locus equation of the helical cutting tool can be (3) M M M (4) The locus equation of the rack cutter for region I, left cutting face, is shown below:. (5) where is shown in equation (3). VI), the locus equation of the full profile can be B. Equations of Meshing In Fig. 3, the helical cutting tool is generated by the rack cutter. Using the theory of gearing, the relative velocity of the contact point ( ) and the unit normal vectors of the helical rack cutter () are Then, the equation of meshing. =0 can be The equation of meshing of the left cutting face is derived as below:. cos. tan. cos tan 45.tan 2.sin. tan. (6) Solving equation (6) and equation (5) simultaneously, the generated tooth profile by region I can be VI), the generated tooth profile of the other regions can be V. PROGRAM SUPPORTS DESIGNING RACK CUTTER The development of this program can automatically analyze some technical characteristics and simulate sections of rack cutter and helical cutting tool. The different profiles and optimal design can be predicted. We can estimate the manufacture abilities to save time and money for manufacturers, and enhance the manufacturing efficiency. The parameters of helical cutting tool and rack cutter can be modified for finding optimal cases. Finally, we can save the modified data in text file or multiple points of section to import into AutoCAD for checking profile again. The computer program is a window application program which works on Window 7 or Window XP using Visual Basic language. A. Flow Chart of the Program A flow chart of the program for designing the rack cutter is shown in Fig.4. Input parameters are filled firstly. Then, the sections of helical cutting tool and helical rack cutter can be displayed. If we accept those sections, we can continue for analyzing clearance angle, relief angle, and top land width of the helical cutting tool. The technical parameters of cutters can be checked. Then, we can modify input parameters to show new sections of helical cutting tool and helical rack cutter. Finally, we can choose the best solution and save data for manufacturing. B. Computer Program The main menu of the program is shown in Fig.5 consisting of File, Edit, and Examples modes, and three tabs. In the tab Section of the Cutting Tools, we can input parameters of the helical cutting tool then click on the functions to display the helical cutting tool section or one tooth section. Then, we can evaluate the left cutting face, right cutting face, fillet cutting face, top land cutting face, and chamfering cutting face to choose the compatible rack 94

3 cutter in the next tab named Technical Analysis Graphs. The second tab is shown in Fig.6 consisting of displaying rack cutter profile function, analyzing clearance angle, relief angle, and top land width. In addition, this tab contains special functions such as parameters of helical cutting tools and rack cutter that can be exported and saved in the text files. And, the multiple points in the 2D coordinate of the helical cutting tool section can also selected to save in the other text file. The third tab Checking Rack Cutter is shown in Fig.7, we can modify the parameters to show new section of rack cutter and helical cutting tool. We can evaluate the new sections and compare with the old sections for choosing the best choices for manufacturing. Clearance angle (90 Pressure angle of chamfering) = 30 Radius of helical rack cutter, r = 0.15 (mm) Addendum, HKW=1.24 (mm) Dedendum, HFW=0.24 (mm) Tooth thickness of rack cutter, 2 = 5.4 (mm) Focusing in the third tab in Fig.7, if we want to modify the profile of rack cutter and helical cutting tool, we can change the parameters in each data box. In this example the parameters are modified in Fig.8 shown below: Pressure angle of left cutting face, =45 Pressure angle of right cutting face, = 5 Radius of helical rack cutter, r = 0.4 (mm) Pressure angle of chamfering = 65 Fig. 5. Input parameters and the section of the cutting tools. Fig. 4. Flow chart of the program. C. Example If the data is inputted as shown in Fig.5, we obtain the sections and technical parameters of helical cutting tool and rack cutter shown in Fig.5, Fig.6, and Fig.7. In addition, we can use those sections as original sections to compare with modified sections of helical cutting tool and helical rack cutter. 1) Parameters of Helical Cutting Tool Number of teeth, T =12 Outside diameter, D=15.37(mm) Root diameter, d=12.4(mm) Rake angle, α =29 Helical angle, deg =60 Module, m= ) Parameters of Rack Cutter Pressure angle of left cutting face, =40 Pressure angle of right cutting face, = 4 Fig. 6. Properties of helical cutting tool and profile of rack cutter. Fig. 7. The modifying field of HCTA program. 95

4 We can obtain the results in Fig.8, Fig. 9, and Fig. 10. D. Choosing Improper Parameters Causes the Wrong Result The fail section of helical cutting tool is shown in the Fig.11 and Fig.12 when the input parameters are improper. Fig.11 shows the failure of section when increase number of teeth of cutter from 12 teeth to 14 teeth. Intersection of left cutting face and right cutting face is on a circle with smaller diameter than standard circle. It can t be accepted. Fig.12 shows another improper input parameters when we decrease the helical angle of cutter from 60 degrees to 45 degrees. On the other hand, if the other parameters are changed to be unsuitable values, the HCTA program can predict and evaluate the unable ability for manufacturing. input parameters to get the better profile of the cutter as the mentioned example in the previous section. The new profile of rack cutter and helical cutting tool can be obtained in Fig.8, Fig.9 and Fig.10. Although, the two sets of input parameter both can be accepted. When we input the improper parameters as in Fig. 11, Fig.11 and Fig.12 show the improper profiles of helical cutting tool. The crossing section of the left cutting face and the top land cutting face are intersected on the smaller circle than the required circle. Fig. 11. Wrong section when entering parameter is improper. Fig. 8. Modified profile of rack cutter and helical cutting tool. Fig. 12. Wrong section when entering parameter is improper. Fig. 9. Rack cutter is modified and before. Fig. 10. Helical cutting tool is modified and before. VI. DISCUSSION When the helical cutting tool is designed, designers can check the profile of cutter by using HCTA program. When the result is proper as Fig.5, Fig.6, and Fig.7 shown, we accept the input parameters and save them for manufacturing the cutter. In addition, we can modify some VII. CONCLUSION In this study, the computer program has been designed to simulate and modify the sections of helical cutting tool and helical rack cutter. Before we manufacture the cutters, we can simulate the profiles of cutters using this program to display the sections and technical characteristics. Then, we evaluate the producing abilities and predict the differences of cutters after manufacturing. This program is written by Visual Basic language with simple interface helping users use easily. This program design not only supporting for manufacture but also helping learners to study this field easily. 2 C D APPENDIX Tooth thickness of the rack cutter Shifted amount Outside diameter of the helical 96

