turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2

Size: px
Start display at page:

Download "turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2"

Transcription

1 Math 133 Polar Coordinates Stewart 10.3/I,II Points in polar coordinates. The first and greatest achievement of modern mathematics was Descartes description of geometric objects b numbers, using a sstem of coordinates. In the simplest example, Cartesian or rectangular coordinates on the plane locate a point P in terms of two coordinate measurements x and : how far over and how far up the point is, moving parallel to the marked axes. We loosel sa that P is the pair (x, ), because the coordinates tell how to get there from the origin. The name P is like identifing a house as the Jones place, whereas the coordinates are like saing the third house to the right on the second street down. In this section, we learn how to locate the point P using a different pair of measurements, the polar coordinates (r, θ). The radius r is the distance from the origin. The angle θ is measured couterclockwise in radians, from the positive x-axis ra to the ra from orgin through the point P. This is like pointing to the house 500 ards in that direction. Unlike rectangular coordinates, the polar coordinates of a point are multivalent, having man equivalent versions because of the ambiguit of angles. For example, the point (x, ) = (0, 1) on the positive -axis corresponds to (r, θ) = (1, ), where θ = means a 1 4 turn counterclockwise from the positive x-axis. However, we could equall well get to this point b a 3 4 turn clockwise, giving (r, θ) = (1, 3 ). In fact, we could get to the point b turns counterclockwise, clockwise, etc. In general, we must consider all angles that differ b a multiple of a full turn as the same, meaning the define the same point: (r, θ) = (r, θ+n) for an integer n. It is also useful to allow negative radius: ( r, θ) means to move out along the line at angle θ, but in the opposite direction from the positive ra, along the ra θ ± ; thus: ( r, θ) = (r, θ ± ). There is even more ambiguit for the origin (x, ) = (0, 0), which can be written as (r, θ) = (0, θ) for an angle at all. Both tpes of coordinates completel locate a point, so given either (x, ) or (r, θ),

2 we can find the other b simple trigonometric formulas: Given (r, θ) = find (x, ) with Given (x, ) = find (r, θ) with { x = r cos(θ) = r sin(θ). { r = x + θ = arctan( x ). Here we get θ from the defining formula tan(θ) = x, and we could equall well use sin(θ) =, etc., alwas remembering we can change θ to θ+n. Also, since x + < arctan(θ) <, we must define arctan( ) =, arctan( ) = ; and we must adjust the angle b ± if the point lies left of the x-axis. Curves in polar coordinates. An geometric object in the plane is a set (collection) of points, so we can describe it b a set of coordinate pairs. For example, the unit circle C is the set of all points at distance 1 from the origin; the coordinates of these points form the set of all pairs (x, ) which satisf the Pthagorean equation x + = 1: C = {(x, ) such that x + = 1}. Again, the equalit of these sets is meant loosel: a pair of numbers like (x, ) = ( 3 5, 4 5 ) is not literall a geometric point on the circle, but it identifies a point b means of the rectangular coordinate sstem. Now, polar coordinates are speciall adapted to describe round, turn shapes centered at the origin, and the make the equation of the circle as simple as possible: C = {(r, θ) such that r = 1}. example: The line x + = 1 is not at all circular or centered at the origin, and its equation becomes complicated in polar coordinates: x + = 1 = r cos(θ) + r sin(θ) = 1 = r = 1 cos(θ)+ sin(θ) = 1 sec(θ 4 ). The last equalit follows from the identit cos(θ 4 ) = cos(θ) cos( 4 ) + sin(θ) sin( 4 ) = 1 (cos(θ) + sin(θ)). Similar reasoning gives the polar form of a general linear equation. For ax+b = 0, we get θ = α for the constant angle α = arctan( b a ). For c 0, we get: ax + b = c = r = c a cos(θ) + b sin(θ) = c a + b sec(θ α), Summarizing: ( ) ( ) { x arctan ( ) if x 0 x θ = arcsin = arccos = x + x + arctan ( ) x + sgn() if x < 0 The last formula is expressed in computer languages as atan(,x). There is no separate curve connecting the points: the curve is just all the points.

