Constraint Branching and Disjunctive Cuts for Mixed Integer Programs

Size: px
Start display at page:

Download "Constraint Branching and Disjunctive Cuts for Mixed Integer Programs"

Transcription

1 Constraint Branching and Disunctive Cuts for Mixed Integer Programs Constraint Branching and Disunctive Cuts for Mixed Integer Programs Michael Perregaard Dash Optimization

2 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 2 Small Example min z s.t. 2x x, x + 2 2x, z Z + z 99 Optimal LP solution: z = Optimal MIP solution: z = Consider pure branch-and-bound. Will alternately branch on fractional x or x 2. Reuires exhaustive search of (x, x 2 ) = (,49.5), (.5,49), (,48.5),, (49.5, ) solutions to search. times more with new x 3. Alternatively, branch on x + x2 49 x + x

3 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 3 Branching from Disunctive Cuts Branching is imposing a disunction valid for all (feasible) integer solutions, but not the current LP solution. Disunctive cuts are derived from some base disunction and often a strengthening argument. Gomory s Mixed Integer cuts. Lift-and-Proect cuts. Reduce and Split cuts of Andersen, Cornuéols and Li (23). The strengthening of the cut can be transformed into a strengthening of the base disunction. Use the strengthened base disunction for branching.

4 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 4 Basic Mixed Integer Program We consider solving: min s. t. cx Ax x x = b Z for Solve using branch-and-bound. I Standard branching selects a single fractional variable x and imposes disunction x x x x Can we find a better disunction?

5 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 5 Disunctive Normal Form Example For constraint Q k = D x d = where e.g. x and x 2 are fractional, we can create a disunction x x x2 x + x2

6 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 6 where Example Q (, ) + d I I d Z Split Disunctions ( di xi d di xi d + for Q. If x, x 2 and x 3 are fractional binaries, we can consider the disunction ) ( x x ) ( x2 x2 ) ( x3 x3 ) Leads to 2 3 = 8 branches.

7 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 7 Basic Disunctive (Intersection) Cut Given disunction (in nonbasic space) where with d >, then Q dn xn d α N x N α d = max Q d is a valid ineuality that cuts off the LP solution =. x N

8 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 8 Strengthening Disunctions (Balas, Jeroslaw 98) Let f be the largest value for which d x f is valid for (MIP). Set h = ( d f ). Let m Z satisfies with Σ α α Q for I, Q, be any set of integers that m for all I. Then = = is a valid ineuality for (MIP) max{( d Q max{ d Q α N N x N + d N m } h I ) d } for for N \ I

9 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 9 Strengthening Disunctions [continued] Instead of strengthening cut, as in modify the disunction directly, as in () Basic disunctive cut from () identical to strengthened cut. I N d d I d h m d Q Q \ for } max{ for } ) max{( = α + = α I N I N I I I Q d x d x m h d \ \ ) ( + +

10 Constraint Branching and Disunctive Cuts for Mixed Integer Programs Strengthening Conunctions Given valid disunction for (MIP) Q ( di x d di x d + ) Let m Z for I, Q, be any set of integers. Then Q ( + ) d m x d ( d + m ) x d ) ( I I I I I I + is a valid disunction for (MIP) since integer. m I xi must be Gomory s Mixed Integer cuts and Lift-and-Proect cuts strengthens in nonbasics. Andersen, Cornuéols, Li cuts iteratively strengthens individual basics and all nonbasics.

11 Constraint Branching and Disunctive Cuts for Mixed Integer Programs General Branching Alternatives Ryan-Foster for Set Packing and Set Partitioning. B.A. Foster and D.M. Ryan (98). Specifically designed for Set Partitioning constraints: Basis Reduction H.W. Lenstra (983) Polynomial algorithm for solving integer programs for fixed number of variables. General Branching of Mehrotra, Owen (2) Tests each variable using LP reoptimization to determine best coefficient.