5 cutting tool e Height of chamfering from point q to the root of tooth of the rack cutter HKW :Addendum of the rack cutter HFW: Dedendum of the rack cutter,, : Parameter of vector,, respectively Origin of coordinate system Circular pitch of the rack cutter r Outside radius of the helical cutting tool Radius of pitch circle of the helical cutting tool,, μ: Parameters of,, R Radius of the rack cutter fillet Fixed coordinate system Coordinate system of helical rack cutter Coordinate system of helical cutting tool u Distance between origins and λ Lead angle of the helical cutting tool Angular displacement of the helical cutting tool while hobbing,, : Pressure angle of cutting edge I, II, and VI respectively. ACKNOWLEDGMENT The work outline in this paper was supported by APEX MFG. CO., LTD and the National Science Council under grants NSC E and NSC E REFERENCES [1] J. Argyris, M. D. Donno, and F. L. Litvin, Computer program in Visual Basic language for simulation of meshing and contact of gear drives and its application for design of worm gear drive, Computer Methods in Applied Mechanics and Engineering, vol. 189, pp , [2] J. D. Kim and D. S. Kim, The development of software for shaving cutter design, Journal of materials processing technology, vol. 59, pp , [3] F. L. Litvin, Gear geometry and applied theory, second edition, Published by Cambridge University press, September [4] S. L. Chang and H. C. Tseng, Design of a novel cutter for manufacturing helical cutting tools, Proceeding of the institution of mechanical engineers, Journal of Mechanical Engineering Science vol. 219, pp , [5] J. K. Hsieh, H. C. Tseng, and S. L.Chang, Novel hob cutter design for the manufacture of spur-typed cutters, Journal of materials processing technology, vol. 209, pp ,

Mathematical Model and Surface Deviation of Cylindrical Gears With Curvilinear Shaped Teeth Cut by a Hob Cutter

Mathematical Model and Surface Deviation of Cylindrical Gears With Curvilinear Shaped Teeth Cut by a Hob Cutter Jui-Tang Tseng Graduate Student Chung-Biau Tsay Professor Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan 3000, Republic of China Mathematical Model Surface Deviation

More information

Contact Characteristics of Circular-Arc Curvilinear Tooth Gear Drives

Contact Characteristics of Circular-Arc Curvilinear Tooth Gear Drives Yi-Cheng Wu Engineer Mechanical System Research Laboratory, Industrial Technology Research Institute, Hsinchu 31040, Taiwan e-mail: easonwu@gmail.com Kuan-Yu Chen Ph.D. Cidate Department of Mechanical

More information

Geometric and computer-aided spline hob modeling

Geometric and computer-aided spline hob modeling IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Geometric and computer-aided spline hob modeling To cite this article: I G Brailov et al 2018 IOP Conf. Ser.: Mater. Sci. Eng.

More information

A novel hob cutter design for the manufacture of spur-typed cutters

A novel hob cutter design for the manufacture of spur-typed cutters journal of materials processing tecnology 29 (29) 847 855 journal omepage: www.elsevier.com/locate/jmatprotec A novel ob cutter design for te manufacture of spur-typed cutters Jen-Kuei Hsie a, Huang-Ci

More information

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 68 CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 4.1 INTRODUCTION There is a demand for the gears with higher load carrying capacity and increased fatigue life. Researchers in the

More information

NONCIRCULAR GEAR DESIGN AND GENERATION BY RACK CUTTER

NONCIRCULAR GEAR DESIGN AND GENERATION BY RACK CUTTER , TECHNOLOGIES IN MACHINE BUILDING, ISSN 1221-4566, 2011 NONCIRCULAR GEAR DESIGN AND GENERATION BY RACK CUTTER Marius Vasie,LaurenŃia Andrei University Dunărea de Jos of GalaŃi, Romania v_marius_gl@yahoo.com

More information

IPLEMENTATION OF PARAMETRIC CURVES TO THE DESIGN OF TRUE INVOLUTE GEAR PROFILE

IPLEMENTATION OF PARAMETRIC CURVES TO THE DESIGN OF TRUE INVOLUTE GEAR PROFILE The 4th International Conference Computational Mechanics and Virtual Engineering COMEC 2011 20-22 OCTOBER 2011, Brasov, Romania IPLEMENTATION OF PARAMETRIC CURVES TO THE DESIGN OF TRUE INVOLUTE GEAR PROFILE

More information

CRIVELLIN PROGETTAZIONI

CRIVELLIN PROGETTAZIONI 1 CRIVELLIN PROGETTAZIONI s.r.l Via Euclide. milano 23 2042 Bra (CN) Sito Web : www.crivellin.com E-mail: progettazioni.crivellin@gmail.com User manual programs: GEAR-1 GEAR-1 INTERNI GEAR-1 SINGOLO (Cylindrical

More information

MASTA 9.0 Release Notes

MASTA 9.0 Release Notes November 2018 2018 Smart Manufacturing Technology Ltd. Commercial in Confidence Page 1 of 33 MASTA 9.0 Contents and Summary See next section for additional details The 9.0 release of MASTA contains all

More information

[1] involuteσ(spur and Helical Gear Design)

[1] involuteσ(spur and Helical Gear Design) [1] involuteσ(spur and Helical Gear Design) 1.3 Software Content 1.3.1 Icon Button There are 12 icon buttons: [Dimension], [Tooth Form], [Accuracy], [Strength], [Sliding Graph], [Hertz Stress Graph], [FEM],