3 example: Consider the Archimedean spiral, the shape of the groove on an old vinl record (solid blue line). This is defined b a point moving steadil outward as it turns around the origin: in parametric polar coordinates, (r(t), θ(t)) = (t, t) for t 0, meaning at time t the radius and angle are both t. Converting into rectangular coordinates: (x(t), (t)) = (r(t) cos θ(t), r(t) sin θ(t)) = (t cos(t), t sin(t)). Deparametrizing gives the rθ and x-equations: r = θ + n for integer n = ( x + = arctan + n x) = = x tan x +. For example, we can tell the points (x, ) = (n, 0) are on the spiral, because 0 = n tan (n) + 0. Actuall, the last equation defines the spiral together with its natural continuation back past its center point, namel the 1 turn rotation of the original spiral (dashed red line). Sketching polar graphs. Remember that a function f is just a rule taking input numbers to output numbers. It does not care what letters we use for inputs and outputs, or how we interpret those letters geometricall. We usuall illustrate the function b drawing its rectangular graph = f(x), in which f controls the height above each point on the x-axis. But another wa to illustrate this function is the polar graph r = f(θ), in which f controls the radius r along each ra θ. We can sketch the polar graph r = f(θ) b plotting points, just as for a rectangular graph. For example, consider the polar curve: r = sin(θ). We imagine the plane as a field, with us standing at the origin. We look along the positive x-axis and draw a point at radius 0, namel the origin itself. As we increase θ > 0, turning slowl to the left, we increase the radius as sin(θ) increases. The radius tops out at 1 when θ = along the positive -axis; and as we continue to turn the point comes back in to the origin when θ =. After that, as we turn toward negative directions the radius becomes negative, so we draw points behind us, in fact retracing the original curve.

4 Actuall, this is a computer plot to turn the qualitative stor above into an accurate graph. But we reall could do this b hand, b plotting r for some standard θ: deg θ r As we said, the angles θ give negative radius and re-plot the same points. The computer does the same kind of plotting, but with man more points, so wh bother with our piddl hand sketches and point plotting? Because of a ver great danger for anone who uses mathematics. If ou let the computer do the thinking, not just the calculating, ou are read to accept an bizarre wrong answer without an wa to check it. Then one tpo error will escalate until our scientific paper has to be retracted, our compan s expenses are ten times what ou predicted, our bridge collapses, our rocket crashes. Don t let it happen! Before accepting the computer s answer, ou must check the expected answer qualitativel against a stor or sketch, and quantitativel b plotting sample points. From the sketch, we ma guess this curve is a circle, which we verif b converting to an x-equation, and simplifing b completing the square: r = sin(θ) = x + = x + = x + = 0 = x + ( 1 ) + ( 1 ) = ( 1 ) = x + ( 1 ) = ( 1 ). Indeed, this is a circle of radius 1 centered at (x, ) = (0, 1 ).

5 More sketching. We sketch the curve: r = 1 + sin(θ). This is more complicated, so instead of computing a table of θ and r values, we start b drawing the function r = f(θ) = 1 + sin(θ) in our usual wa as a rectangular graph, labeling the horizontal and vertical axes b r and θ because that is how we intend to draw them later in the polar graph. Even without precise values, we can sketch the polar graph b adjusting the radius according to the heights of the rectangular graph (dotted lines). The blue lobe is traced b θ [ 4, 3 4 ]; then the green lobe is for θ [ 3 4, 7 4 ]. Graphicall, we crush the entire horizontal θ-axis in the rectangular graph to the origin in the polar graph, spreading out the radial lines like a fan.

10.7. Polar Coordinates. Introduction. What you should learn. Why you should learn it. Example 1. Plotting Points on the Polar Coordinate System

10.7. Polar Coordinates. Introduction. What you should learn. Why you should learn it. Example 1. Plotting Points on the Polar Coordinate System _7.qxd /8/5 9: AM Page 779 Section.7 Polar Coordinates 779.7 Polar Coordinates What ou should learn Plot points on the polar coordinate sstem. Convert points from rectangular to polar form and vice versa.

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

9.1 POLAR COORDINATES

9.1 POLAR COORDINATES 9. Polar Coordinates Contemporary Calculus 9. POLAR COORDINATES The rectangular coordinate system is immensely useful, but it is not the only way to assign an address to a point in the plane and sometimes

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity)

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity) Math : Fall 0 0. (part ) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pthagorean Identit) Cosine and Sine Angle θ standard position, P denotes point where the terminal side of

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

Table of Contents. Unit 5: Trigonometric Functions. Answer Key...AK-1. Introduction... v

Table of Contents. Unit 5: Trigonometric Functions. Answer Key...AK-1. Introduction... v These materials ma not be reproduced for an purpose. The reproduction of an part for an entire school or school sstem is strictl prohibited. No part of this publication ma be transmitted, stored, or recorded

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

2.3 Circular Functions of Real Numbers

2.3 Circular Functions of Real Numbers www.ck12.org Chapter 2. Graphing Trigonometric Functions 2.3 Circular Functions of Real Numbers Learning Objectives Graph the six trigonometric ratios as functions on the Cartesian plane. Identify the