12 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 2 Even more Alternatives General Branching of Karamanov, Cornuéols (Monday) Branches on Gomory cut related disunction. Column Basis Reduction of Pataki (Thursday) Generalized Branching Methods of Mehrotra (Friday)

13 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 3 Small Examples obective

14 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 4 General branching + Branch on any linear disunction. General vs. - branching - Adds new constraints matrix size grows. - More difficult to get implications. - More basic integers less reduced cost tightening.? Heaps of choices - branching - Branch on - disunctions only + Changes bounds matrix size unchanged. + Easy to get implications (bound propagation). + Branched variables will be non-basic allows reduced cost tightening.? Easy to find best choice.

15 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 5 Evaluating a Disunction Work in space of nonbasic variables A B x B + A N x Measure the uality of a disunction N = b B B through that of the implied disunctive cut αx, with x B Q dn xn d α = max Q = { d } d A b A A N x N

16 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 6 Evaluating a Cut Andersen, Cornuéols, Li (23) suggests minimizing the L 2 -norm of cut coefficients for continuous variables. What about scaling and cost? Consider reduced costs. Cost to satisfy the cut by increasing non-basic variable x is at least c α. Make cut expensive to satisfy maximize c minimize α c. Since c α N x N can be zero, we estimate a cut by g( α) = α N + δ c α, or c N

17 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 7 Improving a Disunction - Nonbasics Express disunction in nonbasics x N Q Strengthened cut coefficients in nonbasics are α α Find optimal dbxb + dnxn d Q dn xn d = = max{( d Q max{ d Q m + d m } h ) d for for N I N \ for each independently easy. } I Note: For simple split disunction xk xk x optimal gives Gomory s Mixed Integer cut. m x k k

18 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 8 Improving a Disunction - Basics Same strengthening applies to basic variable x k Q mk h xk + dn xn d Use the row i of the simplex tableau in which x k is basic: x k + aix = bi N to re-express the disunction in nonbasics: Q ( dn mk hain) xn d mk hai Problem: Find optimal discrete amount m k h to add simplex tableau row i (without basic x k ) to each term of the disunction.

19 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 9 Procedure. Convert Xpress selected branching variable x k into a simple disunction 2. Apply Gomory-esue strengthening to coefficients of non-basics in D. 3. Are there more basic, integer variables to use for strengthening? If not, stop. 4. Select basic, integer variable x i. Calculate optimal continuous coefficient m i in D. Update D with the better of or. Repeat from 2. m i mi

20 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 2 Miplib 3 Test Set 65 instances, 5 with general integers Miplib instances, 5 with general integers H. Mittelmann s test set 63 instances, 6 with general integers 46 uniue instances, 3 with general integers.

21 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 2 Instances with General Integers Name Rows Columns Binaries Integers Int.Gap Name Rows Columns Binaries Integers Int.Gap arki msc98-ip e9 atlanta-ip e9 mzzv bell3a mzzv42z bell neos blend neos flugpl neos gen neos gesa neos gesa2_o noswot gesa net gesa3_o net_o gt roll manna rout momentum timtab momentum timtab Instances not suited for general integer branching.

22 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 22 Computational Settings Implemented in C using Xpress 25B optimizer library. Uses Xpress callbacks to override default branches with new constraint branches. No in-tree cutting. No heuristics. Best-first search. Run on a dual processor Opteron 246 system (2GHz, 4GB RAM, Linux OS).

23 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 23 Instance arki atlanta-ip bell3a bell5 blend2 dsbmip flugpl gesa2_o gesa2 gesa3_o gesa3 gt2 msc98-ip No Strengthening Time Nodes (Bound) (758565) (972878) Nonbasic Strengthening (82.88) Simple Strengthening Time 5 2 Nodes (Bound) (758295) (82.92) (972878) Instance mzzv mzzv42z neos neos6 neos2 neos7 net_o net roll3 timtab timtab2 Not finished in 8 seconds gen, manna8: solved on root (excluded). noswot: can t raise bound (excluded). atlanta-ip, dsbmip, msc98-ip, mzzv, mzzv42z, neos: very few branches on integers rout No Strengthening Time Nodes (Bound) (-2728) (434) (-46) (79934) (2453) (64457) (69572) Simple Strengthening Time Nodes (Bound) (-2728) (432) (-468) (73934) 35 3 (2456) (47) (57727) (6629)