More information

1332. Contact characteristics of orthogonal face gear with spur involute pinion

1332. Contact characteristics of orthogonal face gear with spur involute pinion 1332. Contact characteristics of orthogonal face gear with spur involute pinion Yangyi Xiao 1, Wankai Shi 2, Jing Luo 3, Liping Zou The State Key Laboratory of Mechanical Transmission, Chongqing University,

More information

DESIGN AND GENERATION OF NONCIRCULAR GEARS WITH CONVEX-CONCAVE PITCH CURVES

DESIGN AND GENERATION OF NONCIRCULAR GEARS WITH CONVEX-CONCAVE PITCH CURVES THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN 1221-4566, 2012 DESIGN AND GENERATION OF NONCIRCULAR GEARS WITH CONVEX-CONCAVE PITCH CURVES Marius VASIE,

More information

HOBBING WEAR PREDICTION MODEL BASED ON 3D CHIPS DETERMINATION

HOBBING WEAR PREDICTION MODEL BASED ON 3D CHIPS DETERMINATION HOBBING WEAR PREDICTION MODEL BASED ON 3D CHIPS DETERMINATION BY TAXIARCHIS BELIS 1 and ARISTOMENIS ANTONIADIS 1 Abstract. Gear hobbing is a machining process widely used in the industry for massive production

More information

DESIGN OF TRI TANGENT FILLET TOOTH OF A HELICAL GEAR AND ITS CONTACT STRESS ANALYSIS

DESIGN OF TRI TANGENT FILLET TOOTH OF A HELICAL GEAR AND ITS CONTACT STRESS ANALYSIS DESIGN OF TRI TANGENT FILLET TOOTH OF A HELICAL GEAR AND ITS CONTACT STRESS ANALYSIS Kakani Jhansi Rani *1, M Venkaiah *2 M.Tech, Dr.D.Sunil *3 Ph.D, P.G. Scholar, Dept. of Mechanical Engineering, N.E.C,

More information

2 CUTTING TOOL GEOMETRY PRODUCTION TECNOLOGY

2 CUTTING TOOL GEOMETRY PRODUCTION TECNOLOGY 2 CUTTING TOOL GEOMETRY PRODUCTION TECNOLOGY Instructional objectives At the end of this lesson, the student should be able to : (a) conceive rake angle and clearance angle of cutting tools (b) classify

More information

Straight Cylindrical Involute Splines Metric Module, Side Fit Part 1: Generalities

Straight Cylindrical Involute Splines Metric Module, Side Fit Part 1: Generalities Translated English of Chinese Standard: GB/T3478.1-2008 www.chinesestandard.net Sales@ChineseStandard.net NATIONAL STANDARD OF THE PEOPLE S REPUBLIC OF CHINA GB ICS 21.120.30 J 18 Replacing GB/T 3478.1-1995

More information

The Rack-Gear Tool Generation Modelling. Non-Analytical Method Developed in CATIA, Using the Relative Generating Trajectories Method

The Rack-Gear Tool Generation Modelling. Non-Analytical Method Developed in CATIA, Using the Relative Generating Trajectories Method IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The Rack-Gear Tool Generation Modelling. Non-Analytical Method Developed in CATIA, Using the Relative Generating Trajectories

More information

New modeling method of spiral bevel gears with spherical involute based on CATIA

New modeling method of spiral bevel gears with spherical involute based on CATIA New modeling method of spiral bevel gears with spherical involute based on CATIA HONG Zhaobin, YANG Zhaojun, ZHANG Xuecheng, WANG Yankun College of Mechanical Science and Engineering, Jilin University,

More information

Effect of Change of Spur Gear Tooth Parameter. On Bending Stress by Simulation

Effect of Change of Spur Gear Tooth Parameter. On Bending Stress by Simulation Effect of Change of Spur Gear Tooth Parameter On Bending Stress by Simulation Nikhil B. Abattini 1, M. M. Mirza 2, P. V. Pawar 3 1 Dept. of Mech. Engineering, Rajarambapu Institute of Technology, Sakharale,

More information

CONTACT STRESS ANALYSIS OF MODIFIED HELICAL GEAR USING CATIA AND ANSYS

CONTACT STRESS ANALYSIS OF MODIFIED HELICAL GEAR USING CATIA AND ANSYS CONTACT STRESS ANALYSIS OF MODIFIED HELICAL GEAR USING CATIA AND ANSYS Raghava Krishna Sameer.B *1, V.Srikanth *2 M.Tech(CAD/CAM), Department of Mechanical, From BRIG-IC, Hyderabad, India. Assistant Professor,

More information

LOAD SHARING OF SPUR GEARS IN MESH AN ANALYTICAL AND EXPERIMENTAL STUDY

LOAD SHARING OF SPUR GEARS IN MESH AN ANALYTICAL AND EXPERIMENTAL STUDY NATIONAL TECHNICAL UNIVERSITY OF ATHENS (NTUA) Department of Mechanical Engineering Laboratory of Machine Elements LOAD SHARING OF SPUR GEARS IN MESH AN ANALYTICAL AND EXPERIMENTAL STUDY G. K. Sfantos

More information

GEOMETRIC MODELING AND DYNAMIC SIMULATION OF INVOLUTE GEAR BY GENERATING METHOD

GEOMETRIC MODELING AND DYNAMIC SIMULATION OF INVOLUTE GEAR BY GENERATING METHOD PROCEEDINGS 13th INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS August 4-8, 2008, Dresden (Germany ISBN: 978-3-86780-042-6 GEOMETRIC MODELING AND DYNAMIC SIMULATION OF INVOLUTE GEAR BY GENERATING METHOD