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

LESSON 3.1 INTRODUCTION TO GRAPHING

LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING 137 OVERVIEW Here s what ou ll learn in this lesson: Plotting Points a. The -plane b. The -ais and -ais c. The origin d. Ordered

More information

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1)

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1) Unit 4 Trigonometr Stud Notes 1 Right Triangle Trigonometr (Section 8.1) Objective: Evaluate trigonometric functions of acute angles. Use a calculator to evaluate trigonometric functions. Use trigonometric

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

6.1 Polar Coordinates

6.1 Polar Coordinates 6.1 Polar Coordinates Introduction This chapter introduces and explores the polar coordinate system, which is based on a radius and theta. Students will learn how to plot points and basic graphs in this

More information

12 Polar Coordinates, Parametric Equations

12 Polar Coordinates, Parametric Equations 54 Chapter Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations Just as we describe curves in the plane using equations involving x and y, so can we describe curves using equations

More information

Think About. Unit 5 Lesson 3. Investigation. This Situation. Name: a Where do you think the origin of a coordinate system was placed in creating this

Think About. Unit 5 Lesson 3. Investigation. This Situation. Name: a Where do you think the origin of a coordinate system was placed in creating this Think About This Situation Unit 5 Lesson 3 Investigation 1 Name: Eamine how the sequence of images changes from frame to frame. a Where do ou think the origin of a coordinate sstem was placed in creating

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates OpenStax-CNX module: m53852 1 Polar Coordinates OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 Abstract Locate points

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

CCNY Math Review Chapters 5 and 6: Trigonometric functions and graphs

CCNY Math Review Chapters 5 and 6: Trigonometric functions and graphs Ch 5. Trigonometry 6. Angles 6. Right triangles 6. Trig funs for general angles 5.: Trigonometric functions and graphs 5.5 Inverse functions CCNY Math Review Chapters 5 and 6: Trigonometric functions and

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

5.3 Angles and Their Measure

5.3 Angles and Their Measure 5.3 Angles and Their Measure 1. Angles and their measure 1.1. Angles. An angle is formed b rotating a ra about its endpoint. The starting position of the ra is called the initial side and the final position

More information

θ as rectangular coordinates)

θ as rectangular coordinates) Section 11.1 Polar coordinates 11.1 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are polar coordinates. see the relation between rectangular and polar

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

3.0 Trigonometry Review

3.0 Trigonometry Review 3.0 Trigonometry Review In trigonometry problems, all vertices (corners or angles) of the triangle are labeled with capital letters. The right angle is usually labeled C. Sides are usually labeled with

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

MATHEMATICS 105 Plane Trigonometry

MATHEMATICS 105 Plane Trigonometry Chapter I THE TRIGONOMETRIC FUNCTIONS MATHEMATICS 105 Plane Trigonometry INTRODUCTION The word trigonometry literally means triangle measurement. It is concerned with the measurement of the parts, sides,

More information

Presented, and Compiled, By. Bryan Grant. Jessie Ross

Presented, and Compiled, By. Bryan Grant. Jessie Ross P a g e 1 Presented, and Compiled, By Bryan Grant Jessie Ross August 3 rd, 2016 P a g e 2 Day 1 Discovering Polar Graphs Days 1 & 2 Adapted from Nancy Stephenson - Clements High School, Sugar Land, Texas

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n =

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n = Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equalit properties of real numbers and inverse operations

More information

MATH 1113 Exam 3 Review. Fall 2017

MATH 1113 Exam 3 Review. Fall 2017 MATH 1113 Exam 3 Review Fall 2017 Topics Covered Section 4.1: Angles and Their Measure Section 4.2: Trigonometric Functions Defined on the Unit Circle Section 4.3: Right Triangle Geometry Section 4.4:

More information

SM 2. Date: Section: Objective: The Pythagorean Theorem: In a triangle, or

SM 2. Date: Section: Objective: The Pythagorean Theorem: In a triangle, or SM 2 Date: Section: Objective: The Pythagorean Theorem: In a triangle, or. It doesn t matter which leg is a and which leg is b. The hypotenuse is the side across from the right angle. To find the length

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES UNIT LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES PREREQUISITE SKILLS: students must know how to graph points on the coordinate plane students must understand ratios, rates and unit rate VOCABULARY:

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 9 ARAMETRIC EQUATIONS AND OLAR COORDINATES So far we have described plane curves b giving as a function of f or as a function of t or b giving a relation between and that defines implicitl as a function

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately.