24 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 24 Instance arki atlanta-ip bell3a bell5 blend2 dsbmip flugpl gesa2_o gesa2 gesa3_o gesa3 gt2 msc98-ip No Strengthening Time Nodes (Bound) (758565) (82.88) (972878) Full Strengthening Full Strengthening Time Nodes (Bound) (75852) (82.89) (972878) Instance mzzv mzzv42z neos neos6 neos2 neos7 net_o net roll3 rout timtab timtab2 No Strengthening Time Nodes (Bound) (-2728) (434) (-46) (79934) (2453) (64457) (69572) Simple Strengthening Time Nodes (Bound) (-2728) (432) (-468) (7378) (2459) (53) (552455) (64262) Not finished in 8 seconds. bell3a, bell5: Half the number of nodes of Nonbasic Strengthening. flugpl: reduced from 329 to 3 nodes.

25 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 25 Nonbasic Strengthening #Better #Worse Branching on Binaries No Strengthening Comparing results from Nonbasic Strengthening on all Binary/Integer branches against previous results. 4 8 Strengthening on integer branches 3 7 Full Strengthening #Better #Worse No Strengthening 7 7 Strengthening on integer branches 5 5 Comparing results from Full Strengthening on all Binary/Integer branches against previous results.

26 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 26 Reduced Cost Scaling of Cut Coefficients f = + c δ δ = (no scaling) δ = median reduced cost δ =. median reduced cost. #Best #Worst 2 3 6

27 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 27 Improvement in Cut Estimate Average improvement in cut estimate relative to initial disunction when applying either nonbasic improvement or full improvement atlanta-ip dsbmip neos mzzv42z msc98-ip mzzv neos7 blend2 gesa2_o timtab2 gesa2 timtab gt2 net noswot gesa3 net_o gesa3_o bell5 flugpl rout roll3 arki bell3a neos6 neos2 Nonbasic improvement Full improvement

28 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 28 Basic Improvement Coefficients Average optimal continuous coefficient for basic integer variables, excluding when zero is optimal net_o net mzzv roll3 mzzv42z neos6 atlanta-ip timtab2 blend2 timtab gesa3_o neos2 gt2 msc98-ip gesa3 rout neos gesa2_o gesa2 flugpl arki bell3a dsbmip bell5 neos7

29 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 29 Results on Full Test Set Using full strengthening on both binary and integer branches (37 instances). Strengthening? Both finished, least nodes One finished Both unfinished, best bound No Full 8 2 Instance bell5 bell3a mod8 gt2 flugpl mzzv42z l52lav lseu neos4 neos No strengthening Time Nodes Full strengthening Time Nodes Top with best performance when applying full strengthening

30 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 3 No Improvements L52LAV Full Improvements Nonbasic Improvements 476 Improv. mindeg maxdeg 476 None Nonbas Full Sum of min and max degradation over best 25 nodes.

31 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 3 Client Set Small cutting stock problems with general integers. Strengthening Name Rows Cols Root Obective Best Sol. None Full Full on cycles only d % (686) 7732 % (37) 7732 % (227) d % (62444) 75 % (35) 75 % (248) d % (93588) 3275 % (7) 3275 % (87)

32 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 32 Client Set 2 Lot sizing problems with general integers. Name Rows Cols Root Obective Strengthening None Non-basic Full C % (56) % (45) C % (7) % (2372) C % (3946) % (223) C % (45) % (45)

33 Constraint Branching and Disunctive Cuts for Mixed Integer Programs 33 Future Directions Select initial disunction independently of Xpress. Evaluation of disunctions. Xpress uses e.g. pseudo costs, strongbranch estimates and history values to select a branch candidate. How can this be carried over to general branching? Assimilate ideas from/compare against other general branching schemes. Basis reduction LP guided strengthening of disunction. IMA general branching presentations.. Efficiency (no exploitation of sparsity at the moment). Include most promising scheme in future release of Xpress?.