More information

MATHEMATICAL METHOD DESIGN FOR CALCULATION OF THE INITIAL TOOL SURFACE FOR THE SHARPENING OF HOBING WORMS

MATHEMATICAL METHOD DESIGN FOR CALCULATION OF THE INITIAL TOOL SURFACE FOR THE SHARPENING OF HOBING WORMS MATHEMATICAL METHOD DESIGN FOR CALCULATION OF THE INITIAL TOOL SURFACE FOR THE SHARPENING OF HOBING WORMS ABSTRACT Ing. Aneta Milsimerová University of West Bohemia in Pilsen Faculty of Mechaical Engineering

More information

Load Sharing Based Analysis of Helical Gear using Finite Element Analysis Method

Load Sharing Based Analysis of Helical Gear using Finite Element Analysis Method Load Sharing Based Analysis of Helical Gear using Finite Element Analysis Method D.Deepak 1 1 Assistant professor, Mechanical Engineering, United Institute of Technology, Coimbatore, Tamilnadu, India.

More information

EXPERIMENTAL VALIDATION OF A COMPUTERIZED TOOL FOR FACE HOBBED GEAR CONTACT AND TENSILE STRESS ANALYSIS

EXPERIMENTAL VALIDATION OF A COMPUTERIZED TOOL FOR FACE HOBBED GEAR CONTACT AND TENSILE STRESS ANALYSIS Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007 September 4-7, 2007, Las Vegas, Nevada, USA DETC2007-35911

More information

Comparison of Bending Stress on Circular and Elliptical Profile Fillet of Helical Gear Using

Comparison of Bending Stress on Circular and Elliptical Profile Fillet of Helical Gear Using Comparison of Bending Stress on Circular and Elliptical Profile Fillet of Helical Gear Using AGMA and ANSYS Bhupendra Kumar Sahu 1, Mahesh Dewangan 2 1 PG Scholar, 2 Associate Professor, 12 Department

More information

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 96 07 p-issn: 009-334 e-issn: 450-549 DOI: https://doi.org/0.0858/sjsutst.07.96.8

More information

1 Introduction to Theory of Gearing, Design, and Generation of Noncircular Gears

1 Introduction to Theory of Gearing, Design, and Generation of Noncircular Gears 1 Introduction to Theory o Gearing, Design, and Generation o Noncircular Gears 1.1 Historical Comments Designers have tried or many years to apply noncircular gears in automatic machines and instruments.

More information

Profiling of Screw Compressor Rotors by Use of Direct Digital Simulation

Profiling of Screw Compressor Rotors by Use of Direct Digital Simulation Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2008 Profiling of Screw Compressor Rotors by Use of Direct Digital Simulation Nikola Stosic

More information

BGA Technical Awareness Seminar 2010

BGA Technical Awareness Seminar 2010 BGA Technical Awareness Seminar 2010 Modelling Production Techniques for Accurate Gears Dr. Mike Fish Dr. David Palmer Dontyne Systems Limited 2010 2008 Dontyne Systems Limited is a company registered

More information

Towards Optimum Involute Gear Design by Combining Addendum and Thickness Modifications

Towards Optimum Involute Gear Design by Combining Addendum and Thickness Modifications Towards Optimum Involute Gear Design by Combining Addendum and Thickness Modifications Vasilios Spitas and Christos Spitas Abstract Involute gear sets are being produced through a variety of cutting tools

More information

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 12

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 12 Contact Stress Analysis of Helical Gear by Using AGMA and ANSYS S.Sai Anusha 1 P.Satish Reddy 2 P.Bhaskar 3 M Manoj 4 PG Scholar, Assoc. Professor, Asst Professor, Asst Professor Dept of Mechanical Engineering,

More information

CAD-BASED CALCULATION OF CUTTING FORCE COMPONENTS IN GEAR HOBBING

CAD-BASED CALCULATION OF CUTTING FORCE COMPONENTS IN GEAR HOBBING CAD-BASED CALCULATION OF CUTTING FORCE COMPONENTS IN GEAR HOBBING BY NIKOLAOS TAPOGLOU and ARISTOMENIS ANTONIADIS Abstract. One of the most commonly used gear manufacturing process especially for external

More information

Available online at ScienceDirect. Procedia CIRP 41 (2016 )

Available online at   ScienceDirect. Procedia CIRP 41 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 41 (16 ) 687 691 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 1 Calculating the workpiece quality using a hobbing simulation

More information

3D MODELLING OF CYLINDRICAL CUTTING TOOL GEOMETRY WITH HELICAL TEETH

3D MODELLING OF CYLINDRICAL CUTTING TOOL GEOMETRY WITH HELICAL TEETH Annals of the University of Petroşani, Mechanical Engineering, 15 (013), 45-55 45 3D MODELLING OF CYLINDRICAL CUTTING TOOL GEOMETRY WITH HELICAL TEETH IOSIF DUMITRESCU 1, SORIN MIHĂILESCU, VILHEM ITU 3

More information

Accurate Trajectory Control for Five-Axis Tool-Path Planning

Accurate Trajectory Control for Five-Axis Tool-Path Planning Accurate Trajectory Control for Five-Axis Tool-Path Planning Rong-Shine Lin* and Cheng-Bing Ye Abstract Computer-Aided Manufacturing technology has been widely used for three-axis CNC machining in industry

More information

Research applying Spherical Gear and Ring Rack Mechanism to Rotary Work Table

Research applying Spherical Gear and Ring Rack Mechanism to Rotary Work Table ISSN: 2454-2377, Research applying Spherical Gear and Ring Rack Mechanism to Rotary Work Table Vi Hoang 1, Thuan Nguyen 2, Minh Tuan Ngo 3* Faculty of Mechanical Engineering, Thai Nguyen University of

More information

Empirical Modeling of Cutting Forces in Ball End Milling using Experimental Design

Empirical Modeling of Cutting Forces in Ball End Milling using Experimental Design 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Empirical Modeling of Cutting Forces in