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately. Math 65 Weekl Activit 1 (50 points) Name: Simplif the following epressions. Make sure to use the = smbol appropriatel. Due (1) (a) - 4 (b) ( - ) 4 () 8 + 5 6 () 1 5 5 Evaluate the epressions when = - and

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73

Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73 Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73 AP Calculus is a rigorous college level math course. It will be necessary to do some preparatory

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

LINEAR TOPICS Notes and Homework: DUE ON EXAM

LINEAR TOPICS Notes and Homework: DUE ON EXAM NAME CLASS PERIOD LINEAR TOPICS Notes and Homework: DUE ON EXAM VOCABULARY: Make sure ou know the definitions of the terms listed below. These will be covered on the exam. Axis Scatter plot b Slope Coordinate

More information

48. Logistic Growth (BC) Classwork

48. Logistic Growth (BC) Classwork 48. Logistic Growth (BC) Classwork Using the exponential growth model, the growth of a population is proportion to its current size. The differential equation for exponential growth is dp = kp leading

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

MATH EXAM 1 - SPRING 2018 SOLUTION

MATH EXAM 1 - SPRING 2018 SOLUTION MATH 140 - EXAM 1 - SPRING 018 SOLUTION 8 February 018 Instructor: Tom Cuchta Instructions: Show all work, clearly and in order, if you want to get full credit. If you claim something is true you must

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

MCR3U UNIT #6: TRIGONOMETRY

MCR3U UNIT #6: TRIGONOMETRY MCR3U UNIT #6: TRIGONOMETRY SECTION PAGE NUMBERS HOMEWORK Prerequisite p. 0 - # 3 Skills 4. p. 8-9 #4, 5, 6, 7, 8, 9,, 4. p. 37 39 #bde, acd, 3, 4acde, 5, 6ace, 7, 8, 9, 0,, 4.3 p. 46-47 #aef,, 3, 4, 5defgh,

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 91 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t + sin() y t + cos() (a) Find the Cartesian

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

MA 154 PRACTICE QUESTIONS FOR THE FINAL 11/ The angles with measures listed are all coterminal except: 5π B. A. 4

MA 154 PRACTICE QUESTIONS FOR THE FINAL 11/ The angles with measures listed are all coterminal except: 5π B. A. 4 . If θ is in the second quadrant and sinθ =.6, find cosθ..7.... The angles with measures listed are all coterminal except: E. 6. The radian measure of an angle of is: 7. Use a calculator to find the sec

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

Appendix C: Review of Graphs, Equations, and Inequalities

Appendix C: Review of Graphs, Equations, and Inequalities Appendi C: Review of Graphs, Equations, and Inequalities C. What ou should learn Just as ou can represent real numbers b points on a real number line, ou can represent ordered pairs of real numbers b points

More information

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses.

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Unit 2: Trigonometry This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Pythagorean Theorem Recall that, for any right angled triangle, the square

More information

A lg e b ra II. Trig o n o m e tric F u n c tio

A lg e b ra II. Trig o n o m e tric F u n c tio 1 A lg e b ra II Trig o n o m e tric F u n c tio 2015-12-17 www.njctl.org 2 Trig Functions click on the topic to go to that section Radians & Degrees & Co-terminal angles Arc Length & Area of a Sector

More information

Mathematics Placement Assessment

Mathematics Placement Assessment Mathematics Placement Assessment Courage, Humility, and Largeness of Heart Oldfields School Thank you for taking the time to complete this form accurately prior to returning this mathematics placement

More information

Sum and Difference Identities. Cosine Sum and Difference Identities: cos A B. does NOT equal cos A. Cosine of a Sum or Difference. cos B.

Sum and Difference Identities. Cosine Sum and Difference Identities: cos A B. does NOT equal cos A. Cosine of a Sum or Difference. cos B. 7.3 Sum and Difference Identities 7-1 Cosine Sum and Difference Identities: cos A B Cosine of a Sum or Difference cos cos does NOT equal cos A cos B. AB AB EXAMPLE 1 Finding Eact Cosine Function Values

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

Unit 7: Trigonometry Part 1

Unit 7: Trigonometry Part 1 100 Unit 7: Trigonometry Part 1 Right Triangle Trigonometry Hypotenuse a) Sine sin( α ) = d) Cosecant csc( α ) = α Adjacent Opposite b) Cosine cos( α ) = e) Secant sec( α ) = c) Tangent f) Cotangent tan(