State-of-the-Optimization using Xpress-MP v2006

State-of-the-Optimization using Xpress-MP v2006 State-of-the-Optimization using Xpress-MP v2006 INFORMS Annual Meeting Pittsburgh, USA November 5 8, 2006 by Alkis Vazacopoulos Outline LP benchmarks Xpress performance on MIPLIB 2003 Conclusions 3 Barrier

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Combining Lift-and-Project and Reduce-and-Split

Combining Lift-and-Project and Reduce-and-Split Combining Lift-and-Project and Reduce-and-Split Egon Balas Tepper School of Business, Carnegie Mellon University, PA Email: eb17@andrew.cmu.edu Gérard Cornuéjols Tepper School of Business, Carnegie Mellon

More information

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Timo Berthold Xpress Optimization Team Gerald Gamrath Zuse Institute Berlin Domenico Salvagnin Universita degli Studi di Padova This presentation

More information

Exploiting Degeneracy in MIP

Exploiting Degeneracy in MIP Exploiting Degeneracy in MIP Tobias Achterberg 9 January 2018 Aussois Performance Impact in Gurobi 7.5+ 35% 32.0% 30% 25% 20% 15% 14.6% 10% 5.7% 7.9% 6.6% 5% 0% 2.9% 1.2% 0.1% 2.6% 2.6% Time limit: 10000

More information

A Feasibility Pump heuristic for general Mixed-Integer Problems

A Feasibility Pump heuristic for general Mixed-Integer Problems A Feasibility Pump heuristic for general Mixed-Integer Problems Livio Bertacco, Matteo Fischetti, Andrea Lodi Department of Pure & Applied Mathematics, University of Padova, via Belzoni 7-35131 Padova

More information

Experiments On General Disjunctions

Experiments On General Disjunctions Experiments On General Disjunctions Some Dumb Ideas We Tried That Didn t Work* and Others We Haven t Tried Yet *But that may provide some insight Ted Ralphs, Serdar Yildiz COR@L Lab, Department of Industrial

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

The Ascendance of the Dual Simplex Method: A Geometric View

The Ascendance of the Dual Simplex Method: A Geometric View The Ascendance of the Dual Simplex Method: A Geometric View Robert Fourer 4er@ampl.com AMPL Optimization Inc. www.ampl.com +1 773-336-AMPL U.S.-Mexico Workshop on Optimization and Its Applications Huatulco

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC Pivot and Gomory Cut A MIP Feasibility Heuristic Shubhashis Ghosh Ryan Hayward shubhashis@randomknowledge.net hayward@cs.ualberta.ca NSERC CGGT 2007 Kyoto Jun 11-15 page 1 problem given a MIP, find a feasible

More information

A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS

A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS BINYUAN CHEN, SİMGE KÜÇÜKYAVUZ, AND SUVRAJEET SEN Abstract. The cutting plane tree (CPT) algorithm provides

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer Linear Programs

Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer Linear Programs To appear in Mathematical Programming (2006) The original article is available at http://www.springerlink.com Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer Linear Programs

More information

Welcome to the Webinar. What s New in Gurobi 7.5

Welcome to the Webinar. What s New in Gurobi 7.5 Welcome to the Webinar What s New in Gurobi 7.5 Speaker Introduction Dr. Tobias Achterberg Director of R&D at Gurobi Optimization Formerly a developer at ILOG, where he worked on CPLEX 11.0 to 12.6 Obtained

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

George Reloaded. M. Monaci (University of Padova, Italy) joint work with M. Fischetti. MIP Workshop, July 2010

George Reloaded. M. Monaci (University of Padova, Italy) joint work with M. Fischetti. MIP Workshop, July 2010 George Reloaded M. Monaci (University of Padova, Italy) joint work with M. Fischetti MIP Workshop, July 2010 Why George? Because of Karzan, Nemhauser, Savelsbergh Information-based branching schemes for

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

TABU SEARCH FOR MIXED INTEGER PROGRAMMING

TABU SEARCH FOR MIXED INTEGER PROGRAMMING Chapter 11 TABU SEARCH FOR MIXED INTEGER PROGRAMMING João Pedro Pedroso Departamento de Ciência de Computadores, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 823 4150-180 Porto,