More information

IMECE OPTIMAL DESIGN OF WORM GEAR SYSTEM USING IN CVVL FOR AUTOMOBILES

IMECE OPTIMAL DESIGN OF WORM GEAR SYSTEM USING IN CVVL FOR AUTOMOBILES Proceedings of ASME 2013 International Mechanical Engineering Congress & Exposition IMECE 2013 November 15-21, 2013, San Diego, CA, USA IMECE2013-63365 OPTIMAL DESIGN OF WORM GEAR SYSTEM USING IN CVVL

More information

Path of contact calculation KISSsoft

Path of contact calculation KISSsoft Path of contact calculation KISSsoft 04-2010 KISSsoft AG - +41 55 254 20 50 Uetzikon 4 - +41 55 254 20 51 8634 Hombrechtikon - info@kisssoft.ag Switzerland - www.kisssoft.ag Path of contact calculation

More information

(1) (2) be the position vector for a generic point. If this point belongs to body 2 (with helical motion) its velocity can be expressed as follows:

(1) (2) be the position vector for a generic point. If this point belongs to body 2 (with helical motion) its velocity can be expressed as follows: The 14th IFToMM World Congress, Taipei, Taiwan, October 25-30, 2015 DOI Number: 10.6567/IFToMM.14TH.WC.OS6.025 A Rolling-Joint Higher-Kinematic Pair for Rotary-Helical Motion Transformation J. Meneses

More information

MODELLING OF SPUR GEAR CONTACT USING A LOCAL ADAPTIVE FINITE ELEMENT MESH

MODELLING OF SPUR GEAR CONTACT USING A LOCAL ADAPTIVE FINITE ELEMENT MESH MODELLING OF SPUR GEAR CONTACT USING A LOCAL ADAPTIVE FINITE ELEMENT MESH J. Lahtivirta 1*, A. Lehtovaara 1 1 Group of Tribology and Machine Elements, Materials Science: Tampere University of Technology

More information

Hypoid Gears with Involute Teeth

Hypoid Gears with Involute Teeth technical Hypoid Gears with Involute Teeth David B. Dooner This paper presents the geometric design of hypoid gears with involute gear teeth. An overview of face cutting techniques prevalent in hypoid

More information

Effect of Change of Spur Gear Tooth Parameter On Contact stress

Effect of Change of Spur Gear Tooth Parameter On Contact stress Effect of Change of Spur Gear Tooth Parameter On Contact stress Nikhil B. Abattini 1, M. M. Mirza 2, P. V. Pawar 3 1 Dept. of Mech. Engineering, Rajarambapu Institute of Technology, Sakharale, Islampur,

More information

Effect of Rim Thickness on Bending Stresses in Low Addendum Large Spur Gears

Effect of Rim Thickness on Bending Stresses in Low Addendum Large Spur Gears Effect of Rim Thickness on Bending Stresses in Low Addendum Large Spur Gears Yesh P. Singh Department of Mechanical Engineering The University of Texas at San Antonio San Antonio, TX 78249-0670 Ravichandra

More information

1. Study the image below and table on the next page. Complete the following tasks.

1. Study the image below and table on the next page. Complete the following tasks. Activity 8.2 Parametric Constraints Introduction Have you ever received an advertisement in the mail that looked like it was tailored specifically for you? How could the company afford to spend so much

More information

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD Haval Kamal Asker Department of Mechanical Engineering, Faculty of Agriculture and Forestry, Duhok University, Duhok,

More information

The generation principle and mathematical models of a novel cosine gear drive

The generation principle and mathematical models of a novel cosine gear drive The generation principle and mathematical models of a novel cosine gear drive Shanming Luo a, *, Yue Wu b, Jian Wang a a School of Mechanical Engineering, Hunan University of Science and Technology, Taoyuan

More information

MODELING OF THE BROACHING PROCESS

MODELING OF THE BROACHING PROCESS MODELING OF THE BROACHING PROCESS Sara Whitby Graduate Student Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, PA 1521 Matthew Glisson Graduate Student Department of Mechanical

More information

werkzeugtechnik WEIß WERKZEUGTECHNIK Special Form Cutters Special Tools for Medical Engineering Precision Milling Tools

werkzeugtechnik WEIß WERKZEUGTECHNIK Special Form Cutters Special Tools for Medical Engineering Precision Milling Tools werkzeugtechnik WEIß WERKZEUGTECHNIK Special Form Cutters Special Tools for Medical Engineering Precision Milling Tools Weiß Werkzeugtechnik. Uncompromising in form and profile! Highest precision, outstanding

More information

MACHINES AND MECHANISMS

MACHINES AND MECHANISMS MACHINES AND MECHANISMS APPLIED KINEMATIC ANALYSIS Fourth Edition David H. Myszka University of Dayton PEARSON ж rentice Hall Pearson Education International Boston Columbus Indianapolis New York San Francisco

More information

Generating conjugate shapes using piecewise cubic spline functions

Generating conjugate shapes using piecewise cubic spline functions Comput. Methods Appl. Mech. Engrg. 87 (000) 45±60 www.elsevier.com/locate/cma Generating conjugate shapes using piecewise cubic spline functions Shyh-Haur Su, Ching-Huan Tseng * Department of Mechanical

More information

KINEMATIC ANALYSIS AND SYNTHESIS OF MECHANISMS VIA SMALL-SCALE INTERFERENCE DETECTION

KINEMATIC ANALYSIS AND SYNTHESIS OF MECHANISMS VIA SMALL-SCALE INTERFERENCE DETECTION KINEMATIC ANALYSIS AND SYNTHESIS OF MECHANISMS VIA SMALL-SCALE INTERFERENCE DETECTION Rakesh Gupta and Mark J. Jakiela Computer Aided Design Laboratory, Massachusetts Institute of Technology Department