More information

sin30 = sin60 = cos30 = cos60 = tan30 = tan60 =

sin30 = sin60 = cos30 = cos60 = tan30 = tan60 = Precalculus Notes Trig-Day 1 x Right Triangle 5 How do we find the hypotenuse? 1 sinθ = cosθ = tanθ = Reciprocals: Hint: Every function pair has a co in it. sinθ = cscθ = sinθ = cscθ = cosθ = secθ = cosθ

More information

5-2 Verifying Trigonometric Identities

5-2 Verifying Trigonometric Identities 5- Verifying Trigonometric Identities Verify each identity. 1. (sec 1) cos = sin 3. sin sin 3 = sin cos 4 5. = cot 7. = cot 9. + tan = sec Page 1 5- Verifying Trigonometric Identities 7. = cot 9. + tan

More information

The Polar Coordinate System

The Polar Coordinate System University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-008 The Polar Coordinate System Alisa Favinger University

More information

Lesson 27: Angles in Standard Position

Lesson 27: Angles in Standard Position Lesson 27: Angles in Standard Position PreCalculus - Santowski PreCalculus - Santowski 1 QUIZ Draw the following angles in standard position 50 130 230 320 770-50 2 radians PreCalculus - Santowski 2 Fast

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

The Sine and Cosine Functions

The Sine and Cosine Functions Lesson -5 Lesson -5 The Sine and Cosine Functions Vocabular BIG IDEA The values of cos and sin determine functions with equations = sin and = cos whose domain is the set of all real numbers. From the eact

More information

Lesson 5.6: Angles in Standard Position

Lesson 5.6: Angles in Standard Position Lesson 5.6: Angles in Standard Position IM3 - Santowski IM3 - Santowski 1 Fast Five Opening Exercises! Use your TI 84 calculator:! Evaluate sin(50 ) " illustrate with a diagram! Evaluate sin(130 ) " Q

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

Trigonometry. 9.1 Radian and Degree Measure

Trigonometry. 9.1 Radian and Degree Measure Trigonometry 9.1 Radian and Degree Measure Angle Measures I am aware of three ways to measure angles: degrees, radians, and gradians. In all cases, an angle in standard position has its vertex at the origin,

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Chapter 10: Parametric And Polar Curves; Conic Sections

Chapter 10: Parametric And Polar Curves; Conic Sections 206 Chapter 10: Parametric And Polar Curves; Conic Sections Summary: This chapter begins by introducing the idea of representing curves using parameters. These parametric equations of the curves can then

More information

Section 5: Introduction to Trigonometry and Graphs

Section 5: Introduction to Trigonometry and Graphs Section 5: Introduction to Trigonometry and Graphs The following maps the videos in this section to the Texas Essential Knowledge and Skills for Mathematics TAC 111.42(c). 5.01 Radians and Degree Measurements

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins CALCULUS II Parametric Equations and Polar Coordinates Paul Dawkins Table of Contents Preface... ii Parametric Equations and Polar Coordinates... 3 Introduction... 3 Parametric Equations and Curves...

More information

The x coordinate tells you how far left or right from center the point is. The y coordinate tells you how far up or down from center the point is.

The x coordinate tells you how far left or right from center the point is. The y coordinate tells you how far up or down from center the point is. We will review the Cartesian plane and some familiar formulas. College algebra Graphs 1: The Rectangular Coordinate System, Graphs of Equations, Distance and Midpoint Formulas, Equations of Circles Section

More information

Mid-Chapter Quiz: Lessons 9-1 through 9-3

Mid-Chapter Quiz: Lessons 9-1 through 9-3 Graph each point on a polar grid. 1. A( 2, 45 ) 3. Because = 45, locate the terminal side of a 45 angle with the polar axis as its initial side. Because r = 2, plot a point 2 units from the pole in the

More information

Contents. How You May Use This Resource Guide

Contents. How You May Use This Resource Guide Contents How You Ma Use This Resource Guide ii 0 Trigonometric Formulas, Identities, and Equations Worksheet 0.: Graphical Analsis of Trig Identities.............. Worksheet 0.: Verifing Trigonometric

More information

Trigonometric Ratios and Functions

Trigonometric Ratios and Functions Algebra 2/Trig Unit 8 Notes Packet Name: Date: Period: # Trigonometric Ratios and Functions (1) Worksheet (Pythagorean Theorem and Special Right Triangles) (2) Worksheet (Special Right Triangles) (3) Page

More information

Lesson 12: Sine 5 = 15 3

Lesson 12: Sine 5 = 15 3 Lesson 12: Sine How did ou do on that last worksheet? Is finding the opposite side and adjacent side of an angle super-duper eas for ou now? Good, now I can show ou wh I wanted ou to learn that first.

More information