More information

From final point cuts to!-polyhedral cuts

From final point cuts to!-polyhedral cuts AUSSOIS 2017 From final point cuts to!-polyhedral cuts Egon Balas, Aleksandr M. Kazachkov, François Margot Tepper School of Business, Carnegie Mellon University Overview Background Generalized intersection

More information

Pure Cutting Plane Methods for ILP: a computational perspective

Pure Cutting Plane Methods for ILP: a computational perspective Pure Cutting Plane Methods for ILP: a computational perspective Matteo Fischetti, DEI, University of Padova Rorschach test for OR disorders: can you see the tree? 1 Outline 1. Pure cutting plane methods

More information

The Gurobi Optimizer. Bob Bixby

The Gurobi Optimizer. Bob Bixby The Gurobi Optimizer Bob Bixby Outline Gurobi Introduction Company Products Benchmarks Gurobi Technology Rethinking MIP MIP as a bag of tricks 8-Jul-11 2010 Gurobi Optimization 2 Gurobi Optimization Incorporated

More information

Gurobi Guidelines for Numerical Issues February 2017

Gurobi Guidelines for Numerical Issues February 2017 Gurobi Guidelines for Numerical Issues February 2017 Background Models with numerical issues can lead to undesirable results: slow performance, wrong answers or inconsistent behavior. When solving a model

More information

Received: 27 October 2008 / Accepted: 1 September 2009 / Published online: 17 September 2009 Springer and Mathematical Programming Society 2009

Received: 27 October 2008 / Accepted: 1 September 2009 / Published online: 17 September 2009 Springer and Mathematical Programming Society 2009 Math. Prog. Comp. (2009) 1:201 222 DOI 10.1007/s12532-009-0007-3 FULL LENGTH PAPER Feasibility pump 2.0 Matteo Fischetti Domenico Salvagnin Received: 27 October 2008 / Accepted: 1 September 2009 / Published

More information

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL The Heuristic (Dark) Side of MIP Solvers Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL 1 Table of content [Lodi], The Heuristic (Dark) Side of MIP Solvers, Hybrid Metaheuristics, 273-284,

More information

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy How to use your favorite MIP Solver: modeling, solving, cannibalizing Andrea Lodi University of Bologna, Italy andrea.lodi@unibo.it January-February, 2012 @ Universität Wien A. Lodi, How to use your favorite

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 18 All-Integer Dual Algorithm We continue the discussion on the all integer

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

lpsymphony - Integer Linear Programming in R

lpsymphony - Integer Linear Programming in R lpsymphony - Integer Linear Programming in R Vladislav Kim October 30, 2017 Contents 1 Introduction 2 2 lpsymphony: Quick Start 2 3 Integer Linear Programming 5 31 Equivalent and Dual Formulations 5 32

More information

Lexicography and degeneracy: Can a pure cutting plane algorithm work?

Lexicography and degeneracy: Can a pure cutting plane algorithm work? Lexicography and degeneracy: Can a pure cutting plane algorithm work? Arrigo Zanette 1, Matteo Fischetti 1 and Egon Balas 2 1 DEI, University of Padova 2 Carnegie Mellon University, Pittsburgh, PA Abstract.

More information

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs Juan Pablo Vielma Shabbir Ahmed George L. Nemhauser H. Milton Stewart School of Industrial and Systems

More information

Exact solutions to mixed-integer linear programming problems

Exact solutions to mixed-integer linear programming problems Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011 Mixed-Integer

More information

On Mixed-Integer (Linear) Programming and its connection with Data Science

On Mixed-Integer (Linear) Programming and its connection with Data Science On Mixed-Integer (Linear) Programming and its connection with Data Science Andrea Lodi Canada Excellence Research Chair École Polytechnique de Montréal, Québec, Canada andrea.lodi@polymtl.ca January 16-20,

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

Size of a problem instance: Bigger instances take

Size of a problem instance: Bigger instances take 2.1 Integer Programming and Combinatorial Optimization Slide set 2: Computational Complexity Katta G. Murty Lecture slides Aim: To study efficiency of various algo. for solving problems, and to classify

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Using Multiple Machines to Solve Models Faster with Gurobi 6.0

Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Distributed Algorithms in Gurobi 6.0 Gurobi 6.0 includes 3 distributed algorithms Distributed concurrent LP (new in 6.0) MIP Distributed MIP