More information

Effect on Strength of Involute Spur Gear by Changing the Fillet Radius Using FEA

Effect on Strength of Involute Spur Gear by Changing the Fillet Radius Using FEA International Journal Of Scientific & Engineering Research Volume 2, Issue 9, September-2011 1 Effect on Strength of Involute Spur Gear by Changing the Fillet Radius Using FEA Ashwini Joshi, Vijay Kumar

More information

An automation of design and modelling tasks in NX Siemens environment with original software - generator module

An automation of design and modelling tasks in NX Siemens environment with original software - generator module IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS An automation of design and modelling tasks in NX Siemens environment with original software - generator module To cite this article:

More information

Generation of noncircular gears for variable motion of the crank-slider mechanism

Generation of noncircular gears for variable motion of the crank-slider mechanism IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Generation of noncircular gears for variable motion of the crank-slider mechanism To cite this article: M Niculescu et al 2016

More information

Parametric Modeling Program of Fillet End Mill

Parametric Modeling Program of Fillet End Mill Parametric Modeling Program of Fillet End Mill Jiapu Zhu A Thesis In the Department of Mechanical and Industrial Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Master

More information

[Type text] [Type text] [Type text] GearPro Procedure

[Type text] [Type text] [Type text] GearPro Procedure GearPro Procedure Pictured below is the GearPro main screen. In this manual the icons on the top right corner (Chapter 1), far left side (Chapters 2-5), and far right side (Chapters 6&7) will be discussed.

More information

Stress Analysis of Mating Involute Spur Gear Teeth

Stress Analysis of Mating Involute Spur Gear Teeth Stress Analysis of Mating Involute Spur Gear Teeth Sushil Kumar Tiwari (PG Student) 1 Upendra Kumar Joshi (Associate Professor) 2 1,2 Department of Mechanical Engineering JEC Jabalpur (M.P.) India ABSTRACT

More information

Optimal Path Planning for Helical Gear Profile Inspection with Point Laser Triangulation Probes

Optimal Path Planning for Helical Gear Profile Inspection with Point Laser Triangulation Probes Kevin B. Smith Professor, Brigham Young University, Dept. of Electrical and Computer Engineering, Provo, UT 84602 Yuan F. Zheng Professor, The Ohio State University, Dept. of Electrical Engineering, Columbus,

More information

Automated Drill Design Software

Automated Drill Design Software Automated Drill Design Software Athulan Vijayaraghavan March 19, 2006 Abstract This section of the report discusses a tool which can create automated 3D CAD drill models based on geometric as well as manufacturing

More information

Defining the change of meshing rigidity caused by a crack in the gear tooth s foot

Defining the change of meshing rigidity caused by a crack in the gear tooth s foot MultiCraft International Journal of Engineering, Science and Technology Vol. 2, No. 1, 2010, pp. 49-56 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2010 MultiCraft Limited.

More information

Songklanakarin Journal of Science and Technology SJST R1 hendriko

Songklanakarin Journal of Science and Technology SJST R1 hendriko ANALYTICAL METHOD FOR CALCULATING SCALLOP HEIGHT OF HELICAL TOROIDAL CUTTER IN FIVE-AXIS MILLING Journal: Songklanakarin Journal of Science and Technology Manuscript ID SJST-0-00.R Manuscript Type: Original

More information

Modeling concave globoidal cam with indexing turret follower: A case study

Modeling concave globoidal cam with indexing turret follower: A case study Modeling concave globoidal cam with indexing turret follower: A case study Tuong Van Nguyen, Premysl Pokorny To cite this version: Tuong Van Nguyen, Premysl Pokorny. Modeling concave globoidal cam with

More information

A novel approach to the inspection of gears with a co-ordinate measuring machine - theoretical aspects

A novel approach to the inspection of gears with a co-ordinate measuring machine - theoretical aspects A novel approach to the inspection of gears with a co-ordinate measuring machine - theoretical aspects C.H. Gao, K. Cheng, D.K. Harrison Department of Engineering, Glasgow Caledonian University Cowcaddens

More information

TECHNICAL PAPER. Computerized Design of Face Hobbed Hypoid Gears: Tooth Surfaces Generation, Contact Analysis and Stress Calculation

TECHNICAL PAPER. Computerized Design of Face Hobbed Hypoid Gears: Tooth Surfaces Generation, Contact Analysis and Stress Calculation 05FTM05 Computerized Design of Face Hobbed Hypoid Gears: Tooth Surfaces Generation, Contact Analysis and Stress Calculation by: M. Vimercati, Politecnico di Milano and A. Piazza, Centro Ricerche FIAT -

More information

Homework No. 6 (40 points). Due on Blackboard before 8:00 am on Friday, October 13th.

Homework No. 6 (40 points). Due on Blackboard before 8:00 am on Friday, October 13th. ME 35 - Machine Design I Fall Semester 017 Name of Student: Lab Section Number: Homework No. 6 (40 points). Due on Blackboard before 8:00 am on Friday, October 13th. The important notes for this homework

More information

IJMH - International Journal of Management and Humanities ISSN:

IJMH - International Journal of Management and Humanities ISSN: EXPERIMENTAL STRESS ANALYSIS SPUR GEAR USING ANSYS SOFTWARE T.VADIVELU 1 (Department of Mechanical Engineering, JNTU KAKINADA, Kodad, India, vadimay28@gmail.com) Abstract Spur Gear is one of the most important

More information

11 I l 1111Ii 111IlI AD--A Topology of Modified Helical Gears , It" NASAu~N. AVSCOM Technical Report 89-C-004

11 I l 1111Ii 111IlI AD--A Topology of Modified Helical Gears , It NASAu~N. AVSCOM Technical Report 89-C-004 AD--A2 39 099 NASA Technical Memorandum 102134 AVSCOM Technical Report 89-C-004 Topology of Modified Helical Gears F.L. Litvin and J. Zhang University of Illinois at Chicago Chicago, Illinois R.F. Handschuh

More information

DESIGN OF GEAR USING PARAMETRIC MODELING

DESIGN OF GEAR USING PARAMETRIC MODELING DESIGN OF GEAR USING PARAMETRIC MODELING Shivraj Gurav 1, Lohake Pankaj Dilip 2, Jokar Omkar Kailas 3, Jamdade Amol vinayak 4. 1 Asst Prof. Mechanical Engineering, Parvatibai Genba Moze College Of Engineering

More information

2016 International Conference on Sustainable Energy, Environment and Information Engineering (SEEIE 2016) ISBN:

2016 International Conference on Sustainable Energy, Environment and Information Engineering (SEEIE 2016) ISBN: 2016 International Conference on Sustainable Energy, Environment and Information Engineering (SEEIE 2016) ISBN: 978-1-60595-337-3 Understanding Permeability and Pore Throat Radius in Sandstone Reservoirs

More information

Available online at ScienceDirect. Procedia CIRP 58 (2017 )

Available online at   ScienceDirect. Procedia CIRP 58 (2017 ) Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 58 (2017 ) 445 450 16 th CIRP Conference on Modelling of Machining Operations Discrete Cutting Force Model for 5-Axis Milling with

More information

IN recent years, several new spline curves and surface

IN recent years, several new spline curves and surface Application of Generalized NAUT B-Spline Curve on Circular Domain to Generate Circle Involute Ashok Ganguly,Pranjali Arondekar Abstract In the present paper, we use generalized B-Spline curve in trigonometric

More information

Mechanism Kinematics and Dynamics

Mechanism Kinematics and Dynamics Mechanism Kinematics and Dynamics Final Project Presentation 10:10-13:00, 12/21 and 12/28 1. The window shield wiper (2) For the window wiper in Fig.1.33 on p.26 of the PPT, (1). Select the length of all

More information

A New Stress Analysis Method for Hypoid Gear Drives

A New Stress Analysis Method for Hypoid Gear Drives Seoul 000 ISITA World Automotive Congress June -5, 000, Seoul, Korea 00080 A New Stress Analysis Method for Hypoid ear Drives Jui S. Chen American Axle & Manufacturing, Inc 965 Technology Dr Rochester

More information

CAD based Predictive Models of the Undeformed Chip Geometry in Drilling

CAD based Predictive Models of the Undeformed Chip Geometry in Drilling CAD based Predictive Models of the Undeformed Chip Geometry in Drilling Panagiotis Kyratsis, Dr. Ing. Nikolaos Bilalis, and Dr. Ing. Aristomenis Antoniadis Abstract Twist drills are geometrical complex

More information

GENERATION AND TOOTH CONTACT ANALYSIS (TCA) OF HYPOID GEAR DRIVE

GENERATION AND TOOTH CONTACT ANALYSIS (TCA) OF HYPOID GEAR DRIVE Number 3 Volume 18 march 2012 Journal of Engineering GENERATION AND TOOTH CONTACT ANALYSIS (TCA) OF HYPOID GEAR DRIVE Dep. Of Mech. College of Engineering University of Baghdad ABSTRACT ŀ The present work

More information

TOOTH CONTACT ANALYSIS OF NOVIKOV CONVEXO-CONCAVE GEARS

TOOTH CONTACT ANALYSIS OF NOVIKOV CONVEXO-CONCAVE GEARS ADVANCES IN MANUFACTURING SCIENCE AND TECHNOLOGY Vol. 39, No. 1, 2015 DOI: 10.2478/amst-2015-0004 TOOTH CONTACT ANALYSIS OF NOVIKOV CONVEXO-CONCAVE GEARS Tadeusz Markowski, Michał Batsch S u m m a r y

More information

The Computer-Assisted Design Method of Staggered-Tooth Milling Cutter for Manufacturing of the Complex Helical Surfaces Gheorghe Pleşu

The Computer-Assisted Design Method of Staggered-Tooth Milling Cutter for Manufacturing of the Complex Helical Surfaces Gheorghe Pleşu Advanced Materials Research Online: 2014-10-01 ISSN: 1662-8985, Vol. 1036, pp 388-393 doi:10.4028/www.scientific.net/amr.1036.388 2014 Trans Tech Publications, Switzerland The Computer-Assisted Design

More information

ANALYSIS OF THE INFLUENCE OF RADIAL DEPTH OF CUT ON THE STABILITY OF THE PARTS: CASE OF PERIPHERAL MILLING

ANALYSIS OF THE INFLUENCE OF RADIAL DEPTH OF CUT ON THE STABILITY OF THE PARTS: CASE OF PERIPHERAL MILLING International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 730 743, Article ID: IJMET_08_05_079 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtyp

More information

ZhiHuang Shen, 1 Bin Yao, 1 BinQiang Chen, 2 Wei Feng, 1 and XiangLei Zhang Introduction

ZhiHuang Shen, 1 Bin Yao, 1 BinQiang Chen, 2 Wei Feng, 1 and XiangLei Zhang Introduction Shock and Vibration Volume 2015, Article ID 978325, 9 pages http://dxdoiorg/101155/2015/978325 Research Article A Novel Rotor Profile Error Tracing and Compensation Strategy for High Precision Machining

More information

Research on Stress Characteristics of Planetary Gear Drive with Small Tooth Number Difference. Xiaoning Feng

Research on Stress Characteristics of Planetary Gear Drive with Small Tooth Number Difference. Xiaoning Feng 3rd International Conference on Mechanical Engineering and Intelligent Systems (ICMEIS 5) Research on Stress Characteristics of Planetary Gear Drive with Small Tooth Number Difference Xiaoning Feng Mechanical