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Algorithms II MIP Details

Algorithms II MIP Details Algorithms II MIP Details What s Inside Gurobi Optimizer Algorithms for continuous optimization Algorithms for discrete optimization Automatic presolve for both LP and MIP Algorithms to analyze infeasible

More information

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs Computational Integer Programming Lecture 12: Branch and Cut Dr. Ted Ralphs Computational MILP Lecture 12 1 Reading for This Lecture Wolsey Section 9.6 Nemhauser and Wolsey Section II.6 Martin Computational

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 1 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 30, 2017 2 Outline Branch and Bound Theory Branch and Bound Linear Programming Node Selection Strategies

More information

A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming

A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming Samuel Souza Brito and Haroldo Gambini Santos 1 Dep. de Computação, Universidade Federal de Ouro Preto - UFOP

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

Conflict Analysis in Mixed Integer Programming

Conflict Analysis in Mixed Integer Programming Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany TOBIAS ACHTERBERG Conflict Analysis in Mixed Integer Programming URL: http://www.zib.de/projects/integer-optimization/mip

More information

NATCOR Convex Optimization Linear Programming 1

NATCOR Convex Optimization Linear Programming 1 NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 5 June 2018 What is linear programming (LP)? The most important model used in

More information

Hybrid Enumeration Strategies for Mixed Integer Programming

Hybrid Enumeration Strategies for Mixed Integer Programming Hybrid Enumeration Strategies for Mixed Integer Programming João Pedro Pedroso Technical Report Series: DCC-2004-8 Departamento de Ciência de Computadores Faculdade de Ciências & Laboratório de Inteligência

More information

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM 9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM Whereas the simplex method is effective for solving linear programs, there is no single technique for solving integer programs. Instead, a

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

COLUMN GENERATION IN LINEAR PROGRAMMING

COLUMN GENERATION IN LINEAR PROGRAMMING COLUMN GENERATION IN LINEAR PROGRAMMING EXAMPLE: THE CUTTING STOCK PROBLEM A certain material (e.g. lumber) is stocked in lengths of 9, 4, and 6 feet, with respective costs of $5, $9, and $. An order for

More information

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 14 June 2016 What is linear programming (LP)? The most important model used in

More information

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 2014, Article ID ama0156, 11 pages ISSN 2307-7743 http://scienceasia.asia SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING

More information

The Gurobi Solver V1.0

The Gurobi Solver V1.0 The Gurobi Solver V1.0 Robert E. Bixby Gurobi Optimization & Rice University Ed Rothberg, Zonghao Gu Gurobi Optimization 1 1 Oct 09 Overview Background Rethinking the MIP solver Introduction Tree of Trees

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Practice Final Exam 2: Solutions

Practice Final Exam 2: Solutions lgorithm Design Techniques Practice Final Exam 2: Solutions 1. The Simplex lgorithm. (a) Take the LP max x 1 + 2x 2 s.t. 2x 1 + x 2 3 x 1 x 2 2 x 1, x 2 0 and write it in dictionary form. Pivot: add x

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem

Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem Stefan Ropke Technical University of Denmark, Department of Transport (DTU Transport) Column

More information

Parallel and Distributed Optimization with Gurobi Optimizer

Parallel and Distributed Optimization with Gurobi Optimizer Parallel and Distributed Optimization with Gurobi Optimizer Our Presenter Dr. Tobias Achterberg Developer, Gurobi Optimization 2 Parallel & Distributed Optimization 3 Terminology for this presentation

More information

Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition

Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition 2 INFORMS Journal on Computing 0899-1499 100 1201-0002 $05.00 Vol. 12, No. 1, Winter 2000 2000 INFORMS Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition ELLIS L. JOHNSON,

More information

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING

SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING Bulletin of Mathematics Vol. 06, No. 0 (20), pp.. SUBSTITUTING GOMORY CUTTING PLANE METHOD TOWARDS BALAS ALGORITHM FOR SOLVING BINARY LINEAR PROGRAMMING Eddy Roflin, Sisca Octarina, Putra B. J Bangun,

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 05 Lecture - 24 Solving LPs with mixed type of constraints In the

More information

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem Column Generation: Cutting Stock A very applied method thst@man.dtu.dk Outline History The Simplex algorithm (re-visited) Column Generation as an extension of the Simplex algorithm A simple example! DTU-Management

More information

Column Generation: Cutting Stock

Column Generation: Cutting Stock Column Generation: Cutting Stock A very applied method thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline History The Simplex algorithm (re-visited) Column Generation as an extension

More information

Parallelizing the dual revised simplex method

Parallelizing the dual revised simplex method Parallelizing the dual revised simplex method Qi Huangfu 1 Julian Hall 2 1 FICO 2 School of Mathematics, University of Edinburgh Birmingham 9 September 2016 Overview Background Two parallel schemes Single

More information

What's New in Gurobi 7.0

What's New in Gurobi 7.0 What's New in Gurobi 7.0 What's New? New employees New features in 7.0 Major and minor Performance improvements New Gurobi Instant Cloud 2 The newest members of the Gurobi team Daniel Espinoza Senior Developer

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

Noncommercial Software for Mixed-Integer Linear Programming

Noncommercial Software for Mixed-Integer Linear Programming Noncommercial Software for Mixed-Integer Linear Programming J. T. Linderoth T. K. Ralphs December 23, 2004 Abstract We present an overview of noncommercial software tools for the solution of mixed-integer

More information

FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS

FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS BINYUAN CHEN, SİMGE KÜÇÜKYAVUZ, SUVRAJEET SEN Abstract. In this paper, we give a finite disjunctive programming

More information

A hybrid branch-and-bound approach for exact rational mixed-integer programming

A hybrid branch-and-bound approach for exact rational mixed-integer programming Math. Prog. Comp. (2013) 5:305 344 DOI 10.1007/s12532-013-0055-6 FULL LENGTH PAPER A hybrid branch-and-bound approach for exact rational mixed-integer programming William Cook Thorsten Koch Daniel E. Steffy

More information

Optimization of Design. Lecturer:Dung-An Wang Lecture 8

Optimization of Design. Lecturer:Dung-An Wang Lecture 8 Optimization of Design Lecturer:Dung-An Wang Lecture 8 Lecture outline Reading: Ch8 of text Today s lecture 2 8.1 LINEAR FUNCTIONS Cost Function Constraints 3 8.2 The standard LP problem Only equality

More information

Exact Algorithms for Mixed-Integer Bilevel Linear Programming

Exact Algorithms for Mixed-Integer Bilevel Linear Programming Exact Algorithms for Mixed-Integer Bilevel Linear Programming Matteo Fischetti, University of Padova (based on joint work with I. Ljubic, M. Monaci, and M. Sinnl) Lunteren Conference on the Mathematics

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 10: Optimisation (1) A/Prof Chun Tung Chou CSE, UNSW COMP9334, Chun Tung Chou, 2016 Three Weeks of Optimisation The lectures for these

More information

Introduction. Linear because it requires linear functions. Programming as synonymous of planning.

Introduction. Linear because it requires linear functions. Programming as synonymous of planning. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid-20th cent. Most common type of applications: allocate limited resources to competing

More information

Integer and Combinatorial Optimization

Integer and Combinatorial Optimization Integer and Combinatorial Optimization GEORGE NEMHAUSER School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia LAURENCE WOLSEY Center for Operations Research and

More information

Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming

Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming Matteo Fischetti, University of Padova 8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 1 Bilevel Optimization

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

The Simplex Algorithm for LP, and an Open Problem

The Simplex Algorithm for LP, and an Open Problem The Simplex Algorithm for LP, and an Open Problem Linear Programming: General Formulation Inputs: real-valued m x n matrix A, and vectors c in R n and b in R m Output: n-dimensional vector x There is one

More information

Linear & Integer Programming: A Decade of Computation

Linear & Integer Programming: A Decade of Computation Linear & Integer Programming: A Decade of Computation Robert E. Bixby, Mary Fenelon, Zongao Gu, Irv Lustig, Ed Rothberg, Roland Wunderling 1 Outline Progress in computing machines Linear programming (LP)