More information

A Finite Element Approach to Stress Analysis of Face Gears

A Finite Element Approach to Stress Analysis of Face Gears Cleveland State University EngagedScholarship@CSU ETD Archive 2012 A Finite Element Approach to Stress Analysis of Face Gears Lokamanya Siva Manohar Rampilla Cleveland State University Follow this and

More information

Cutting Mechanics of the. Gear Shaping Process

Cutting Mechanics of the. Gear Shaping Process Cutting Mechanics of the Gear Shaping Process by Andrew Katz A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Mechanical

More information

CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS

CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS Panagiotis KYRATSIS 1, Nikolaos BILALIS 2, Vasilis DIMITRIOU 3 and Aristomenis ANTONIADIS 2 ABSTRACT: Twist drills are geometrically complex tools, which

More information

Study on Gear Chamfering Method based on Vision Measurement

Study on Gear Chamfering Method based on Vision Measurement International Conference on Informatization in Education, Management and Business (IEMB 2015) Study on Gear Chamfering Method based on Vision Measurement Jun Sun College of Civil Engineering and Architecture,

More information

CAE Analysis of Secondary Shaft Systems in Great Five-axis Turning-Milling Complex CNC Machine

CAE Analysis of Secondary Shaft Systems in Great Five-axis Turning-Milling Complex CNC Machine Advances in Technology Innovation, vol. 3, no. 1, 2018, pp. 43-50 CAE Analysis of Secondary Shaft Systems in Great Five-axis Turning-Milling Complex CNC Machine Chih-Chiang Hong 1,*, Cheng-Long Chang 1,

More information

RESEARCH ON INTELLIGENT DESIGN AND ACCURATE MODELLING OF SPIRAL BEVEL GEARS BASED ON FUNCTION-TO-FORM MAPPING

RESEARCH ON INTELLIGENT DESIGN AND ACCURATE MODELLING OF SPIRAL BEVEL GEARS BASED ON FUNCTION-TO-FORM MAPPING INTERNATIONAL DESIGN CONFERENCE - DESIGN 2018 https://doi.org/10.21278/idc.2018.0216 RESEARCH ON INTELLIGENT DESIGN AND ACCURATE MODELLING OF SPIRAL BEVEL GEARS BASED ON FUNCTION-TO-FORM MAPPING Z.-G.

More information

Lesson 5 Solid Modeling - Constructive Solid Geometry

Lesson 5 Solid Modeling - Constructive Solid Geometry AutoCAD 2000i Tutorial 5-1 Lesson 5 Solid Modeling - Constructive Solid Geometry Understand the Constructive Solid Geometry Concept. Create a Binary Tree. Understand the basic Boolean Operations. Create

More information

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1 David H. Myszka e-mail: dmyszka@udayton.edu Andrew P. Murray e-mail: murray@notes.udayton.edu University of Dayton, Dayton, OH 45469 James P. Schmiedeler The Ohio State University, Columbus, OH 43210 e-mail:

More information

3D Design with 123D Design

3D Design with 123D Design 3D Design with 123D Design Introduction: 3D Design involves thinking and creating in 3 dimensions. x, y and z axis Working with 123D Design 123D Design is a 3D design software package from Autodesk. A

More information

A Review On Design, Analysis And Manufacturing Of Spiral Bevel Gear

A Review On Design, Analysis And Manufacturing Of Spiral Bevel Gear A Review On Design, Analysis And Manufacturing Of Spiral Bevel Gear 1 R. M. Jadeja, 2 D. M. Chauhan 1 PG Student, School of Engineering, RK University, Rajkot, Gujarat, India. 2 Assistant Professor, School

More information

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory Roshdy Foaad Abo-Shanab Kafr Elsheikh University/Department of Mechanical Engineering, Kafr Elsheikh,

More information

4.10 INVOLUTE INTERPOLATION (G02.2, G03.2)

4.10 INVOLUTE INTERPOLATION (G02.2, G03.2) B 63014EN/02 POGAMMNG 4. NTEPOLATON FUNCTONS 4.10 NVOLUTE NTEPOLATON (G02.2, G03.2) nvolute curve machining can be performed by using involute interpolation. nvolute interpolation ensures continuous pulse

More information

Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation

Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation The International Journal of Advanced Manufacturing Technology (2019) 100:1779 1785 https://doi.org/10.1007/s00170-018-2790-3 ORIGINAL ARTICLE Calculation of non-deformed chip and gear geometry in power

More information

Dolphin PartMaster Wire EDM

Dolphin PartMaster Wire EDM Dolphin PartMaster Wire EDM Copyright 2000-2017 Dolphin CADCAM Systems Ltd. This document is copyrighted and all rights are reserved. This document may not, in whole or in part, be copied or reproduced

More information

Calculation of the Combined Torsional Mesh Stiffness of Spur Gears with Two- and Three-Dimensional Parametrical FE Models

Calculation of the Combined Torsional Mesh Stiffness of Spur Gears with Two- and Three-Dimensional Parametrical FE Models Paper received: 07.12.2010 DOI: 10.5545/sv-jme.2010.248 Paper accepted: 02.08.2011 Calculation of the Combined Torsional Mesh Stiffness of Spur Gears with Two- and Three-Dimensional Parametrical FE Models

More information

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry Pre AP Geometry Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry 1 The content of the mathematics standards is intended to support the following five goals for students: becoming

More information

A Study on Evaluation of Conceptual Designs of Machine tools

A Study on Evaluation of Conceptual Designs of Machine tools A Study on Evaluation of Conceptual Designs of Machine too Nozomu MISHIMA Fine Manufacturing System Group, Institute of Mechanical Systems Engineering, National Institute of Advanced Industrial Science

More information

Surface roughness parameters determination model in machining with the use of design and visualization technologies

Surface roughness parameters determination model in machining with the use of design and visualization technologies Surface roughness parameters determination model in machining with the use of design and visualization technologies N. Bilalis & M. Petousis Technical University of Crete, Chania, Greece A. Antoniadis

More information