More information

TIM 206 Lecture Notes Integer Programming

TIM 206 Lecture Notes Integer Programming TIM 206 Lecture Notes Integer Programming Instructor: Kevin Ross Scribe: Fengji Xu October 25, 2011 1 Defining Integer Programming Problems We will deal with linear constraints. The abbreviation MIP stands

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 16 Cutting Plane Algorithm We shall continue the discussion on integer programming,

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Martin W.P. Savelsbergh. Georgia Institute of Technology. School of Industrial and Systems Engineering

Martin W.P. Savelsbergh. Georgia Institute of Technology. School of Industrial and Systems Engineering A MINTO short course 1 Martin W.P. Savelsbergh George L. Nemhauser Introduction Georgia Institute of Technology School of Industrial and Systems Engineering Atlanta, GA 30332-0205 (February 1, 1995) MINTO

More information

Primal Heuristics in SCIP

Primal Heuristics in SCIP Primal Heuristics in SCIP Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 10/11/2007 Outline 1 Introduction Basics Integration Into SCIP 2 Available

More information

CSC 8301 Design & Analysis of Algorithms: Linear Programming

CSC 8301 Design & Analysis of Algorithms: Linear Programming CSC 8301 Design & Analysis of Algorithms: Linear Programming Professor Henry Carter Fall 2016 Iterative Improvement Start with a feasible solution Improve some part of the solution Repeat until the solution

More information

Comparisons of Commercial MIP Solvers and an Adaptive Memory (Tabu Search) Procedure for a Class of 0-1 Integer Programming Problems

Comparisons of Commercial MIP Solvers and an Adaptive Memory (Tabu Search) Procedure for a Class of 0-1 Integer Programming Problems Comparisons of Commercial MIP Solvers and an Adaptive Memory (Tabu Search) Procedure for a Class of 0-1 Integer Programming Problems Lars M. Hvattum The Norwegian University of Science and Technology Trondheim,

More information

Bayesian network model selection using integer programming

Bayesian network model selection using integer programming Bayesian network model selection using integer programming James Cussens Leeds, 2013-10-04 James Cussens IP for BNs Leeds, 2013-10-04 1 / 23 Linear programming The Belgian diet problem Fat Sugar Salt Cost

More information

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods 5.8J Integer Programming and Combinatorial Optimization Fall 9 A knapsack problem Enumerative Methods Let s focus on maximization integer linear programs with only binary variables For example: a knapsack

More information

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D. Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

More information

Solving a Challenging Quadratic 3D Assignment Problem

Solving a Challenging Quadratic 3D Assignment Problem Solving a Challenging Quadratic 3D Assignment Problem Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova Quadratic 3D Assignment Problem Quadratic 3D Assignment Problem

More information

Rounding and Propagation Heuristics for Mixed Integer Programming

Rounding and Propagation Heuristics for Mixed Integer Programming Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-9 Berlin-Dahlem Germany TOBIAS ACHTERBERG TIMO BERTHOLD GREGOR HENDEL Rounding and Propagation Heuristics for Mixed Integer Programming

More information

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management Mathematical Tools for Engineering and Management Lecture 8 8 Dec 0 Overview Models, Data and Algorithms Linear Optimization Mathematical Background: Polyhedra, Simplex-Algorithm Sensitivity Analysis;

More information

A PRIMAL-DUAL EXTERIOR POINT ALGORITHM FOR LINEAR PROGRAMMING PROBLEMS

A PRIMAL-DUAL EXTERIOR POINT ALGORITHM FOR LINEAR PROGRAMMING PROBLEMS Yugoslav Journal of Operations Research Vol 19 (2009), Number 1, 123-132 DOI:10.2298/YUJOR0901123S A PRIMAL-DUAL EXTERIOR POINT ALGORITHM FOR LINEAR PROGRAMMING PROBLEMS Nikolaos SAMARAS Angelo SIFELARAS

More information

Parallel Branch & Bound

Parallel Branch & Bound Parallel Branch & Bound Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Outline Mixed integer programming (MIP) and branch & bound (B&B) Linear programming (LP) based B&B Relaxation and

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information